
GREP: a Group REkeying Protocol Based on Member Join History

Marco Tiloca
SICS Swedish ICT AB, Security Lab
Isafjordsgatan 22, Kista (Sweden)

Email: marco@sics.se

Gianluca Dini
Dipartimento di Ingegneria dell’Informazione

University of Pisa, Largo Lazzarino 1, Pisa (Italy)
Email: gianluca.dini@ing.unipi.it

Abstract—This paper presents GREP, a highly scalable and
efficient group rekeying protocol with the following merits.
First, it rekeys the group with only two messages, introducing
an overhead which is small, constant, and independent of the
group size. Second, GREP considers collusion as a first-class
attack. Third, GREP efficiently recovers the group from a
collusion attack without recourse to a total member reinitializa-
tion. The recovery cost smoothly grows with the group size, and
gradually increases with the attack severity. GREP achieves
these results by organizing nodes into logical subgroups and
exploiting the history of node joining events. This allows GREP
to establish a total ordering among subgroups and among
nodes in each subgroup, so making collusion recovery highly
scalable and efficient. We evaluate performance from several
standpoints, and show that GREP is deployable in large-scale
networks of customary, even resource constrained, platforms.

1. Introduction

Group communication is a powerful and efficient
paradigm that can be used in a range of application scenar-
ios, from wireless sensor networks (WSNs) to large scale
distribution of contents. According to this model, a node
becomes member of the group by explicitly joining it. After
that, it may send/receive broadcast messages to/from other
group members. Later on, the node may voluntarily leave
the group or be forced to, if compromised or suspected so.

It is generally required that only group members can ac-
cess group communication. To this end, group members se-
cretly share a cryptographic group key to securely exchange
messages in the group. When a node joins the group, it must
be prevented from deciphering previous messages even if it
has recorded them (backward security). When it leaves the
group, or is forced to leave, the node must be prevented from
further accessing group communication (forward security).
Backward and forward security are generally guaranteed by
rekeying. That is, when a node joins or leaves the group,
the group key is revoked and a new one is distributed. In

. This work was carried out during the tenure of an ERCIM “Alain Ben-
soussan” Fellowship Programme. The research leading to these results has
received funding from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement n◦ 246016.

large dynamic groups where joining and leaving events are
frequent, rekeying must be efficient and highly scalable.

Besides, a collusion attack occurs when multiple com-
promised group members share their security material, in
order to regain access to the group key. No group rekey-
ing scheme is exempt from collusion attacks, and different
schemes display different levels of resilience. However, only
a few of them consider collusion as a first-class attack,
and provide countermeasures to recover from successful
instances of this kind of attack. In many schemes, recovering
from collusion requires a total member reinitialization, i.e.
all non compromised group members have to be separately
reinitialized, in a one to one fashion. It follows that the
recovery overhead grows linearly with the group size, with
negative impact on the overall system performance and
scalability.

In this paper, we take these challenges and present
GREP, a novel rekeying scheme for large-scale dynamic
groups that levers on logical subgrouping and join history.
Group members are partitioned into non overlapping logical
subgroups that become the units of rekeying and collusion
recovery. Unlike other schemes, subgroups only support effi-
cient group key management, have no application meaning
and are transparent to the application layer. Also, GREP
exploits the history of joining events to establish a total
ordering among subgroups and among nodes in each sub-
group, in order to efficiently recover from collusion attacks.

GREP displays the following benefits. First, it is se-
cure, as it fulfills the backward and forward security re-
quirements. Second, it is highly scalable, as it requires
a number of rekeying messages which is small, constant,
and independent of the group size, i.e. O(1). Third, GREP
has a O(

√
n) storage and computing overhead, where n

is the group size. This makes the scheme deployable on
a large spectrum of platforms, including resource scarce
sensor nodes. Fourth, GREP considers collusion as a first-
class attack. Fifth, GREP efficiently recovers from collusion
attacks, displaying a communication overhead that gradually
increases with the attack severity, and grows as O(

√
n) only

in the unlikely worst case. This is possible by exploiting the
history of joining events in the group. To the best of our
knowledge, GREP is the first group rekeying protocol that
exploits the join history to achieve highly efficient collusion
recovery.

The paper is organized as follows. Section 2 discusses
related works. Section 3 describes the system architecture.
We present the GREP protocol in Section 4, provide a
security analysis in Section 5, and evaluate performance in
Section 6. Section 7 draws our conclusive remarks.

2. Related work

Like other rekeying schemes suitable for large groups
[2] [3] [6] [7] [10], GREP takes a centralized approach to
group key management and relies on logically organized ad-
ministrative keys to provide scalable and efficient rekeying.

LKH organizes administrative keys in a hierarchical
logical tree [3], where the root contains the group key,
the leaves contain group members’ individual keys, and the
internal tree nodes contain additional administrative keys.
Given a group size n and a balanced key tree with arity a, the
leave communication overhead and the storage overhead at
the node side grow as O(logan). In case of collusion attack,
LKH incurs the risk of a total member reinitialization when
at least dna e nodes are captured before they are detected.

Other schemes deriving from LKH have been proposed,
but none of them achieves better performance [2] [6] [10].
Key Graphs is a generalization of LKH, where performance
depends on the specific graph topology [2]. LARK is based
on Key Graph, and relies on logically organizing administra-
tive keys as a tool for application design [6]. That is, the key
graph topology reflects cooperation within the group, and
is considered to provide efficient rekeying. KTR adopts an
approach similar to the one of LARK, and generalizes LKH
to manage multiple subscriptions in content distribution
applications and wireless broadcast services [10].

