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Abstract—Many dependable systems rely implicitly on the
integrity of the positions of their components. For example, let us
consider a sensor network for pollution monitoring: it is sufficient
that a hostile actor physically moves some sensors to completely
disrupt the monitoring. In such scenarios, a key question is:
how to securely verify the positions of devices? To answer this
question, researchers proposed several solutions. However, these
generally require several fixed stations (anchors) with trusted
positions.

In this paper, we explore the possibility to use the emerging
drone technology in order to overcome the limitation of using
several fixed anchors. In particular, our approach is to replace
all the fixed anchors with a single drone that flies through a
sequence of waypoints. At each waypoint, the drone “acts like”
an anchor and securely verifies the positions of the devices. The
main challenge here is to find a convenient path for the drone
to do this. The problem presents novel aspects, thus existing
path planning algorithms cannot be used. We present VerifierBee:
a path planning algorithm that allows a drone to perform a
secure location verification of a set of devices. VerifierBee finds
a good approximation of the shortest path, and at the same
time it respects a set of requirements about drone controllability,
localization precision, and communication range.

I. INTRODUCTION

The dependability of many distributed systems relies (often
implicitly) on knowing the positions of the component devices.
If the system believes that a device is in a position different
from the real one, then it could infer wrong information
and take wrong decisions. An adversary capable of changing
the position of one or more devices (displacement attack)
can deeply affect the system behavior with little effort. As
an example, let us consider a sensor network deployed for
pollution monitoring. The sensors could measure the density
of dioxin in the air at different positions and report it to
a centralized gateway, which eventually decides whether it
should raise an alarm. An adversary willing to mask a pollution
event could simply move some sensors in different positions,
in a way such that it will avoid the detection (as illustrated in
Figure 1). This attack is simple to carry out and difficult to
detect.

Periodically measuring the positions of the devices is not
enough to guarantee security. In fact, the majority of the
positioning methods are vulnerable to attacks in which an
adversary falsifies the position measurement [19], [11]. For
example, if the position is inferred from the strength of
a received beacon message, the adversary can confuse the

Fig. 1. Displacement attack against an environment monitoring system. A
hostile actor changes the positions of some sensors, and then she can pollute
without being detected.

measurement by sending fake beacons from wrong positions.
Authenticating the beacons does not solve the issue, since
the adversary could listen and replay authenticated beacons
from different positions (wormhole attack [11]). Providing
secure measurements of positions has shown to be a non-
trivial problem [19], [20], [18]. A promising approach is
verifiable multilateration [19]. Verifiable multilateration is a
secure positioning technique that determines a position by
measuring the distances from (at least) three anchors by means
of distance bounding protocols [2]. A distance bounding
protocol is a cryptographic protocol able to measure a secure
upper bound to the distance between two devices. Verifiable
multilateration has the drawback that it requires many fixed
anchors. The number of necessary anchors grows roughly
linearly with the size of the area in which the nodes are
deployed [19]. Another problem is that the fixed anchors must
be truly “fixed”. Otherwise an adversary could simply move
an anchor to jeopardize the security of the system.

In this paper, we explore the possibility of using the
emerging drone technology to solve these issues. Drones,
or Unmanned Aerial Vehicles (UAV), are aircraft with no
human pilot. They can enjoy different levels of autonomy [14]:
ranging from being remotely piloted to being completely
autonomous in movements and decisions. In practice, our
idea is to replace many fixed anchors with a single mobile
drone. The drone follows a path that passes though a series of
waypoints. At each waypoint, the drone “acts like” an anchor
by executing a distance bounding protocol with a node. At
the end of the path, each node has been measured from three
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different waypoints, and the position can be securely computed
by means of verifiable multilateration. We thus completely
eliminate the need for many expensive fixed anchors.

The problem is how to determine a convenient path for
the drone. We cannot use existing path planning algorithms,
because a valid path for verifiable multilateration must respect
additional geometric constraints. In particular, the triangle
formed by the waypoints must contain the node, otherwise
the computed position will not be secure. Furthermore, other
specific issues must be addressed, like the imprecision on the
control of the drone movements.

