DE e DTE: PROVA SCRITTA DEL 8 Febbraio 2012

ESERCIZIO 1 (DE,DTE)

Una struttura n-MOS ($N_A = 10^{16}$ cm⁻³, $t_{ox} = 30$ nm) è realizzata con un processo polysilicon gate n^+ . La struttura è illuminata con luce rossa ($\lambda = 630$ nm) con una potenza di 1 μ W/mm². La struttura è raffreddata in maniera tale che i tempi di generazione e ricombinazione termica siano molto lunghi (considerarli infiniti). A t = 0 viene applicato un gradino di tensione di ampiezza 5 V ($V_{GS}(t=0) = 5$ V).

- 1) Calcolare la carica fissa e mobile per unità di superficie a $t=0^+$. [5]
- 2) Calcolare il tempo necessario affinchè i fotoelettroni generati siano sufficienti a portare la struttura MOS all'equilibrio (per equilibrio si intende la condizione di carica fissa e mobile proprie della tensione applicata, che normalmente viene raggiunta per generazione termica; si considerino le approssimazioni usualmente impiegate nel transistore MOS).[5]

SOLUZIONE 1

1) Iniziamo col calcolare la tensione di soglia che sará utile dopo. Essendo il Gate di polisilicio drogato di tipo n^+ :

$$\psi_B = \frac{kT}{q} ln \left(\frac{N_A}{n_i}\right) = 0.347 \quad V$$

$$\Phi_{MS} = \frac{E_g}{2q} + \psi_B = 0.887 \quad V$$

È immediato calcolare la tensione di soglia V_{TH} :

$$C_{ox} = \frac{\epsilon_{ox}}{t_{ox}} = 1.15 \times 10^{-3} \quad \text{F/m}^2$$

$$V_{TH} = \frac{\sqrt{2\varepsilon_s q N_A 2\psi_B}}{C_{ox}} + 2\psi_B - |\Phi_{MS}| = 0.228 \quad \text{V}$$

A $t=0^+$ la carica mobile è nulla perché il canale non si è ancora formato. La struttura MOS è in "svuotamento profondo". In questo caso bisogna calcolare la caduta di tensione ψ_s nel silicio che non si può approssimare con $2\psi_B$. Bisogna impostare l'equazione:

$$V_{GS} = -\frac{Q_n + Q_W}{C_{ox}} + \psi_s - |\Phi_{MS}|$$

dove $Q_n=0$ e in valore assoluto (è negativa) $Q_W=\sqrt{2\varepsilon_sqN_A\psi_s}$. Quindi bisogna risolvere l'equazione:

$$C_{ox}\left(V_{GS} + |\Phi_{MS}|\right) = \sqrt{2\varepsilon_s q N_A \psi_s} + C_{ox} \psi_s$$

che risolta da come soluzione utile $\psi_s = 4.78$ V. La carica fissa è dunque pari a (è negativa, si riporta il valore assoluto):

$$Q_W = \sqrt{2\varepsilon_s q N_A \psi_s} = 1.27 \times 10^{-3} \quad \text{C/m}^2$$

2) A regime la carica mobile nello strato di inversione della struttura MOS è pari a:

$$Q_n = C_{ox} (V_{GS} - V_{TH}) = 5.49 \times 10^{-3}$$
 C/m²

che equivale a $Q_n/e = 3.42 \times 10^{16}$ elettroni per m².

I fotoni che arrivano hanno una lunghezza d'onda di 630 nm (laser rosso a stato solido). La loro energia è pari a:

$$E_{fotone} = \frac{hc}{\lambda} = 3.15 \times 10^{-19} \qquad J$$

La potenza di $1 \,\mu\text{w}/\text{mm}^2$ corrisponde dunque a $1 \times 10^{-6}/10^{-6} /3.15 \times 10^{-19} = 3.17 \times 10^{18}$ fotoni che arrivano ogni secondo per unità di superficie (al metro quadrato). Questo significa che 3.17×10^{18} coppie elettrone-lacuna vengono generate al secondo nell'unità di superficie: le lacune vanno verso il contatto di bulk, gli elettroni si accumulano nel canale fino a raggiungere 3.42×10^{16} elettroni per m². Questo avviene in $3.42 \times 10^{16}/3.17 \times 10^{18} = 0.011$ s cioè in circa 11 millisecondi.