HISS [7] and GREP display similarities, as they both
rely on logical subgrouping to support efficient and scalable
rekeying. They achieve the same efficiency as to computing
and storage overhead, i.e. O(

√
n), and rekey the group

with a number of messages which is reduced, constant, and
independent of the group size. However, unlike HISS, GREP
introduces the notion of member join history, and exploits
it to recover from collusion attack in a much more efficient
and scalable way. That is, the HISS recovery overhead al-
ways grows as O(n). Instead, the GREP recovery overhead
gradually increases with the collusion attack severity, and
grows as O(

√
n) only in the unlikely worst case condition.

Also, the chance of a total member reinitialization requires
at least 2 · d

√
n e colluding nodes, but is practically an

unlikely event, so making GREP extremely efficient against
collusion attacks even when several nodes collude.

3. System architecture

We consider a set G of nodes that communicate accord-
ing to the group communication paradigm. A node becomes
member of G by explicitly joining the group. Then, it
may send/receive broadcast messages to/from other group
members. If a member leaves the group, or is forced to, it
cannot send/receive messages to/from the group anymore.

Group members secretly share a cryptographic group key
that they use to encrypt/decrypt messages within the group.
We denote by KG the group key associated to the group
G. In general, it is required that the backward and forward
security requirements are guaranteed [11]. In order to fulfill
them, when a new node joins the group or a current member
leaves it, the current group key is revoked and a new one is
distributed. Hereafter, we refer to this operation as rekeying.

The group G is managed by a Group Controller (GC),
which is composed of three services: i) a Group Membership
Service (GMS); ii) a Key Management Service (KMS);
and iii) an Intrusion Detection Service (IDS). In short, the
GMS maintains the group membership by keeping track of
nodes that join and leave. The IDS component monitors
network activities to detect possible compromised nodes.
Since there is no sure and efficient way to readily detect
a single node capture [12], the IDS may report multiple
compromised nodes at the same time. Upon detecting a set
of compromised nodes Gc, the IDS notifies the GMS in
order to have them evicted from the group. Further details
about the IDS and the monitoring process are beyond the
scope of this paper, and we refer the reader to, e.g., [5] [13].
Upon being notified of any membership change, the GMS
activates the rekeying process. The KMS is responsible for
performing such a task.

The GC is typically implemented according to a cen-
tralized approach, as a resourceful computing node which
is generally more powerful than group nodes. In particular,
the GC is considered trustworthy and properly designed,
implemented and managed to be reliable and secure, hence
practically infeasible to compromise. Although server secu-
rity and reliability are still an open research issue, the lit-
erature provides well established techniques to keep servers
secure [4] [9]. As an alternative, the GC can be practically
implemented according to a distributed architecture, which
is beneficial in terms of robustness and availability, and
avoids a single GC instance from being a single point of
failure. However, this requires that the different GC replicas
are kept synchronized with one another, especially as to the
current group membership and established key material. In
this paper, we consider a centralized GC, and detail the Key
Manager (KM) component implementing the KMS. Further
details about practical architectural design choices for the
GC are out of the scope of this work.

4. The rekeying protocol

The group G is partitioned into a set S of non empty
subgroups, such that each group member is exactly in one
of these subgroups. Subgroups have no meaning to appli-
cations and are never merged nor split. Each member of G
is assigned to a given subgroup S upon joining the group,
and is never moved to a different subgroup. We denote two
nodes in the same subgroup as cognates.

GREP totally orders the members of each subgroup S
according to their joining time, to reflect the node join
history of S. In particular, upon joining a subgroup S, a
node u is associated with a numeric node ID, nidu, which

is unique within the subgroup, and reflects its members’ total
order. That is, given two nodes u and v in S, nidu < nidv if
and only if node u has joined S before node v. We refer to
the nodes that have joined subgroup S before or after node
u as elder cognates and junior cognates of u, respectively.

GREP also totally orders subgroups according to their
addition time to group G, to reflect the subgroup addition
history of G. In particular, upon its addition to the group
G, a subgroup S is associated with a numeric subgroup
ID, sidS , which is unique within the group G, and reflects
subgroups’ total order. That is, given two subgroups S and
S′, sidS < sidS′ if and only if subgroup S has been added
to G before subgroup S′. We refer to the subgroups that
have been added to the group G before or after subgroup S
as elder kindreds and junior kindreds of S, respectively.

Each node and subgroup is associated with secret quanti-
ties called tokens. That is, node tokens and subgroup tokens
are associated with nodes and subgroups, respectively. Each
node u in S is associated to two node tokens, i.e. a forward
node token tFu and a backward node token tBu . Elder cognates
of u store token tFu , while junior cognates of u store token
tBu . Similarly, each subgroup S is associated to two subgroup
tokens, i.e. a forward subgroup token stFS and a backward
subgroup token stBS . All nodes in elder kindreds of S store
stFS , while all nodes in junior kindreds of S store stBS . Also,
every node u a priori shares a node key Ku with the KM.
Every subgroup S is associated to a subgroup key KS , which
is shared between the KM and every node in the subgroup.
Finally, the KM stores: i) all node tokens in the Node Token
Set (NTS); ii) all subgroup tokens in the Subgroup Token
Set (STS); iii) all node keys in the Node Key Set (NKS);
and iv) all subgroup keys in the Subgroup Key Set (SKS).
The KM and nodes keep tokens and keys secret.

Let us consider a node u in a subgroup S. Node u holds
its node key Ku, the subgroup key KS , and the node tokens
associated to its cognate nodes. Such tokens are partitioned
into two sets, i.e. Backward Node Token Set (NTSB

u) and
Forward Node Token Set (NTSF

u). In particular, NTSB
u

includes all backward node tokens associated to the elder
cognates of u. Instead, NTSF

u includes all forward node
tokens associated to the junior cognates of u. Also, node u
holds the subgroup tokens of all subgroups belonging to the
absolute complement of S in S. Such tokens are partitioned
into two sets, i.e. Backward Subgroup Token Set (STSB

S)
and Forward Subgroup Token Set (STSF

S). In particular,
STSB

S includes all backward subgroup tokens associated to
the elder kindreds of S, while STSF

S includes all forward
subgroup tokens associated to the junior kindreds of S.