Contribution
• We explore the approach of using drones to securely

verify a set of positions by means of verifiable multi-
lateration.

• We formally state the Traveller Location Verifier Problem
(TLVP), that regards finding the shortest path for a drone
to securely verify a set of nodes.

• We propose VerifierBee, a path planning algorithm that
finds an approximate solution to TLVP.

• We run a thorough set of experimental evaluation of
VerifierBee. The results of our experiments show that
VerifierBee improves the path length of some 50% with
respect to a simple solution.

Organization The rest of the paper is organized as follows.
Section II compares relevant related work. Section III intro-
duces the basic concepts. Section IV introduces the idea of
drone-based verifiable multilateration. Section V formalizes
the Traveller Location Verifier Problem. Section VI introduces
VerifierBee. Section VII reports the results of our experimental
evaluation. Finally, Section VIII concludes the paper.

II. RELATED WORK

Secure positioning aims at measuring the position of a
device in the presence of an adversary that wants to fal-
sify such a measurement. Researchers proposed many meth-
ods [13], offering different levels of security (provable or
only statistical), and defending against different adversaries
(external or internal). Čapkun and Hubaux [19] proposed a
secure positioning method called verifiable multilateration. In
this proposal, the system measures the distances from a set
of trusted anchors by means of distance bounding protocols.
The position is computed by means of multilateration, and it
is considered secure if it lies inside the polygon formed by the
anchors. In this paper, we approach the problem of performing
verifiable multilateration not with many fixed anchors, but with
a single mobile drone.

Čapkun et al. [18] proposed a drone-based approach for
secure location verification. In their system, the adversary is a
malicious node that lies about its position. The drone sends a
challenge message to the nodes, and then moves to a different
random position. After an agreed period of time, the nodes
respond with a response message, by which the drone infers
their positions. Assuming that the malicious node ignores the
drone’s new position, it cannot falsify its own position in a

coherent manner. Our approach is radically different, because
it is based on verifiable multilateration, which is provably
secure. As a consequence, we do not need to suppose that
the drone’s position is unknown by the adversary.

A similar problem to ours is drone-based data gathering
from sensors [1], [7], [10], [16]. In this case, a robot (either
aerial, terrestrial, or under-water) must collect data from a
set of sparse and unconnected sensors. These papers propose
path planning algorithms that solve generalized forms of the
Traveller Salesman Problem (TSP). The objective is usually
to minimize the path length while respecting particular con-
straints. In this paper, we propose a path planning algorithm
to securely verify the positions of a set of nodes. This problem
can be viewed as a generalization of the TSP as well. However,
our problem is radically different from data gathering, because
the path must respect a completely different set of constraints.
For example, we must range each node from three distinct
waypoints, whereas a single waypoint per node is sufficient
for data gathering.

Another problem related to ours is drone-based (insecure)
localization of ground devices [3], [4], [5], [17]. All these
works do not have security in mind, and their position mea-
surements cannot be considered trusted in a hostile environ-
ment. One of the simplest approaches is the one given by
Corke et al. [4], in which a robot sweeps the entire area and
periodically broadcasts its GPS position. The nodes collect
such messages, called position broadcasts. They finally infer
their own position by averaging all the received position
broadcasts. Such a method is not secure, since an adversary
could simply send fake position broadcasts, in such a way
to confuse the nodes. Authenticating the position broadcasts
does not solve the issue, since an adversary could listen to a
legitimate broadcast and replay it on different positions. This is
commonly known in the literature as the wormhole attack [11].
In general, all the localization method based on the strength
of received messages like [3], [17] are poorly secure, since an
adversary has an easy play on falsifying this information.

Dang et al. [5] uses a set of drones to localize a set of ground
nodes, by measuring the relative distances between them. Our
system measures the relative distances too, but it assures the
security of the computed positions by using verifiable multilat-
eration. Verifiable multilateration poses special requirements
on the path that the drone has to follow. In particular, we
must range each node from three waypoints, and the triangle
formed by them must contain the node. This requirement was
not present in classic trilateration.