ESERCIZIO 2 (DE,DTE)

Una giunzione n^+p brusca ha le seguenti caratteristiche: $N_A=10^{16}$ cm⁻³, $\mu_n=1000$ cm²/Vs, $\tau_n=10^{-6}$ s, lunghezza W della zona p (distanza giunzione

- contatto p) = 5 μ m (considerare il diodo a base corta), sezione 5 mm². La giunzione è polarizzata con I=1 mA (vedi il circuito in figura).

1) Calcolare la tensione di polarizzazione, verificando l'ipotesi di bassa iniezione (trascurare la regione di svuotamento).[3]

A t=0 la corrente viene triplicata bruscamente (I=3 mA, a gradino).

- 2) Determinare il transitorio della carica immagazzinata ed eseguirne un grafico. [4]
- 3) Determinare il transitorio di tensione ed eseguirne un grafico. [3]

SOLUZIONE 2

1) Il testo suggerisce che il diodo è a base corta. Infatti:

$$D_n = \frac{kT}{q}\mu_n = 2.59 \times 10^{-3}$$

 $L_n = \sqrt{D_n \tau_n} = 50.89 \quad \mu \text{m}$

Assumendo trascurabile la regione di svuotamento la corrente può essere espressa come:

$$I = \frac{SqD_n}{W} \frac{n_i^2}{N_A} \left(e^{\frac{V}{V_T}} - 1 \right)$$

$$I = I_0 \left(e^{\frac{V}{V_T}} - 1 \right)$$

$$I_0 = \frac{SqD_n}{W} \frac{n_i^2}{N_A} = 9.33 \times 10^{-12} \quad A$$

La differenza di potenziale risulta dunque:

$$I = I_0 \left(e^{\frac{V}{V_T}} - 1 \right)$$

$$V = V_T \ln \left(\frac{I}{I_0} + 1 \right) = 0.48 \quad V$$

Per verificare l'ipotesi di bassa iniezione basta calcolare l'eccesso in 0:

$$\delta_n(0) = \frac{n_i^2}{N_A} \left(e^{\frac{V}{V_T}} - 1 \right) = 2.4 \times 10^{18} \quad \text{m}^{-3}$$

che è quattro ordini di grandezza inferiore rispetto alla concentrazione dei maggioritari (lacune) pari a 10^{22} m⁻³.

2) Per il transitorio di carica bisogna risolvere l'equazione di continuità per la giunzione:

$$i(t) = \frac{\partial Q}{\partial t} + \frac{Q(t)}{\tau_n}$$

con i(t)=cost.=3 mA. Similmente al diodo a base lunga, la soluzione generale di questa equazione è:

$$Q(t) = A + Be^{\frac{-t}{\tau_n}}$$

Le condizioni a contorno però sono diverse in quanto per $t = 0^-$:

$$Q(0^{-}) = \frac{qS\delta_n(0, t = 0^{-})W}{2} = 4.83 \times 10^{-12}$$
 C

Questa espressione della carica totale immagazzinata è valida per un diodo a base corta con profilo di portatori minoritari lineare. Per $t \to \infty$:

$$Q(\infty) = \frac{qS\delta_n(0, t \to \infty)W}{2}$$

dove $\delta_n(0t \to \infty)$ può essere calcolato considerando I = 3 mA:

$$V = \ln\left(\frac{I}{I_0 + 1}\right) = 0.51 \quad V$$

$$\delta_n(0, t \to \infty) = \frac{n_i^2}{N_A} \left(e^{\frac{V}{V_T}} - 1\right) = 8.0 \times 10^{18} \quad \text{m}^{-3}$$

e quindi:

$$Q(\infty) = \frac{qS\delta_n(0, t \to \infty)W}{2} = 1.61 \times 10^{-11}$$
 C

Quindi il transitorio della carica può essere determinato semplicemente:

$$A + B = Q(0^{-})$$
$$A = Q(\infty)$$

e quindi:

$$Q(t) = Q(\infty) + \left(Q(0^{-}) - Q(\infty)\right)e^{-\frac{t}{\tau_n}}$$

3) Seguendo l'approssimazione di quasi-equilibrio il transitorio di tensione può essere ricavato da quello della carica:

$$Q(t) = \frac{Sq\delta_n(0,t)W}{2}$$

$$Q(t) = \frac{1}{2}Sq\frac{n_i^2}{N_A}e^{\frac{v(t)}{V_T}}W$$

$$v(t) = V_T \ln\left(\frac{2Q(t)}{Sq\frac{n_i^2}{N_A}}\right)$$

ESERCIZIO 3 (DTE) In un processo LOCOS per la realizzazione di un circuito n-MOS polysilicon gate ($N_A = 10^{16} \text{ cm}^{-3}$), bisogna mettere a punto il passo di fabbricazione dell'ossido di campo. Il circuito da realizzare avrà una tensione di alimentazione massima di 5 V. Si considerino i seguenti parametri per l'ossidazione. WET a 920 0 C: A=0.50 μ m, B=0.203 μ m²/hr. DRY a 1100 0 C: A=0.09 μ m, B=0.027 μ m²/hr, τ = 0.0 hr.

- 1) Si calcoli il tempo necessario per una ossidazione dry, nel caso di drogaggio di channel stop 5×10^{18} cm-3). [5]
- 2) Si calcoli il tempo per una ossidazione wet necessario nel caso di drogaggio di channel stop pari a 10^{17} cm-3. [5]

SOLUZIONE 3 1) L'ossido di campo deve essere tale che la struttura n-MOS parassita gate-ossido di campo-substrato abbia una tensione di soglia maggiore della tensione massima del circuito (5 V). Nel caso di drogaggio di channel stop pari a 10^{19} cm-3 avremo dunque:

$$\frac{\sqrt{2\varepsilon_s q N_A 2\psi_B}}{C_{ox}} + 2\psi_B - |\Phi_{MS}| > 5 \qquad V$$

dove:

$$\psi_B = \frac{kT}{q} ln \left(\frac{N_A}{n_i}\right) = 0.51 \quad V$$

$$\Phi_{MS} = \frac{E_g}{2q} + \psi_B = 1.05 \quad V$$

Possiamo calcolare lo spessore minimo di ossido da crescere:

$$C_{ox} = \frac{\sqrt{2\varepsilon_s q N_A 2\psi_B}}{5 - 2\psi_B + |\Phi_{MS}|}$$

$$C_{ox} = 2.58 \times 10^{-3} \text{ F/m}^2$$

e quindi lo spessore dell'ossido dovrà essere:

$$C_{ox} = \frac{\epsilon_{ox}}{t_{ox}}$$
 $t_{ox} = \frac{\epsilon_{ox}}{C_{ox}} = 14$ nm

che è uno spessore di ossido molto piccolo. Questo è compatibile con l'alto drogaggio. Lo spessore di ossido dry può essere calcolato con la seguente formula:

$$t_{ox} = \frac{A}{2} \left(-1 + \sqrt{1 + \frac{4B}{A^2} \left(\tau + t\right)} \right)$$

oppure, visto il ridotto spessore dell'ossido, può essere usata l'approssimazione lineare:

$$t_{ox} = \frac{B}{A} \left(t + \tau \right)$$

Facendo i conti, viene un tempo molto corto, pari a 2.8 minuti.