Figure 1. A group G partitioned into five subgroups.

To fix ideas, we consider the example in Figure 1, where
a group G is partitioned into five subgroups, each one

Figure 2. (A) Node join history of S; (B) Subgroup addition history.

TABLE 1. NODE AND SUBGROUP TOKENS.

Subgroup Node NTSB NTSF STSB STSF

S∗

a − tFb ,tFc ,tFd ,tFe stBS∗∗ stFS ,stF
S′ ,st

F
S′′

b tBa tFc ,tFd ,tFe stBS∗∗ stFS ,stF
S′ ,st

F
S′′

c tBa ,tBb tFd ,tFe stBS∗∗ stFS ,stF
S′ ,st

F
S′′

d tBa ,tBb ,tBc tFe stBS∗∗ stFS ,stF
S′ ,st

F
S′′

e tBa ,tBb ,tBc ,tBd − stBS∗∗ stFS ,stF
S′ ,st

F
S′′

S

f − tFg ,tFh ,tFi ,tFj stBS∗∗ ,stBS∗ stF
S′ ,st

F
S′′

g tBf tFh ,tFi ,tFj stBS∗∗ ,stBS∗ stF
S′ ,st

F
S′′

h tBf ,tBg tFi ,tFj stBS∗∗ ,stBS∗ stF
S′ ,st

F
S′′

i tBf ,tBg ,tBh tFj stBS∗∗ ,stBS∗ stF
S′ ,st

F
S′′

j tBf ,tBg ,tBh ,tBi − stBS∗∗ ,stBS∗ stF
S′ ,st

F
S′′

S′

k − tFl ,tFm,tFn ,tFo stBS∗∗ ,stBS∗ ,stBS stF
S′′

l tBk tFm,tFn ,tFo stBS∗∗ ,stBS∗ ,stBS stF
S′′

m tBk ,tBl tFn ,tFo stBS∗∗ ,stBS∗ ,stBS stF
S′′

n tBk ,tBl ,tBm tFo stBS∗∗ ,stBS∗ ,stBS stF
S′′

o tBk ,tBl ,tBm,tBn − stBS∗∗ ,stBS∗ ,stBS stF
S′′

including five nodes. Figure 2(A) shows the node join his-
tory of subgroup S, while Figure 2(B) shows the subgroup
addition history of G. Finally, Table 1 shows the node and
subgroup tokens held by nodes in subgroups S∗, S and S′.

Hereafter, we adopt the following notation. By P →
u : m we denote a principal P sending a unicast message
m to node u. By P 9 S : m we denote P that broad-
casts a message m to (sub)group S. We denote by H (·) a
one-way hash function, and by KDF (·) a pseudo-random
key derivation function that derives one cryptographic key
from a secret value. By {x}K , we denote the symmetric
encryption of x by means of key K. We assume that cryp-
tographic primitives are secure, and secrets have a size that
discourages an exhaustive search, thus no analytical attack
against rekeying and data traffic is practically feasible. Due
to space constraints, we do not cover how to assure integrity
and authenticity of rekeying messages. Possible mechanisms
to provide them are digital signatures and hash-chains [6].

4.1. Rekeying upon joining

Let us consider a node u joining the group G. We
assume that u is not malicious or compromised, and has
been authorized to join the group by the GMS. Due to space
constraints, we consider the association of u to an already
existing subgroup S. The KM renews the group security
material as follows, in order to assure backward security.

The KM randomly generates a refresh key KR, a
node key Ku, a backward node token tBu and a master
node token tM . Then, it derives a forward node token
tFu = KDF (tM ||KR). After that, it determines a node
ID nidu associated to u, and computes a new group key

K+
G = KDF (KG||KR) and a new subgroup key K+

S =
KDF (KS ||KR). Finally, the KM broadcasts the following
messages:

JM1 : KM 9 S : < nidu, {tM ,KR}KS
>

JM2 : KM 9 G : < {KR}KG
>

That is, the KM rekeys S by means of JM1, and the
remaining subgroups by means of JM2. Then, it installs K+

G
as the current group key, and K+

S as the current subgroup
key of subgroup S. Finally, it adds tBu and tFu to NTS , and
discards tM and KR.

Upon receiving message JM1, any node v in S uses
KS to retrieve tM and KR. Then, it derives tFu =
KDF (tM ||KR) and adds it to NTSF

v . Also, it gener-
ates the two keys K+

G = KDF (KG||KR) and K+
S =

KDF (KS ||KR), and installs them as the current group
key and subgroup key, respectively. Finally, it discards tM
and KR. Upon receiving message JM2, any node v in
S′, S′ 6= S: i) uses KG to retrieve KR; ii) generates
K+

G = KDF (KG||KR) and installs it as the current group
key; and iii) discards KR.

Before joining the group, u initializes its token sets
as empty sets. Then, the KM provides u with Ku, K+

G
and K+

S . Upon receiving them, u installs Ku as its own
node key, K+

G as the current group key, and K+
S as the

current subgroup key. Then, node u receives from the KM
the backward node tokens associated to its cognates in S,
and adds them to NTSB

u . Finally, the KM provides u with
the backward and forward subgroup tokens associated to
the elder and junior kindreds of S. Upon receiving them, u
accordingly adds the subgroup tokens to STSB

S and STSF
S .

We assume that node u receives the cryptographic material
through a pre-existing secure channel, so assuring authenti-
cation and confidentiality. Possible implementations include
a pre-shared cryptographic key or out-of-band means.

4.2. Rekeying upon leaving

With reference to Figure 1, let us suppose that node h in
subgroup S leaves the group G. Then, all the cryptographic
material held by h, including the group key KG, gets
compromised and must be revoked. In particular, a new
group key must be distributed to all nodes in G but h. Due
to space constraints, we do not discuss the case when h
is the only member of subgroup S, which never becomes
empty.

To rekey the group in a scalable way, the KM uses
tokens, and bases the rekeying on the following observation.
When node h leaves the group, all the tokens it holds get
compromised (see Table 1). However, by construction, four
tokens remain secret, i.e. tBh , tFh , stFS and stBS . The KM can
thus rely on these tokens to efficiently rekey the group. In
fact, i) all elder cognates of h (nodes f and g) hold tFh ; ii)
all junior cognates of h (nodes i and j) hold tBh ; iii) nodes
in all elder kindreds of S (subgroups S∗ and S∗∗) hold stFS ;
iv) nodes in all junior kindreds of S (subgroups S′ and S′′)
hold stBS ; v) node h does not know either tFh or tBh ; and vi)
no node in S, including node h, holds stFS or stBS .

Practically, the KM randomly generates a refresh
key KR, and computes the new group key K+

G =
KDF (KG‖KR) and the new subgroup key K+

S =
KDF (KS‖KR). Then, it computes the four key encryp-
tion keys KF = KDF (tFh), KB = KDF (tBh), K

S
F =

KDF (stFS), and KS
B = KDF (stBS). Finally, it broadcasts

the following messages:

LM1 KM 9 S : < nidh, {KR}KF
, {KR}KB

>
LM2 KM 9 G : < sidS , {KR}KS

F
, {KR}KS

B
>

That is, the KM rekeys S by means of LM1, and the remain-
ing subgroups by means of LM2. Then, it installs K+

G as the
current group key and K+

S as the current subgroup key of
subgroup S. Then, it updates its node token set and subgroup
token set by means of KR, as follows. First, it removes the
two node tokens tBh and tFh associated to h from its node
token set NTS . Then, it updates all the node tokens in NTS
associated to the remaining nodes in S, i.e. ∀ tu ∈ NTS ,
s.t. u belongs to S and u 6= h, tu ← H (tu||KR). Also, the
KM updates all subgroup tokens in its subgroup token set
STS , i.e. ∀ st ∈ STS , st ← H (st||KR). Finally, the KM
discards KR, KF , KB , KS

F and KS
B .

Upon receiving message LM1, any node u in S, u 6= h,
computes either KF = KDF (tFh), if nidu < nidh, or KB =
KDF (tBh) otherwise. Then, it retrieves KR, and computes
K+

G = KDF (KG‖KR) and K+
S = KDF (KS‖KR). Such

keys are installed as the current group key and subgroup
key, respectively. Also, u removes either tBh from the node
token set NTSB

u or tFh from the node token set NTSF
u .

Then, u updates all tokens in its token sets, i.e. ∀ TS ∈
{NTSB

u ,NTS
F
u ,STS

B
S ,STS

F
S },∀ t ∈ TS, t ← H (t‖KR).

Finally, u discards KR, as well as either KF or KB .
Upon receiving message LM2, any node v in S′, S′ 6=

S, computes either KS
F = KDF (stFS), if sidS′ < sidS ,

or KS
B = KDF (stBS) otherwise. Then, it retrieves the key

KR, computes K+
G = KDF (KG‖KR), and installs it as the

current group key. Also, v updates its subgroup token sets,
i.e. ∀ TS ∈ {STSB

S′ ,STS
F
S′},∀ t ∈ TS, t ← H (t‖KR).

Finally, node v discards KR, as well as either KS
F or KS

B .

4.3. Recovering from collusion attack

In case of collusion attack, multiple compromised
nodes may share their individual pieces of information to
regain access to the group key. The compromised nodes
can all belong to the same subgroup, or be spread among
different subgroups. Hereafter, we call compromised sub-
group any subgroup containing at least one compromised
node. Generally, recovering from collusion might require
a total member reinitialization, i.e. all non compromised
nodes in the group require to be reinitialized one by one.
This would greatly limit efficiency and scalability of the
rekeying process.

On the contrary, GREP efficiently recovers from collu-
sion attacks, by following two intuitive observations. First,
with reference to Figure 2, let us assume that nodes g and
i, nidg < nid i, belonging to subgroup S, are colluding, i.e.

an adversary can collect all the tokens and keys they hold.
By construction, all node tokens in S get compromised but
two, i.e. tBi and tFg (see Table 1). That is, all junior cognates
of i, e.g. node j, hold the former, while all elder cognates of
node g, e.g. node f , hold the latter. Second, with reference
to Figure 2, let us assume that S∗ and S′, sidS∗ < sidS′ ,
are compromised. By construction, all subgroup tokens get
compromised but two, i.e. stBS′ and stFS∗ (see Table 1). That
is, all junior kindreds of S′, e.g. S′′, hold the former, while
all elder kindreds of S∗, e.g. S∗∗, hold the latter.

Let us denote with Gc the set of colluding nodes to be
evicted, with C the set of compromised subgroups, and with
U = S \ C the set of non compromised subgroups. Due
to space constraints, we assume that: i) all compromised
subgroups include at least one non compromised node,
i.e. no compromised subgroups become empty after the
recovery has been completed; and ii) no previously evicted
nodes collude with nodes in Gc. Then, the KM revokes
the current group key KG and distributes a new one K+

G as
follows.

1) Initially, the KM randomly generates a refresh key KR.
Then, it computes a new group key K+

G = KDF (KG||KR)
and installs it as the current group key.