III. PRELIMINARIES

A distance bounding protocol [2] is a cryptographic protocol
able to measure a distance between two devices, in such a way
that an adversary cannot fake the measurement to be shorter
than real (reduction attack). A distance bounding protocol
determines a distance by precisely measuring the round-
trip time between a challenge and a response message. The
messages convey numeric quantities which are unpredictable
by the adversary. The adversary cannot reduce the round-trip



time measurement, because she should guess and transmit in
advance the messages.

A simple example of distance bounding protocol is the
following:

M1: A �! B : a
M2: B �! A : b
M3: B �! A : sign

k

(A,B, a, b),
where a and b are random numbers unpredictable by the
adversary, and k is a shared secret, by which B authenticates
the protocol execution. M1 and M2 are the challenge and
the response messages. To precisely measure the round-trip
time, the challenge and the response are usually transmitted
by means of impulse-radio ultra-wideband (IR-UWB) PHY
protocols [12], resulting in a precision of centimeters. From
now on, we will say “A ranges B” as a shorthand for “A
executes a distance bounding protocol with B.”

Verifiable multilateration [19] is a method for the secure
measurement of positions which leverages distance bounding.
In verifiable multilateration, the position of a node is deter-
mined by measuring the distances between the node and at
least three anchors whose positions are known (Figure 2).

Fig. 2. Verifiable multilateration. The computed position is accepted only if
it lies inside the verifiable triangle (the thick dashed one).

The distance measurements are performed by means of dis-
tance bounding protocols. The node’s position is computed
by trilateration. Such a position is accepted only if it lies
inside the triangle formed by the anchors (verifiable triangle).
Otherwise, it is discarded as untrusted. In fact, if an adversary
wants to fake a position inside the verifiable triangle, then she
must perform a reduction attack against at least one distance
bounding protocol, which is infeasible. Note that the coverage
of verifiable multilateration is only the verifiable triangle,
because the outside positions are discarded.

IV. DRONE-BASED VERIFIABLE MULTILATERATION

Verifiable multilateration is able to securely measure the
position of a node, but it needs a large number of anchors. In
case of a set of nodes sparsely deployed on a large area and
with a short communication range, it is necessary to deploy
many anchors to reach them all. In addition, the coverage is
restricted to the verifiable triangle, so it is not enough that
three anchors are within the communication range: they have
to “surround” the node in order to locate it securely. The
scalability challenges of verifiable multilateration have been

studied in [19]. In particular, the work in [19] proposed to
place the anchors following a regular triangles’ grid, in order
to minimize the anchors necessary to cover a given area.
Although a regular anchor placement improves the scalability,
the number of anchors cannot scale better than linearly with
the size of the area to cover.

With the development of the drone technology [14] and their
increased availability on the markets, it became affordable to
replace many fixed anchors with a single drone. The drone
follows a path, touching a sequence of waypoints. At each
waypoint it acts as an anchor (Figure 3), performing one
or more distance bounding protocols with the nodes on the
ground.

Fig. 3. Classic vs. drone-based verifiable multilateration.

The drone shares a different secret k with each node, by
which the distance bounding protocols are executed. The
mechanism just described solves the scalability issue. The
problem becomes now how to find a convenient path for the
drone in order to securely measure a set of positions in an
efficient way. We assume to have an a-priori knowledge of
the nodes’ positions, from which we compute the drone’s path.
We call them supposed positions. The supposed positions are
not trusted, because an adversary could have displaced the
nodes. Therefore we want to securely verify them by means
of verifiable multilateration. If the positions determined by
verifiable multilateration are not consistent with the supposed
ones, a node displacement attack is detected.

The drone’s path is centrally computed in an off-line fash-
ion, and it must respect the following requirements.

• The path has to start and terminate at a special fixed
waypoint, called home waypoint (this is where the path
is computed and loaded in the drone). The drone takes off
from the home waypoint, performs the mission, lands at
the home waypoint again, and communicates the outcome
of the position verification to some base station.

• Each node has to be ranged from three distinct waypoints,
and the verifiable triangle formed by them must contain
the node. This is required for the localization to be secure.

• The drone has a limited communication range. Far away
nodes could be impossible to reach with a distance
bounding protocol.

