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Abstract. ICT is becoming a fundamental and pervasive component
of critical infrastructures (CIs). Despite the advantages that it brings
about, ICT also exposes CIs to a number of security attacks that can
severely compromise human safety, service availability and business in-
terests. Although it is vital to ensure an adequate level of security, it
is practically infeasible to counteract all possible attacks to the maxi-
mum extent. Thus, it is important to understand attacks’ impact and
rank attacks according to their severity. We propose SEA++, a tool for
simulative evaluation of attack impact based on the INET framework
and the OMNeT++ platform. Rather than actually executing attacks,
SEA++ reproduces their effects and allows to quantitatively evaluate
their impact. The user describes attacks through a high-level description
language and simulates their effects without any modification to the
simulation platform. We show SEA++ capabilities referring to different
attacks carried out against a traffic light system.
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1 Introduction

ICT is a fundamental component in monitoring and controlling critical infras-
tructures (CIs) such as electricity, railway and traffic systems. CIs are essential
in the proper functioning of our daily life and their security is extremely im-
portant. In fact, a security infringement may have severe adverse consequences
in terms of human being safety, service availability and business interests. In
the past, CIs were somewhat secure as they had limited connectivity. However,
the increased connectivity to the Internet and the corporate network, as well as

This work was carried out during the tenure of an ERCIM “Alain Bensoussan”
Fellowship Programme. The research leading to these results has received funding
from the European Union Seventh Framework Programme (FP7/2007-2013 ) under
grant agreement n◦ 246016.



the use of commodity hardware, off-the-shelf protocols and software components
make CIs no longer immune to cyber-security attacks.

In order to better understand the protection of CIs, it is important to analyze
the security risks of such systems and develop appropriate solutions to protect
them from malicious attacks. Unfortunately, addressing all the possible attacks
is not viable, either from a practical or from an economical viewpoint. It is thus
necessary to identify the attacks that have a more severe impact and focus on
them. A possible approach to achieve this goal is via simulation. Simulations are
important due to the fact that it is impractical to conduct security experiments
on a real system, because of the scale and the cost of implementing standalone
systems, as well as the potential risk of system downtime. On the other hand,
although well consolidated, an analytical approach based on system theory does
not provide a complete modeling of the ICT infrastructure [13].

In this paper, we present SEA++, a simulation tool aimed at quantitatively
evaluating the impact of security attacks against the ICT infrastructure of a CI.
We consider both cyber and physical attacks, where the former are addressed to
messages, whereas the latter are addressed to nodes composing the infrastruc-
ture. A distinctive feature of our tool is that it allows us to simulate the effects
of an attack by reproducing the events that the attack generates. This implies
that we do not need to implement or port an attack, with clear advantages in
terms of analysis time.

The tool is based on an off-the-shelf network simulator that we extend, but
not modify, by integrating components for the processing of attack events. Good
simulators are always the result of a large effort, and therefore any modification is
preferably avoided. In particular, we use the INET Framework, an open-source
model library for the OMNeT++ simulation environment, that contains net-
working models including those for the Internet stack, wired and wireless link
layer protocols, and mobility [1][2]. Finally, our tool is also flexible, in that it al-
lows us to describe attacks by means of a simple attack specification language. In
order to simulate the effects of an attack, it is sufficient to provide a description
of the events that it generates in that language.

The rest of the paper is organized as follows. In Section 2, we discuss related
works. In Section 3, we illustrate the main concepts behind the simulation tools,
briefly introduce the attack description language and sketch the simulator ar-
chitecture. In order to show the tool capabilities and potentialities, in Section 4
we discuss a case study based on attacks against a traffic light control system.
Finally in Section 5 we draw our conclusions.

2 Related work

A number of different approaches to attack impact analysis have been presented
so far. For instance, [10][12][15] discuss analytical models aimed at detecting and
contrasting attacks, and rely on simulation to validate their own correctness and
efficiency. In [3], Genge et al. presented AMICI, an assessment/analysis platform
for multiple interdependent critical infrastructues. AMICI relies on simulation



for the physical system components and an emulation testbed based on Emulab
to recreate cyber components [5].

Wang and Bagrodia proposed SenSec, a framework that simulates the oc-
currence of security attacks in Wireless Sensor Networks (WSNs) by injecting
events into real application simulators [14]. The framework NETA for simulation
of communication network attacks based on INET has been presented in [7]. It
relies on implementing attacker nodes, which can strike attacks when triggered
at runtime through dedicated control messages. In [4], Queiroz et al. present
SCADASim, a simulation tool to test the effect of attacks in SCADA systems.

Although it displays similarities with SenSec, NETA, and SCADASim, our
simulation framework results more flexible and easier to use. In fact, SEA++ as-
sumes that attacks have been successfully performed, and reproduces their ef-
fects on the network and application, rather than their actual performance. Also,
SEA++ does not require the user to implement or customize any component of
the simulation platform. This is particularly important for two reasons. First,
it allows us to use off-the-shelf simulators. Second, good simulators are always
the result of many man-years effort and therefore any modification is preferably
avoided. In [6], we have presented ASF++, a framework akin to SEA++ but
especially targeted to WSNs. A prototype implementation is available at [8]. In
contrast, SEA++ provides a simulation framework for a conventional networking
setting.