2) The KM rekeys the compromised subgroups as follows.
For each subgroup S ∈ C, it determines: i) the subset Sc

of compromised nodes in S; and ii) uSy and uSe , i.e. the
youngest and the eldest node in Sc, respectively. Practically,
the set Sc can be represented as a list of node IDs. According
to the first observation, node tokens tFuS

e
and tBuS

y
are not

compromised. Also, all elder cognates of uSe hold token tFuS
e

,
while all junior cognates of uSy hold token tBuS

y
. Hence, these

tokens can be used to rekey these nodes as follows. The
KM generates the key encryption keys KF = KDF (tFuS

e
)

and KB = KDF (tBuS
y
), and broadcasts the message

RM1 KM 9 S : < Sc, {KR}KF
, {KR}KB

>

Every non compromised node u which is elder cognate
of uSy and junior cognate of uSe holds only compromised
tokens. Thus, it must be rekeyed in a one-to-one fashion,
by means of its user key Ku. Then, ∀ u in S \Sc, such that
niduS

e
< nidu < niduS

y
, the KM sends the message

RM2 KM → u : < {Sc,KR}Ku
>

3) The KM rekeys the non compromised subgroups in U ,
as follows. It determines the subgroups SCy and SCe , i.e.
the youngest and the eldest subgroup in C, respectively.
By construction, subgroup tokens stFSCe

and stBSCy
are not

compromised. Also, all elder kindreds of SCe hold token
stFSCe

, while all junior kindreds of SCy hold token stBSCy
.

These tokens are used to rekey these subgroups, i.e. the
KM generates the key encryption keys KS

F = KDF (stFSCe
)

and KS
B = KDF (stBSCy

), and broadcasts the message

RM3 KM 9 G :< sidSCe
, sidSCy

, {KR}KS
F
, {KR}KS

B
>

Every other non compromised subgroup S which is elder
kindred of SCy or junior kindred of SCe holds only com-
promised subgroup tokens. Thus, it must be rekeyed by
means of its subgroup key KS . Then, ∀ S ∈ U , such that
sidSCe

< sidS < sidSCy
, the KM broadcasts the message

RM4 KM 9 S : < sidSCe
, sidSCy

, {KR}KS
>

4) The KM updates its token sets. First, it removes the
node tokens tBv and tFv associated to each compromised
node v ∈ Gc from NTS . Then, it updates the remaining
node tokens in NTS , i.e. ∀ tu ∈ NTS , s.t. u belongs
to S ∈ C and u 6∈ Gc, tu ← H (tu||KR). Also,
the KM updates all subgroup tokens in STS , i.e.
∀ st ∈ STS , st ← H (st||KR). Then, for each S ∈ C, the
KM computes K+

S = KDF (KS ||KR) and installs it as
the current subgroup key of S. Finally, the KM discards KR.

On their side, nodes perform the following steps.

• Every non compromised node u in a compromised
subgroup S, i.e. ∀ S ∈ C,∀ u in S \ Sc,
retrieves KR from RM1 if (nidu < niduS

e
or

nidu > niduS
y
), or from RM2 otherwise. Then, u

computes K+
S = KDF (KS ||KR) and installs it as the

current subgroup key. Also, u removes the node tokens
associated to all compromised nodes in S, i.e. ∀ v in
Sc,NTS

B
u ← NTSB

u \ {tBv } and NTSF
u ← NTSF

u \ {tFv }.
Finally, node u updates all remaining node tokens, i.e.
∀ TS ∈ {NTSB

u ,NTS
F
u },∀ t ∈ TS, t← H (t||KR).

• Every (non compromised) node u in a non compromised
subgroup S, i.e. ∀ S ∈ U ,∀ u in S, retrieves KR from
RM4 if sidSCe

< sidS < sidSCy
, or from RM3 otherwise.

• Every rekeyed node u computes K+
G = KDF (KG||KR)

and installs it as the current group key. Also, u updates its
subgroup token sets, i.e. ∀ ST ∈ {STSB

u ,STS
F
u },∀ t ∈

ST, t← H (t||KR). Finally, u discards KR.

5. Security analysis

Backward security. Let us consider a node u that joins
the group G as a member of subgroup S. The issue is to
prove that u cannot access the current group key KG and
subgroup key KS , or any previous incarnation of them. In
the join rekeying procedure, the KM achieves this goal by
first rekeying S and G, and then initializing u. Actually, be-
fore u can join the group G, the KM efficiently rekeys all the
current members of G (but u), by means of messages JM1
and JM2, so causing the installation of the new keys K+

S and
K+

G . Confidentiality of JM1 and JM2 is protected by means
of KS and KG, respectively. Thus, only members of S and
G (but u) can decrypt them, retrieve the secret material
therein contained, and generate the new keys K+

S and K+
G .

Only once this process has been successfully completed, u
receives the new keys K+

S and K+
G . Therefore, u never gets

knowledge of the security material used before its join, and
therefore is not able to access old group communication.

Forward security. There are two cases to consider, i.e.
node leaving and recovery from collusion attack. Let us first
consider the former case of a leaving node h in a subgroup
S. The issue is to prove that the leaving node h cannot take
part to the rekeying process, and hence cannot get access
to the new subgroup key K+

S and group key K+
G , or any

future incarnation of them. In the leave rekeying procedure,
the KM achieves this goal in two steps. In the first step,
the KM rekeys subgroup S by means of message LM1,
which is encrypted by means of (keys deriving from) node
tokens tFh and tBh . Then, in the second step, the KM rekeys
the remaining subgroups by means of message LM2, which
is encrypted by means of (keys deriving from) subgroup
tokens stFS and stBS . By construction, h does not hold such
tokens. As a consequence, it cannot access messages LM1
and LM2, and thus is excluded from the rekeying process.

Let us now consider the case of recovery from collusion
attack, and the consequent eviction of multiple colluding
nodes. The issue here is to prove that the leaving nodes, even
when colluding, cannot take part to the rekeying process,
and hence cannot get access to the new subgroup key K+

S
and group key K+

G , or any future incarnation of them.
In the collusion recovery procedure, the KM achieves this
goal in two steps. In the first step, the KM rekeys every
compromised subgroup S ∈ C by sending a single message
RM1, and one message RM2 for each node u in S \ Sc

such that niduS
e
< nidu < niduS

y
. Messages RM1 and

RM2 are encrypted by means of (keys deriving from) node
tokens tFuS

e
and tBuS

y
, and node keys Ku, respectively. By

construction, colluding nodes in S do not hold such tokens
and keys, and thus cannot access messages RM1 and RM2.
Then, in the second step, the KM rekeys the remaining
non compromised subgroups, by sending a single message
RM3, and one message RM4 for each subgroup S ∈ U
such that sidSCe

< sidS < sidSCy
. Messages RM3 and RM4

are encrypted by means of (keys deriving from) subgroup
tokens stFSCe and stBSCy , and subgroup keys KS , respectively.
By construction, colluding nodes in G do not hold such
tokens and keys, and thus cannot access messages RM3
and RM4. Hence, leaving nodes can never access rekeying
messages. Since we assume that cryptanalytical and key
exhaustive attacks are practically infeasible, leaving nodes
cannot derive K+

G , nor any future group key, and thus are
not able to access future group communication.

6. Performance evaluation

We analytically evaluate GREP in terms of storage,
communication, and computing overhead of rekeying upon
node joining, node leaving and recovering from collusion. In
particular, we evaluate storage and communication overhead
as the number of information items that protocol actors store
and transmit/receive, respectively, and the computing over-
head as the number of performed cryptographic operations,
i.e. encryptions, decryptions and hash function executions.

We consider a group G composed of p subgroups with
m nodes each, i.e. n = p ·m. GREP well supports hetero-
geneous subgrouping, but a homogeneous one allows us to
evaluate performance with no significant lack of generality.
We assume that node IDs and subgroup IDs have the same
size of tokens and keys, and that the key generator, H (·)
and KDF (·) result in a comparable computing overhead.

In order to give a concrete insight of the high scalability
and practical sustainability of GREP, we discuss the over-
heads with reference to a WSN application that features
a group composed of n = 1024 TmoteSky sensor nodes,
interconnected through an IEEE 802.15.4 wireless network
and equipped with the Skipjack cipher [8]. Although GREP
is general and not especially designed for WSNs, they
constitute a challenging case study, as they are composed
of a large set of interconnected resource scarce devices.

6.1. Storage overhead

The KM stores the group key, p subgroup keys, n node
keys, (2·n−2·p) node tokens, and (2·p−2) subgroup tokens.
The resulting storage overhead for the KM is Os,km = (3 ·
n+p−1), i.e. it grows linearly with n. This is not a problem
in practice, since the KM has plentiful of resources.

Instead, it is vital that the storage overhead is affordable
at the node side. Each node u in a subgroup S stores: i)
its node key Ku; ii) the group key KG; iii) the subgroup
key KS ; iv) (m− 1) node tokens associated to its cognate
nodes; and v) (p − 1) subgroup tokens associated to all
subgroups but S. The resulting storage overhead for a node
is Os,u = (p+m+1). If we consider p� 1 or m� 1, then
Os,u ' p + m. Hence, if nodes are uniformly distributed
in p subgroups of m members each (p = m =

√
n), the

minimum storage overhead is O
(min)
s,u = (2 ·

√
n), i.e. it

grows as O(
√
n).

In the WSN application, the minimum storage overhead
is O(min)

s,u = 64. If we consider 80 bit tokens and Skipjack
keys, then the storage overhead is 640 bytes. As TmoteSky
nodes feature 48 Kbytes of memory, the storage overhead is
equal to 1.30% of the total memory. It follows that GREP
is practically affordable even in constrained sensor nodes.

6.2. Overhead of node joining

Node u’s joining of group G as a member of subgroup
S requires to: i) broadcast message JM1 carrying nidu, the
master node token tM , and the refresh key KR; and ii)
broadcast message JM2 carrying the refresh key KR. Thus,
the communication overhead amounts to four, i.e. O(j)

c = 4.
The worst case for the computing overhead regards the

current nodes in S. Each of them performs: i) one decryption
to retrieve tM and KR from message JM1; and ii) three hash
function executions to compute tFu , K+

G and K+
S . Instead,

the KM: i) computes four keys (i.e. K+
G , K+

S , KR and Ku),
the master node token tM , and two node tokens (i.e. tBu and
tFu); and ii) encrypt messages JM1 and JM2. Thus, the KM
performs 2 encryptions and 7 hash function executions.

6.3. Overhead of node leaving

Let us consider a node h in subgroup S that leaves
the group G. Message LM1 introduces a communication
overhead equal to three, as it conveys nidh and two copies
of KR. Message LM2 introduces a communication overhead
equal to three, as it conveys sidS and two copies of KR. The
total communication overhead is equal to O

(l)
c = 6. Thus,

GREP efficiently rekeys the group, displaying a small and
constant communication overhead which is independent of
the group size, i.e. O(1). This makes GREP highly efficient
and scalable with the number of nodes in the group.

The worst case for the computing overhead regards a
node u 6= h in S. Such node: i) computes either KF or
KB ; ii) decrypts either {KR}KF

or {KR}KB
to retrieve

KR from message LM1; iii) computes K+
G and K+

S ; and
iv) updates its node token sets and subgroup token sets by
executing (m− 2) and (p− 1) hash functions, respectively.
Thus, a node performs at most one decryption and (p+m)
hash function executions. Instead, the KM: i) computes the
keys K+

G , K+
S , KR, KF , KB , KS

F and KS
B ; ii) encrypts two

copies of KR in message LM1 and two copies of KR in
message LM2; and iii) updates its node token set NTS and
subgroup token set STS by executing (2 ·m − 4) and (2 ·
p− 2) hash functions, respectively. Thus, the KM performs
4 encryptions and (2·p+2·m+1) hash function executions.

The computing overheads on the KM and nodes grow
both as O(

√
n). In particular, in the WSN application, a

node performs at most 1 decryption and 64 hash function
executions, which is practically affordable for sensor plat-
forms.

6.4. Overhead of collusion recovery

Let us consider a collusion attack with C compromised
subgroups and (p−C) non compromised subgroups. Also,
let us assume that each compromised subgroup contains
c compromised nodes. In general, the communication
overhead of the collusion recovery depends on the spe-
cific compromised nodes and subgroups, i.e. the relation
between their node ID and their cognates’ and between
their subgroup ID and their kindreds’, respectively. In the
following, we discuss the collusion recovery in the worst
case condition.

We have the worst case condition when the following
two events occur at the same time: 1) non compromised
nodes in every compromised subgroup S ∈ C are rekeyed by
means of one unicast message RM2 each, i.e. each of the C
compromised subgroups requires a total subgroup recovery;
and 2) the (p−C) non compromised subgroups S ∈ U are
rekeyed by means of one broadcast message RM4 each, i.e.
group G requires a total group recovery.

In the worst case, (m−c) unicast messages RM2 are sent
within each of the C compromised subgroups. The resulting
communication overhead is equal to C ·(m−c)·(c+1). Also,
one broadcast message RM4 is sent to each of the (p−C)
non compromised subgroups. The resulting communication

TABLE 2. COMMUNICATION OVERHEAD (KB).

Compromised Compromised nodes per subgroup
subgroups c = 2 c = 4 c = 6 c = 8 c = 10

C = 1 1.88 2.50 3.13 3.75 4.38

C = 10 10.31 16.56 22.81 29.06 35.31

overhead is equal to 3 · (p− C). Thus, the total communi-
cation overhead is O(r)

c = C · (m− c) · (c+1)+3 · (p−C).
If we reasonably assume that i) each subgroup includes a
non negligible number of members, i.e. m � 1; ii) only a
few nodes per subgroup are captured, i.e. m � c; iii) the
group G includes a non negligible number of subgroups,
i.e. p� 1; iv) only a few subgroups are compromised, i.e.
p � C; and v) p = m =

√
n, for storage optimisation,

then the communication overhead can be approximated as
O

(r)
c '

√
n · (C · (c+ 1) + 3). Thus, in the worst case, the

communication overhead smoothly grows as O(
√
n), and

gradually increases with the severity of the attack scenario.
Table 2 shows the communication overhead in the WSN

application. Even if 10 nodes in 10 different subgroups
collude, i.e. C = c = 10 and 100 nodes collude, then
O

(r)
c = 35.31 KB. In IEEE 802.15.4, unsecured frames

have a payload with maximum size 102 bytes, and an
implementation displays an effective data rate (excluding
headers, CRCs, and control packets) of about 8.4 Kbps (out
of 250 Kbps). Thus, even if C = c = 10, i.e. 100 nodes
collude, the communication overhead requires 355 frames
and results in 33.63 s (per hop). Hence, also in the worst
case, the communication overhead is sustainable in a WSN
environment. Note that IEEE 802.15.4 can display better
performance. That is, Latré et al. showed that a throughput
of about 140 Kbps can be achieved, even if acknowlegment
frames are trasmitted [1]. In that case, when C = c = 10,
the communication overhead results in 2.02 s (per hop).

In the worst case, the KM performs C · (m− c)+p−C
encryptions and C · (2 · (m−c)−1)+2 ·p−1 hash function
executions. While this is generally not a problem on the KM,
the computing overhead must be practically sustainable on
the node side. A non compromised node processes only one
rekeying message, i.e. either RM2 or RM4, and retrieves
the refresh key KR by performing one decryption. The
highest computing overhead is experienced by a node in a
compromised subgroup S, as it computes: i) the new group
key K+

G ; ii) the new subgroup key K+
S ; iii) (m − c − 1)

new node tokens associated to its non compromised cognate
nodes; and iv) (p − 1) new subgroup tokens associated to
the kindred subgroups of S. Hence, a node performs at most
one decryption and (p+m− c) hash function executions.

In the WSN application, the Skipjack key KR is only
80 bits in size. If hash functions are implemented through
the same cipher Skipjack used for encryptions, then hash
function executions require to process at most 640 bytes.
On TmoteSky nodes, a software version of Skipjack takes
77 µs per encrypted/decrypted byte [6]. Thus, decrypting
KR takes 0.77 ms, and performing all the hash function

executions takes at most 49.28 ms, so making collusion
recovery affordable from the computing standpoint.

Now, we discuss the probability Pwc(G) of a worst case
recovery to occur. Due to space constraints, we only present
the results for the WSN application, and give intuitions of
the attack configurations that lead to a worst case recovery.

Let us refer to Figure 2. Subgroup S requires a total
subgroup recovery if any of these pairs of nodes is compro-
mised: i) {f, j}; ii) {f, i}; or iii) {g, j}, i.e. either f = uSe
or g = uSe , and either i = uSy or j = uSy . Thus, one can not
exploit node tokens in S to rekey multiple nodes through a
single broadcast message RM1, and each non compromised
node in S is rekeyed through one unicast message RM1
or RM2. Also, the more compromised nodes in a given
subgroup, the more it requires a total subgroup recovery.

The group G requires a total group recovery if any of
these pairs of subgroups is compromised: i) {S∗∗, S′′};
ii) {S∗∗, S′}; or iii) {S∗, S′′}, i.e. either S∗∗ = SCe or
S∗ = SCe , and either S′ = SCy or S′′ = SCy . Thus, one
can not exploit subgroup tokens to rekey multiple subgroups
through a single broadcast message RM3, and each non
compromised subgroups is rekeyed through one broadcast
message RM3 or RM4. Also, the more compromised sub-
groups, the more likely the group G requires a total group
recovery.

TABLE 3. PROBABILITY Pwc(G) OF WORST CASE RECOVERY.

C = 3 C = 5 C = 10

c = 2 c = 10 c = 2 c = 10 c = 2 c = 10

0.39 · 10−8 0.1 · 10−3 0.45 · 10−12 0.31 · 10−4 < 1 · 10−20 0.7 · 10−7

Table 3 shows the probability Pwc(G) that a worst
case recovery occurs. Given a number C of compromised
subgroups, the probability of a worst case recovery in-
creases with c. This is consistent with the presence of more
compromised nodes per compromised subgroup. However,
given c compromised nodes per compromised subgroup, the
probability Pwc(G) decreases with C. Intuitively, the more
subgroups are compromised, the less it is likely that i) each
of them requires a total subgroup recovery; and ii) all other
subgroups must be separately rekeyed. If 10 nodes collude
in 10 different subgroups, i.e. C = c = 10 and 100 nodes
out of 1024 collude, we have Pwc(G) = 0.7× 10−7.

Thus, a worst case recovery is an extremely unlikely
event, even when a non negligible number of nodes and
subgroups is compromised. Besides, a total member reini-
tialization is necessary only when all subgroups are com-
promised, i.e. C = p, and each of them requires a total
subgroup recovery. This, together with the limited overheads
displayed even in worst case conditions, makes GREP ex-
tremely efficient when recovering from collusion attacks.

7. Conclusion

We have presented GREP, a novel group rekeying pro-
tocol that efficiently rekeys a group with a number of
messages which is small, constant and independent of the

group size. In case of collusion attack, GREP recovers the
group by exploiting the history of joining events. This avoids
a total member reinitialization and results in an overhead
which smoothly grows with the group size, and gradually
increases with the attack severity. We have provided an
analytical performance evaluation and shown that GREP is
deployable on large-scale networks of constrained devices.

Acknowledgments

This project has received funding from the European
Union’s Seventh Framework Programme for research, tech-
nological development and demonstration under grant agree-
ment no. 607109. This work was also supported by the
EIT DIGITAL HII project ACTIVE; “Progetti di Ricerca
di Ateneo - PRA 2016” of the University of Pisa; and the
PRIN project TENACE (20103P34XC) funded by the Italian
Ministry of Education, University and Research.

References

[1] B. Latré, P. De Mil, I. Moerman, N. Van Dierdonck, B. Dhoedt and
P. Demeester, “Maximum Throughput and Minimum Delay in IEEE
802.15.4,” in The First international conference on Mobile Ad-hoc
and Sensor Networks, Wuhan, China, vol. 3794. Springer, 2005, pp.
866–876.

[2] C. K. Wong, M. Gouda and S. S. Lam, “Secure group communica-
tions using key graphs,” IEEE/ACM Trans. on Networking, vol. 8,
no. 1, pp. 16–30, 2000.

[3] D. Wallner, E. Harder and R. Agee, Key Management for Multicast:
Issues and Architectures, IETF, 1999.

[4] E. Cole, Network Security Bible, 2nd Edition. Wiley, 2009.

[5] F. Bao, I. Chen, M. Chang and J. Cho, “Hierarchical Trust Manage-
ment for Wireless Sensor Networks and its Applications to Trust-
Based Routing and Intrusion Detection,” IEEE Trans. on Network
and Service Management, vol. 9, no. 2, pp. 1–15, 2012.

[6] G. Dini and I. M. Savino, “LARK: A Lightweight Authenticated
ReKeying Scheme for Clustered Wireless Sensor Networks,” ACM
Trans. on Embedded Computing Systems, vol. 10, no. 4, pp. 41:1–
41:35, 2011.

[7] G. Dini and M. Tiloca, “HISS: A HIghly Scalable Scheme for Group
Rekeying,” The Computer Journal, vol. 56, no. 4, pp. 508–525, 2013.

[8] J. Doumen, Y. W. Law and P. H. Hartel, “Survey and benchmark of
block ciphers for wireless sensor networks,” ACM Trans. on Sensor
Networks, vol. 2, no. 1, pp. 65–93, 2006.

[9] K. Birman, Guide to Reliable Distributed Systems. Building High-
Assurance Applications and Cloud-Hosted Services. Springer, 2012.

[10] P. Liu, W.-C. Lee, Q. Gu and C.-H. Chu, “KTR: An Efficient Key
Management Scheme for Secure Data Access Control in Wireless
Broadcast Services,” IEEE Trans. on Dependable and Secure Com-
puting, vol. 6, no. 3, pp. 188–201, 2009.

[11] S. Rafaeli and D. Hutchison, “A Survey of Key Management for
Secure Group Communication,” ACM Computing Surveys, vol. 35,
no. 3, pp. 309–329, 2003.

[12] S. Setia, S. Zhu and S. Jajodia, “LEAP+: Efficient security mech-
anisms for large-scale distributed sensor networks,” ACM Trans. on
Sensor Networks, vol. 2, no. 4, pp. 500–528, 2006.

[13] Y. Wang, X. Wang, B. Xie, D. Wang, and D. P. Agrawal, “Intrusion
Detection in Homogeneous and Heterogeneous Wireless Sensor Net-
works,” IEEE Transactions on Mobile Computing, vol. 7, no. 6, pp.
698–711, June 2008.