• The position determined by verifiable multilateration
must be sufficiently precise in order to be useful for
the verification. Such a precision depends (also) on the



relative positions of the drone and the node. For example,
if the drone ranges the node from exactly above, the
precision will be extremely low. We have to avoid this.

• The path has to be tolerant to sources of imprecision.
First, the movements of the drone are not perfectly
controllable, because the wind strongly affects them. It
is a good practice to provide for some tolerance, since
the “true” waypoints actually visited by the drone could
be different from the planned ones. The altitude could
not be perfectly controllable too. Secondly, the supposed
positions of the nodes could be imprecise.

• The mission time should be as short as possible. This is
preferable for saving time and drone’s battery life.

For the sake of simplicity, we assume that the drone moves
at a constant speed. Minimizing the mission time is thus
equivalent to minimizing the path length. We assume there are
no obstacles to the drone’s movements (e.g., walls, buildings,
trees). The problem of path planning for secure location
verification in presence of obstacles is interesting as well, but
it falls outside the scope of this paper.

Many drones are limited in the movements they can do.
For example, they cannot perform sharp curves or sudden di-
rection changes (the problem is more stringent for fixed-wing
drones, less for quadcopters). In order to respect the dynamic
constraints of the specific drone, a path must be successively
translated into a trajectory. The trajectory generation is a well-
studied problem [8], and it falls outside the scope of this paper.

We suppose that all the nodes are on the ground, while the
drone flies at a non-negligible altitude (h). We imagine the
waypoints to be on the ground. The drone “visits” a waypoint
when its position is above the waypoint (apart from drone
control errors). The verifiable triangle is considered to be on
the ground too. We assume that the ground is flat enough
to allow the drone to be always in the line-of-sight with the
ranged node.

We also suppose that, even if the position and the altitude
of the drone are not perfectly controllable, they are actually
measurable. The drone employs a technology that allows it
to always know its own position and altitude with negligible
error. An example of such a precise technology is differential
GPS, which is sometimes installed on drones [9]. When the
drone performs a distance bounding protocol with a node, what
is measured is the slant distance (s), which is the line-of-sight
one. However, for the aim of localization, we are interested
in the ground distance (d), which is the one projected on the
ground. The system computes the ground distance by:

d =

p
s2 � h2. (1)

Once the drone has completed its path, three ground distances
have been collected for each node. So the system can deter-
mine the positions of the nodes by trilateration, and verify if
they are consistent with the supposed ones.

V. TLVP FORMALIZATION

In this section, we formalize the Traveller Location Verifier
Problem (TLVP). TLVP can be considered as a generalization

of the classic Traveller Salesman Problem (TSP), in which
the nodes must not be visited, but rather verified for their
positions. TLVP regards finding the shortest path to securely
verify a set of ground positions by means of drone-based
verifiable multilateration.

The supposed positions are a set of points on the Carte-
sian plane {N1, . . . , Nn

} that must be securely verified. A
path (P ) is a couple of sequences: a sequence of way-
points {W1, . . . ,Wm

}, and a sequence of ranged nodes sets
{Rng1, . . . , Rng

m

}. Each waypoint is a point on the Cartesian
plane. The drone visits the waypoints in the order specified by
the sequence. At each waypoint, the drone performs a distance
bounding protocol with every node in the corresponding
ranged nodes set. The path is closed, in the sense that the drone
goes again to W1 at the end. The first waypoint coincides with
the home waypoint (W

home

). Note that a node could be ranged
from three waypoints that are non-consecutive in the path. For
example, the drone could range twice a node in two successive
waypoints, then move to a completely different zone to range
other nodes, and finally return in the neighborhood to perform
the third distance bounding. At the end of the path, each node
must have been ranged from three distinct waypoints, and the
verifiable triangle must contain the node.

We assume that the drone control error is bounded. We call
such a bound the drone control precision (�

W

):

kW
j

�W 0
j

k  �
W

, (2)

where W 0
j

is the actual position from which the drone performs
the distance bounding. In addition, the altitude is not perfectly
controllable, but it is supposed to be bounded above by a
maximum altitude (h

max

):

h  h
max

. (3)

Finally, we assume that the error on the supposed positions
is bounded. We call such a bound the supposed positions
precision ("

N

):

kN
i

�N 0
i

k  "
N

, (4)

where N 0
i

is the actual position of the node.

A. Formalization of the constraints

If the supposed positions are imprecise, then the node could
lie outside the verifiable triangle, and the drone will fail in
verifying its position. To avoid this, the verifiable triangle must
contain the whole circle centered in N

i

and with radius "
N

.
However, this is not enough, since we have to be tolerant also
to the drone control error. If the drone control is imprecise,
then the verifiable triangle actually drawn by the drone (real
verifiable triangle) could be different to the planned one. As a
consequence, the node could lie outside the verifiable triangle
again. To avoid this, it is sufficient that the verifiable triangle
contains the whole circle centered in N

i

and with radius "
N

+

�
W

. We can prove this by considering the worst case, shown
in Figure 4. The real waypoints are shifted (with respect to the
planned ones) of �

W

on the direction orthogonal to the edge of
the verifiable triangle. The real node’s position is shifted (with



Fig. 4. Error tolerance in the worst case. The visited waypoints (black
crosses) are shifted wrt the planned ones (gray crosses). The real node’s
position (black dot) is shifted wrt the supposed one (gray dot).

respect to the supposed one) of "
N

on the opposite direction.
The real verifiable triangle must contain the node even in this
case. By geometrical evidence, we obtain this if and only if
the planned verifiable triangle contains the circle with center
N

i

and radius "
N

+ �
W

. We call such a radius the tolerance
radius (r

tol

):

r
tol

, "
N

+ �
W

. (5)

The error on the slant distance principally depends on
the employed IR-UWB technology and the quality of the
receivers. We suppose that the error on the slant distance
is bounded and we call such a bound the slant precision
("

s

). In the IEEE 802.15.4a IR-UWB standard [12], the slant
precision is usually of the order of centimeters. For example,
the IR-UWB transceivers commercialized by DecaWave have
a precision of 10cm [6]. The ground precision ("

d

) is the
bound on the ground distance error. It is always worse than
the slant precision. Especially if the drone is in plumb-line
above the ranged node, a small error on the slant distance will
translate into a huge error on the ground one. Figure 5 shows
an evidence of this.

Fig. 5. Ground precision. If the drone is above the ranged node, a small
imprecision on the slant distance ("

s

) will translate into a huge imprecision
on the ground one ("

d

).

If the altitude and the ground distance are sufficiently large
compared to the slant precision, then the following approxi-

mate relationship will hold:

"
d

⇡ "
s

· 1

cos(↵)
= "

s

·
p
1 + (h/d)2, (6)

where ↵ is the angle of incidence of the slant distance to
the ground (cfr. Figure 5). To guarantee a sufficiently precise
localization, we impose an objective ground precision ("̄

d

):

"
d

 "̄
d

) "
s

·
p

1 + (h/d)2  "̄
d

. (7)

By expliciting d from (7) we get:

d � h ·
q

(("̄
d

/"
s

)

2 � 1)

�1. (8)

In other words, the ground distance must be large enough if
we want to meet the objective precision. This depends on the
altitude too: the more it is, the larger the ground distance must
be. Also here, we have to take into account the worst case.
We define a minimal distance (d

min

) in this way:

d
min

, h
max

·
q

(("̄
d

/"
s

)

2 � 1)

�1
+ "

N

+ �
W

. (9)

If the ground distance between the planned waypoint and the
supposed position is greater than or equal to the minimal
distance, then we achieve the objective ground precision. In (9)
we added "

N

and �
W

and we supposed the maximal altitude
h
max

to make sure that the requirement is respected even in
the worst case.

Finally, the drone has a limited communication range.
Given the maximum communication range (s

max

), we define
a maximal distance (d

max

):

d
max

,
p

s2
max

� h2
max

� "
N

� �
W

. (10)

If the ground distance between the planned waypoint and the
supposed position is less than or equal to the maximal distance,
then the node is within the communication range. In (10) we
subtracted "

N

and �
W

to make sure that the requirement is
respected even in the worst case.

To sum up, we identified three constraints: the tolerance
radius (r

tol

), which guarantees that the localization is secure;
the minimal distance (d

min

), which guarantees that the node
is ranged with a satisfactory precision; the maximal distance
(d

max

), which guarantees that the node is within the commu-
nication range. These constraints refer to the single node, and
they can be represented by three circles centered on the node’s
supposed position (Figure 6). The r

tol

-circle must be contained
inside the verifiable triangle, and the waypoints must lie at a
distance between d

min

and d
max

from the node.

B. Final problem formulation
The Traveller Location Verifier Problem (TLVP) relates to

the finding of the shortest path that allows a drone to securely
verify the positions of a set of nodes under the r

tol

, d
min

,
d
max

constraints. Formally stated:

minimize
P

length(P );

subject to 8N
i

:

triangle(wp

P

(N
i

)) ◆ circle(N
i

, r
tol

)

8W
j

2 wp

P

(N
i

) d
min

 kN
i

�W
j

k  d
max

,



Fig. 6. TLVP constraints representation. The r
tol

-circle must be contained
inside the verifiable triangle, and the waypoints must lie at a distance between
d
min

and d
max

from N
i

.

where length(P ) indicates the length of the path P ; wp
P

(N
i

)

indicates the triplet of waypoints which range node N
i

accord-
ing to the path P ; triangle(·) indicates the triangle formed by
a triplet of waypoints; circle(N

i

, r
tol

) indicates the circle with
center N

i

and radius r
tol

.

VI. VERIFIERBEE PATH PLANNER

TLVP is a generalization of the classic Traveller Salesman
Problem (TSP), which is NP-hard. We present VerifierBee,
an algorithm that finds an approximate solution to TLVP.
VerifierBee uses a TSP solver algorithm as a building block to
find a first valid solution. Then, such a solution is iteratively
improved, following a greedy strategy. The TSP solver is
used as a black box. It is required to find an approximate
shortest path that visits all the points in a list, and then
returns to the first point (closed path). It is not required to
be optimal. Approximate TSP algorithms are acceptable as
well. Of course the performances of the TSP solver will
affect those of VerifierBee both in terms of optimality and
processing time. VerifierBee operates in three phases: (i) basic
path computation; (ii) greedy improvement; (iii) waypoint
reordering.

A. Basic path computation

VerifierBee computes an ordered list of waypoints: the
home waypoint plus three waypoints for each node, placed
at fixed positions to form a minimal verifiable triangle (Fig-
ure 7). The minimal verifiable triangle is a regular triangle
centered on N

i

and inscribed to a circumference of radius
⇢ = max {2r

tol

, d
min

}. This radius is the smallest one which
respects both r

tol

and d
min

constraints. VerifierBee orients all
the minimal verifiable triangles with a vertex toward north.
The angular orientation is indifferent, because the successive
greedy improvement phase will rotate and distort the triangles
in order to find shorter paths. After having built the list
of waypoints, we run the TSP solver on them to find an
approximate optimal path that touches them all. The basic path
is thus complete, and it is formed by 3n+1 waypoints (where
n is the number of nodes) and 3n+1 ranged nodes sets. The
first ranged nodes set is empty (it is the home waypoint), and

Fig. 7. Minimal verifiable triangle.

the other ones contain a single node each. Figure 8 shows an
example of basic path for 30 nodes.

home waypoint

Fig. 8. Example of basic path with 30 nodes. The black dots are the nodes,
the crosses are the waypoints, the red dashed line is the path.

Note that the drone passes very close to each node. This makes
the path sub-optimal, since the drone does not use its full
communication range. The basic path is a simple solution to
TLVP. We will use it as a term of comparison to evaluate the
performance of VerifierBee.

B. Greedy improvement

After having computed the basic path, VerifierBee changes it
iteratively, following a greedy strategy. At each step, Verifier-
Bee analyzes the possible changes (e.g., moving a waypoint in
another position) and applies the most convenient one, that is
the one that decreases more the total path length. The greedy
improvement phase terminates when no change is possible or
convenient anymore, meaning that we found a local minimum.

The changes are of two kinds: waypoint moving and way-
point pruning. Waypoint moving changes the position of a
waypoint, while waypoint pruning removes a waypoint and
“substitutes” it with another existing one. Both moving and
pruning make use of the concept of freedom space. The
freedom space of a waypoint is the area where the waypoint
can be moved without violating any constraint of the problem



(all the other waypoints remaining fixed). It can be computed
geometrically, as illustrated in Figure 9. The curved borders
of the freedom space are the limits of the d

min

and d
max

constraints. The straight borders are the limits of the r
tol

constraint.

Fig. 9. Freedom space of W1 (the gray area). The two straight borders lie
on the two rays originating from the other waypoints of the verifiable triangle
(W2 and W3) and tangent to the r

tol

-circle.

Waypoint moving changes the position of a waypoint, in
such a way to shorten the global path. Figure 10 shows an
example.

Fig. 10. Waypoint moving. W12 is moved so that the drone shortens the
path going from W11 to W13.

The best position where to move a waypoint is always:
(i) somewhere on the border of the freedom space (like in
Figure 10), or (ii) coincident with another waypoint in the
interior of the freedom space. In the latter case, we do not
apply waypoint moving but rather waypoint pruning (see
below), that is we eliminate the waypoint and substitute it
with the other one. Therefore, waypoint moving always moves
a waypoint along the border of the freedom space.

Waypoint pruning removes a waypoint (pruned waypoint)
and substitutes it with another existing one (substitute way-
point). The drone will not visit anymore the pruned waypoint.
As a consequence, it will miss to run a distance bounding
protocol. The missing distance bounding is run when the drone
passes through the substitute waypoint. Waypoint pruning
reduces the total number of waypoints. Figure 11 shows an
example of waypoint pruning. The pruned waypoint W

i

and
the correspondent ranged nodes set Rng

i

are eliminated from
the path, while the nodes that were in Rng

i

are added to the

Fig. 11. Waypoint pruning. W12 is pruned and substituted by W20. When
the drone visits W20, it runs two distance bounding protocols: one with N1
and one with N2.

ranged nodes set Rng
j

of the substitute waypoint W
j

. It is
possible to prune a waypoint when its freedom space contains
the substitute waypoint. The home waypoint cannot be pruned.
After pruning, the substitute waypoint has to range two nodes
instead of one. Consequently its freedom space will narrow,
because it has to take into account the constraints relative to
both nodes. The resulting freedom space is the intersection of
the freedom spaces relative to the single nodes. In some cases,
the freedom space of the waypoint to prune contains many
waypoints. All these waypoints are suitable candidates to be
the substitute waypoint. Which one to choose is indifferent
in terms of path length. VerifierBee chooses the one which
narrows less its freedom space, in such a way to leave more
“freedom” to the next steps of the greedy improvement.

To sum up, the greedy improvement phase computes all
the possible waypoint movings and prunings. If no change is
further possible or convenient, the phase terminates. Otherwise
we apply the most convenient change (either moving or
pruning) and then we recompute all the possible changes again.

C. Waypoint reordering and complete algorithm

The greedy improvement may change the position and the
number of the waypoints, but it does not change their order,
which remains the same of the basic path. As a consequence,
sometimes it is convenient to reorder the waypoints by running
the TSP solver again. This is the third phase of the VerifierBee
algorithm. The greedy improvement and the waypoint reorder-
ing phases are repeated, until the path length stops decreasing.

Algorithm 1 shows a pseudo-code description of Verifier-
Bee. The function SolveTSP(·) is our black-box TSP solver.
The function takes a path, reorders the waypoints to form
an (approximate) optimal path, and then returns such a new
path. The function GreedyImprove(·) takes a path, performs
a greedy improvement, and returns the resulting path.

Figure 12 shows an example of VerifierBee path for 30
nodes (the same ones of Figure 8). This path is much shorter
than the basic path of Figure 8. Many waypoints have been
pruned and the other ones have been moved in more con-
venient positions. The path passes very close to the external
nodes (N1). On the contrary, interior nodes are ranged from



Algorithm 1: VerifierBee
Require: {N

i

}, W
home

, �
W

, "
N

, "
s

, "
d

, h
max

, s
max

1: Determine r
tol

, d
min

, d
max

by means of Eqs. 5, 9, 10
2: Path a list of waypoints, one on W

home

,
and the others on the minimal verifiable triangles.

3: Path SolveTSP(Path) {basic mission}
4: loop
5: Path GreedyImprove(Path)
6: if Path has not been improved then
7: exit loop
8: end if
9: Path SolveTSP(Path)

10: if Path has not been improved then
11: exit loop
12: end if
13: end loop
14: return Path

dmax

N2

N
4

N
3

N1

rtol dmin

home waypoint

Fig. 12. Example of VerifierBee path.

far away (N2). Note also that nodes close to each other (N3

and N4) are ranged by the same waypoints, and enclosed by
the same verifiable triangle.

VII. EXPERIMENTAL EVALUATION

We implemented VerifierBee with the Matlab programming
language and tested its performance under different conditions.
For the TSP solver, we employed an off-the-shelf algorithm
available on Mathworks [15].

We assumed the following parameters for our experiments:
a slant precision of "

s

= 10cm (claimed by DecaWave for
their IR-UWB transceivers [6]); an objective ground precision
of "̄

d

= 25cm; a communication range of s
max

= 300m
(claimed by DecaWave for their IR-UWB transceivers [6]);
a maximum altitude of h

max

= 160m; a drone control
precision of �

W

= 10m; a precision on the supposed positions
of "

N

= 5m. The TLVP constraints stemming from these
parameters are: r

tol

= 15.00m, d
min

= 84.83m, d
max

=

238.77m. We simulated a random deployment of the nodes
on a 1000m ⇥ 1000m map, and we executed VerifierBee to
find a path that securely verifies their positions. We put the
home waypoint on the south-west angle of the map. Figure 13

shows the average path length for different numbers of nodes.
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Fig. 13. Average path length wrt the number of nodes. Each point stems
from 100 experiments. 95%-confidence intervals are displayed in error bars.

We can see that the basic path increases linearly, whereas the
VerifierBee path shows a sub-linear trend. The length saving of
VerifierBee with respect to the basic path is quite significant,
especially in case of many nodes (�49.6% for 50 nodes).
This is because the drone ranges more nodes from a single
waypoint if the nodes are denser. Figure 14 shows the average
processing time for the basic path computation and for the
complete VerifierBee algorithm, running on a 2.4GHz Intel
Core i5 processor.
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Fig. 14. Average processing time wrt the number of nodes for 100
experiments.

A path for 50 nodes takes roughly 4 minutes to be computed.
This should be fully acceptable for an off-line computation.
We remark that VerifierBee must be executed only once. The
computed path remains valid as far as the positions of the
nodes do not change. However, implementing the algorithm
in C language (instead of Matlab language) should improve
the performances even more.

We analyze now the influence of the parameters on the
path length. Figure 15 shows the average path length for
different values of the communication range with 20 nodes.
As expected, the basic path is unable to leverage the full
communication range. On the contrary, an improved commu-
nication range has a positive effect on the VerifierBee path
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Fig. 15. Average path length wrt the communication range with 20
nodes. Each point stems from 100 experiments. 95%-confidence intervals are
displayed in error bars.

(up to �37.9% of path length with a communication range of
400m). Figure 16 shows the average path length for different
drone control precisions with 20 nodes.
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Fig. 16. Average path length wrt the drone control precision with 20
nodes. Each point stems from 100 experiments. 95%-confidence intervals are
displayed in error bars.

The path length clearly increases as the imprecision grows.
This is because the drone has to pass farther away from the
nodes, to be sure to enclose them in the verifiable triangle even
in the worst-case control error. VerifierBee saves a roughly
constant length for each value of the drone control precision.

VIII. CONCLUSIONS

In this paper, we explored the approach of using drones to
securely verify a set of positions. We formally stated the Trav-
eller Location Verifier Problem (TLVP), that regards finding
the shortest path for a drone to securely verify a set of nodes by
means of verifiable multilateration. We proposed VerifierBee,
a path planning algorithm that finds an approximate solution to
TLVP. The results of our experiments showed that VerifierBee
improves the path length of some 50% with respect to a simple
solution.
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