2) Nel caso di drogaggio 10^{17} , bisogna ripetere i conti per determinare C_{ox} e t_{ox} .

$$\psi_B = \frac{kT}{q} ln \left(\frac{N_A}{n_i}\right) = 0.41 \quad V$$

$$\Phi_{MS} = \frac{E_g}{2q} + \psi_B = 0.95 \quad V$$

$$C_{ox} = \frac{\sqrt{2\varepsilon_s q N_A 2\psi_B}}{5 - 2\psi_B + |\Phi_{MS}|}$$

$$C_{ox} = 3.58 \times 10^{-4} \text{ F/m}^2$$

da cui si ricava uno spessore di ossido pari a:

$$C_{ox} = \frac{\epsilon_{ox}}{t_{ox}}$$
 $t_{ox} = \frac{\epsilon_{ox}}{C_{ox}} = 96$ nm

A questo punto dobbiamo fare riferimento alla formula:

$$t_{ox} = \frac{A}{2} \left(-1 + \sqrt{1 + \frac{4B}{A^2} (\tau + t)} \right)$$

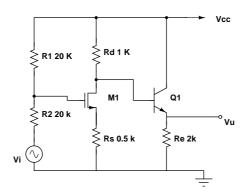
Svolgendo un po' di passaggi ($\tau = 0$) otteniamo:

$$t = \frac{A^2}{4B} \left[\left(\frac{2}{A} t_{ox} + 1 \right)^2 - 1 \right]$$

Facendo i conti, viene un tempo pari a 0.28 ore, che corrispondono a circa 17 minuti. In sintesi in caso di alti drogaggi i tempi di ossidazione sono brevi, anche considerando una ossidazione dry.

ESERCIZIO 4 (DE)

Con riferimento al circuito in figura, il transistore MOS M1 ha $\mu_n = 800$ cm²/Vs, $t_{ox} = 50$ nm, W/L = 10, $V_{TH} = 1$ V. Il transistore bipolare ha un guadagno elevato ($\beta_f > 500$). $V_{CC} = 16$ V.



- 1) Calcolare il punto di riposo dei transistori.[6]
- 2) Disegnare il circuito equivalente per le variazioni, considerando
 $r_d \rightarrow \infty$ e $h_{oe} = 0.[4]$

SOLUZIONE 4

1) Per il transistore MOS avremo che $V_G=V_{CC}/2=8$ V. Nell'ipotesi di saturazione, la corrente I_{DS} sarà data da:

$$I_{DS} = \mu_n C_{ox} \frac{W}{2L} (V_{GS} - V_{TH})^2$$

 $I_{DS} = 2.76 \times 10^{-4} (V_{GS} - V_{TH})^2$

Ci sono diversi modi per impostare un'equazione di secondo grado necessaria per determinare V_{GS} . Un modo può essere:

$$V_{GS} = V_G - V_S = V_G - I_{DS}R_S = V_G - 2.76 \times 10^{-4} (V_{GS} - V_{TH})^2 \times 500$$

Risolvendo questa equazione vengono due valori, uno positivo (accettabile) ed uno negativo. Il valore accettabile risulta: $V_{GS} = 5.37$ V. Da qui otteniamo:

$$I_{DS} = 2.76 \times 10^{-4} \left(V_{GS} - V_{TH} \right)^2 = 5.25$$
 mA

Quindi $V_{DS} = V_{CC} - R_D I_{DS} - R_S I_{DS} = 8.12$ V ed il MOS risulta in saturazione $V_{DS} > V_{GS} - V_{TH} = 4.37$ V. A questo punto possiamo determinare la tensione $V_B = V_D$ sulla base del transistore bipolare: $V_B = V_{CC} - R_D I_{DS} = 10.75$ V. Nel fare questo, è stata trascurata la corrente di base rispetto a I_{DS} . La tensione sull'emettitore è pari a: $V_E = V_B - V_\gamma = 10.05$ V. La corrente $I_E \simeq I_C = 10.05/2 = 5$ mA. Avremo $V_{CE} = 16 - 10 = 6$ V ed il transistore bipolare è polarizzato correttamente. Avremo inoltre $I_B = I_E/\beta_F = 10~\mu$ A « I_{DS} .Ricapitolando, per il MOS:

$$V_{GS} = 5.37$$
 V
 $I_{DS} = 5.25$ mA
 $V_{DS} = 8.12$ V

e per il bipolare:

$$I_E \simeq I_C = 5 \text{ mA}$$

 $I_B = 10 \text{ mA}$
 $V_{CE} = 6 \text{ V}$
 $V_{BE} = 0.7 \text{ (V)}$

2) Il circuito per le variazioni è il seguente:

