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OutlineOutline

• Motivation
• Performance analysis of real-time traffic

• Why classical queueing theory is unfit

• Network Calculus
• Basic modeling: arrival and service curves
• Concatenation, bounds

• “Pay burst only once” principle / IntServ
• Advanced modeling: aggregate scheduling

• Stochastic Network Calculus
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RealReal--time traffictime traffic

• Expected to represent the bulk of the 
traffic in the Internet soon
• Skype users: 107-108

• Cisco white paper: video traffic volume to 
surpass P2P in 2010

• Revenue-generating only if reliable
• Reliability boils down to “packets meeting 

deadlines”
• End-to-end delay bounds are required
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Performance analysisPerformance analysis

• Tagged flow (of packets) 
traversing a path

• Cross traffic

• Many queueing points 
(routers)

• How to compute a 
bound on the e2e 
delay?
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Performance analysis (2)Performance analysis (2)

• Service Level Agreement 
with upstream neighbor

• I will carry 
• up to X Mbps of your traffic 
• from A to B

• within up to Y ms (!!)
• for Z$

A

B
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Network Calculus and Network Calculus and QueueingQueueing TheoryTheory

• 100 years of Queueing Theory
• 1909. A. K. Erlang “The Theory of Probabilities and 

Telephone Conversations”.
• Originated in the area of telecommunications
• Developed and applied in a variety of areas
• Erlang Centennial held in Denmark, April 2009.

• ~20 years of Network Calculus
• 1991. R. L. Cruz, “A Calculus for Network Delay”.
• Recent development of queueing theory for 

computer networks
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NC and NC and QueueingQueueing Theory (2)Theory (2)

• Queueing theory requires models for 
traffic
• Simplistic models required for tractability
• What if the traffic mix changes?

• New applications (social networks, etc.)
• Flash crowds (e.g., a football match)
• Topology modifications (routing, link upgrades)

• Queueing theory mainly concerned with 
average performance metrics
• Real-time traffic needs bounds
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Modeling a network with NC (1)Modeling a network with NC (1)

Fixed delays: 
propagation, …

Variable delay: 
queueing

Per-flow scheduling Aggregate scheduling
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Modeling a Modeling a queueingqueueing point with NCpoint with NC

• A scheduler serves its queues on a time 
sharing basis:

• Most guarantee that a queue is visited:
• For a minimum amount of time
• After a computable maximum vacation

Round robin

Strict priority
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Modeling a Modeling a queueingqueueing point with NC (2)point with NC (2)

• Minimum service over a maximum interval
• A minimum guaranteed rate
• With a latency (when the server is away)
• The latency is upper bounded

• Round robin schedulers (DRR, PDRR, …)
• Fair Queueing schedulers (PGPS, WFQ, 

WF2Q, STFQ, SCFQ, …)
• Strict priority (for the queue at highest prio)
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Example: a Round Robin schedulerExample: a Round Robin scheduler

• Fixed length packets, 2 packets per queue
s
e
rv
ic
e

Slope C

latency

Slope R<C
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t
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e
rv
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e

Example: a priority schedulerExample: a priority scheduler

• Strict non preemptive priority, queue
scheduled at top priority

Slope C

latency

Service curve: summarizes 
the service received in a 
worst case by a backlogged 
tagged flow

Models the presence of other 
queues

Rate-latency service 
curves most common in 
practice
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Modeling a Modeling a queueingqueueing point with NC (3)point with NC (3)

• Worst-case behavior for my queue:
• served at minimum rate

• with maximum latency 
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Modeling a Modeling a queueingqueueing point with NC (4)point with NC (4)

• Nodes transform functions of time
( )A t ( )D t

TF

P1

TF

P2

TF

P3

TF

P4

Server with 

latency

capacity

R<C

time

b
it
s ( )A t ( )D t

( )tβ

0t

( )0A t

( )0D t

( ) ( )D t A tβ≥ ⊗

( )
( ) ( ){ }

0
inf

s t

A t

A s t s

β

β
≤ ≤

⊗ =

+ −

( ) ( )
0

t
A s t s dsβ⋅ −∫
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Concatenation propertyConcatenation property

• Assume a flow traverses a tandem of nodes

1 2

( )
( )

1,2

1 2

t

t

β
β β

=

⊗

( )A t ( )D t ( ) ( )1,2D t A tβ≥ ⊗

It works for any # of nodes
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Concatenation property (2)Concatenation property (2)

• At each of the N nodes:
• Cross traffic could be anything
• Schedulers need not be the same

• mid ’90s: analyzing a tandem of identical 
schedulers 
• Took a whole PhD

• Was enough for a top-level journal paper 
(Parekh ’93, Saha ’98,…, all on IEEE/ACM TNet) 

1 2
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An endAn end--toto--end delay bound (1)end delay bound (1)

• A bound on the delay for a given arrival 
process can easily be computed

time

b
it
s ( )A t

Dmax

( )2e eA tβ⊗

( )2e e tβ

( )A t ( )D t
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An endAn end--toto--end delay bound (2)end delay bound (2)

• Traffic shaping/policing
• Check conformance with a pre-specified profile

• Drop/delay out-of-profile traffic
• Employed to verify SLA conformance

packets shaper network

A

B
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An endAn end--toto--end delay bound (3)end delay bound (3)

• Arrival curve: a constraint on the arrival process

time

b
it
s ( )A t

( )tα

( ) ( ) ( )A t A s t sα− ≤ −

( ) ( )A t A tα≤ ⊗

example: 

a token bucket
burst B, rate r

B

r
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Backlog and delay bounds in NCBacklog and delay bounds in NC

• service curve for a path + arrival curve for a flow

time

b
it
s

( )tα

D

D is a bound on the e2e 
delay

B B is a bound on the backlog

Bounds are tight
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Convolution of rateConvolution of rate--latency curveslatency curves

( ) ( )
( ) ( ){ }

1,2 1 2

1 2
0
inf

s t

t t

s t s

β β β

β β
≤ ≤

= ⊗

= + −
( ) ( )i i it R t Lβ += ⋅ −

b
it
s

b
it
s

L1

L2

L1+L2

min(R1,R2)
R1

R2

• Sum of the latencies, min of the rates
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““Pay bursts only oncePay bursts only once”” principleprinciple

• When traversing a tandem, your DB consists of
• N latencies
• One burst delay

b
it
s

( )tα

{ }
1
min i

i N

B

R
≤ ≤

{ }1 1

1
min

N N

i ii i
i i

i N

B B
D L L

R R= =

≤ ≤

 
= + < + 

 
∑ ∑

B

Pay burst only once
(at the min rate)

1

N

ii
L

=∑ D(1…N) < D(1)+…+D(N)
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IntServIntServ architecture (1)architecture (1)

• RSVP protocol

• FlowSpec: burst and rate of the flow
• i.e., its token bucket arrival curve

• Path message
• Includes FlowSpec and required delay bound
• Collects node latencies at each hop

PATH
L1

PATH
L1+L2

PATH
L1+…+LN
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IntServIntServ architecture (2)architecture (2)

• At the destination
• compute what rate you need to reserve

• Based on your required delay D

b
it
s

( )tα

B R

B
1

N

ii
L

=∑

D

1

max ,N

ii

B
R r

D L
=

  =  
−  ∑

r
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IntServIntServ architecture (3)architecture (3)

• RESV message travels back and reserves
a rate R at each node
• The delay bound is guaranteed from now on

RESV
R
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TrafficTraffic aggregationaggregation

• Aggregation as "the" solution for scalable
provisioning of QoS in core networks

• Internet:
• Differentiated Services
• MPLS

Per-flow resource 
management 

(e.g., packet scheduling) 
just doesn’t scale
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PerPer--aggregate schedulingaggregate scheduling

• Packets of an aggregate normally queued FIFO

• Arbitration (scheduling) among aggregates
• Forwarding guarantees for the aggregate

IMT Lucca, October 28, 2009 28

D
ip
ar
ti
m
e
nt
o 
d
i 
I
ng
e
gn
e
ri
a 
d
e
ll
a
I
nf
or
m
az
io
ne

NC with aggregate schedulingNC with aggregate scheduling

• Computations get more involved…

Multi-queue 
scheduler

FIFO queues
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Traffic aggregation (cont.)Traffic aggregation (cont.)

• Aggregates change along a path
• Per-node guarantees for different sets of flows 

at each node
• Cannot use concatenation of SCs

?

b
it
s ( )A t
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Performance evaluation problemPerformance evaluation problem

• Users care about their flows, not aggregates
• Users want e2e delay bounds, not per-node 

forwarding guarantees

How to compute 

per-flow end-to-end delay bounds 

from per-aggregate per-node guarantees?
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Performance AnalysisPerformance Analysis

• Tandem network of FIFO rate-latency elements
• All nodes have a rate-latency SC for the aggregate
• All flows have a leaky-bucket AC

( )1,3

( )1,1 ( )2,2

( )2,3

( )3,3

1 2 3
Tagged flow

Cross flows
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Leftover service curvesLeftover service curves

• Th. FIFO Mux - Minimum Service Curves
• [Cruz et al., ‘98]

( ) ( ) ( ) { }2 1 , 0' , tttt τα ττβ βτ +

>  ⋅ −= − ≥

( )tβ

( )0' ,tβ τ

( )1' ,tβ τ
?
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The LUDB methodologyThe LUDB methodology

LUDB: Least Upper Delay Bound

Step 1:
Apply the FIFO Mux theorem iteratively so as to 

“remove” all cross-flows

Ref: L. Lenzini, E. Mingozzi, G. Stea, "A Methodology for Computing 
End-to-end Delay Bounds in FIFO-multiplexing Tandems" 
Elsevier Performance Evaluation, 65 (2008), pp. 922-943
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The LUDB methodology (2)The LUDB methodology (2)

( )1,3

( )1,1 ( )2,2

( )2,3

( )3,3

1 2 3

( )1,3

( )2,3

1' 2 ' 3'

( )1,3

( )2,3

1' 2' 3'⊗

( )1,3 1' ( )2' 3' '⊗

( )1,3

( )1,1 ( )2,2

( )2,3

( )3,3

1 2 3

( )1,3 ( )1' 2 ' 3' '⊗ ⊗

( )tα
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The LUDB methodology (3)The LUDB methodology (3)

• An n-dimensional infinity of e2e SCs for the 
tagged flow
• n = # of cross-flows

• Delay bound = fn. of n parameters 

• Step 2
• Solve an optimization problem

• The minimum is the best, i.e. tightest, delay bound 

( ){ }10
min ,...,

i
nLUDB D

τ
τ τ

≥
=
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Nested vs. nonNested vs. non--nested tandemsnested tandems

• Nested iff
• path(f1)∩∩∩∩path(f2) =∅∅∅∅ (disjoint)
• path(f1)⊆⊆⊆⊆path(f2) (nested)

• You can only compute an e2e SC for the tagged flow  
in a nested tandem

( )1,3

( )1,2

( )2,3

( )3,3

1 2 3

( )1,3

( )2,3

( )3,3

1 2 3Nested

Non-nested
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Two important pointsTwo important points

• The LUDB method:
1. Is scalable enough 

• You can use it in paths of 30+ nodes

2. Yields accurate bounds
• Close to a flow’s Worst-Case Delay
• (Sometimes)

Ref: L. Bisti, L. Lenzini, E. Mingozzi, G. Stea, "Estimating the Worst-
case Delay in FIFO Tandems Using Network Calculus", 
Proc. VALUETOOLS'08, Athens, Greece, October 21-23, 2008
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ScalabilityScalability

• Computation times for very nasty non-nested 
tandems

Ref: L. Bisti, L. Lenzini, E. Mingozzi, G. Stea, “Computation and Tightness
Assessment of End-to-end Delay Bounds in FIFO Tandems Using
Network Calculus", submitted to journal, 2008
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AccuracyAccuracy

• Delay bounds are as useful as they are tight, 
i.e. close to the Worst-Case Delay
• WCD unknown (to date)

• End-to-end analysis is fundamental

( )1,3

( )1,2

( )2,3

( )3,3

1 2 3

( )1,3

( )2,3

( )3,3

1 2 3☺

�
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SinkSink--tree networkstree networks

1

N i
ii

i

D
B

L
CR=

 
 
 

= +∑
Interfering flow 

at node 10

Interfering flow 

at node 6

Ref: L. Lenzini, L. Martorini, E. Mingozzi, G. Stea, "Tight End-to-end Per-
flow Delay Bounds in FIFO Multiplexing Sink-tree Networks", 

Perf. Evaluation, 63/9-10, Oct. ’06, pp. 956-987

• Closed-form delay bound

• = Worst-Case Delay
• Proof by construction
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Accuracy (2)Accuracy (2)

• Compared to (naïve) per-node analysis

1

10

100
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B
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io

N

500-1000 
times smaller
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Stochastic Network CalculusStochastic Network Calculus

• Brings in a probabilistic framework
• Better captures statistical multiplexing

• Concatenation results still hold

• Currently active field of research
• SIGMETRICS, VALUETOOLS 

( ) ( )D t A tβ≥ ⊗ ( ) ( ){ } ( )P A t D t x g xβ⊗ − > ≤

deterministic stochastic
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ConclusionsConclusions

• Network Calculus allows one to compute 
e2e delay bounds 
• Easy and tight in a per-flow scheduling 

environment
• Complex and not always tight in an 

aggregate-scheduling environment

• Only method known so far
• Stochastic extensions: promising research 

area
• Better account for statistical multiplexing
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• Questions? 
• Comments? 