3 SEA++: Simulative Evalution of Attacks

The tool SEA++ is composed of the following three components. First, an At-
tack Specification Language (ASL) which allows the user to describe an attack
to be evaluated, in terms of their practical and final effects. Second, an Attack
Specification Interpreter (ASI) that converts the attack descriptions into configu-
ration files for the attack simulation. Finally, an Attack Simulator that simulates
the effects of specified attacks on the system under investigation, so making it
possible to quantitatively evaluate their impact on the network and application.

Practically, the user first describes the effects of attacks to be evaluated by
means of the high-level Attack Specification Language. Such descriptions can
possibly be stored for later reuse. After that, the user runs the Attack Specifica-
tion Interpreter, to convert the attack descriptions into an attack configuration
file, which is provided as input to the Attack Simulator. Finally, the user runs
the Attack Simulator and simulates the execution of the system affected by the
described attacks. Note that the user is not required to further implement or
customize any component of the Attack Simulator, with particular reference to
application and communication modules.

3.1 The Attack Specification Language

The high-level Attack Specification Language allows users to describe attacks to
be evaluated. It is worth noting that here we are not interested in how an attack



can actually be mounted and carried out. Such an issue attains to the feasibility
of the attack, i.e. the likelihood of a given threat to occur. Feasibility is the
other dimension of risk assessment and is not the focus of SEA++. Instead, we
are interested in evaluating the impact of successful attacks, i.e. their resulting
consequences on the system. Practically, we quantitatively evaluate the effects
of successful attacks. To fix ideas, let us consider a deception attack such as
message injection. Then, we are not interested in how the adversary can inject
fake messages in the system or in reproducing the actual message injection.
Instead, our goal consists in understanding and evaluating what are the final
effects of such messages on the network and application, once they have been
successfully injected.

From this standpoint, we assume that the successful execution of an attack
produces a sequence of events that takes place atomically. The ASL consists in
a collection of primitives that allow us to specify the sequence of events related
to a given attack. Primitives are organized into two sets, as described below.

i) Node primitives, that account for physical attacks performed against nodes,
and allow us to describe alterations in node behavior. In particular, the node
primitives are:

– destroy(nodeID, t) removes node nodeID from the network at time t, prevent-
ing it from taking part in further communication.

– move(nodeID, pos, t) moves node nodeID to position pos at time t.

ii) Message primitives, that account for cyber attacks, and allow us to describe
actions on network messages, including eavesdropping, altering, injection and
dropping. In particular, the message primitives are:

– drop(pkt) discards the packet pkt.
– create(pkt, fld, content, ...) creates a new packet pkt and fill its field fld

with content. A single invocation makes it possible to specify the content of
multiple fields.

– clone(srcPkt, dstPkt) clones packet srcPkt into packet dstPkt.
– change(pkt, fld, newContent) writes newContent into field fld of packet pkt.
– retrieve(pkt, fld, var) copies the content of the field fld of packet pkt into

variable var.
– put(pkt, dstNodes, TX | RX, delay) puts packet pkt either in the TX or RX

buffer of all nodes in the dstNodes list after a delay delay.

The ASL provides additional statements that allow us to specify the occur-
rence of a list of events described through message primitives. For instance, the
statement from T every P do {<list of events>} specifies that the list of
events takes place periodically, with period P, on the declared list of nodes since
time T.

Also, the ASL allows us to specify the conditional occurrence of events de-
scribed through message primitives, depending on specific conditions evaluated
by nodes at runtime. For instance, the following statements specify that the list



of events takes place on the declared list of nodes if condition is evaluated as
TRUE.

from T nodes = <list of nodes> do {

filter(<condition>) <list of events>

}

By means of the statements shown above, the ASL makes it possible to
describe even complex attacks in a concise although clear way. For instance, let
us consider a wormhole attack [11] starting at time 200 s, where node 9 tunnels
MAC packets sent by node 5 to a remote area of the network containing nodes
10, 11 and 15. The attack can be described as follows:

dstList={10,11,15};

from 200 nodes = "9" do {

filter(MAC.source==5 and MAC.type==DATA)

put(packet,dstList,RX,0);

}

Note that we have used the dot notation packet.layer.field, in order to specify
the field field of packet packet in the header of layer layer. It follows that the
user must be aware of the actual specific network protocols that are adopted
at each communication layer. Also, for each of them, the user must be aware
of the packet header structure and fields, and the specific capabilities possibly
offered by the simulation platform. For instance, the OMNeT++ platform [2]
and the INET framework [1] considered by SEA++ provide a set of objects,
namely descriptors, which allow us to handle packets of a given communication
layer and conveniently access their header fields.

3.2 The Attack Simulator

The Attack Simulator module considers every node as implemented by a En-
hanced Network Node module. The latter is in turn composed of an Application
module, a Communication Stack module, and a Local Event Processor (LEP)
module. The Application module may be composed of different sub-modules
modelling the actual node application. Similarly, the Communication Stack mod-
ule may include an arbitrarily complex combination of protocols for different
communication layers, e.g. transport, routing and MAC. All sub-modules but
LEP can be off-the-shelf.

The LEP module is responsible for the management of events related to
attacks, and operates transparently with respect to the other components of
the Enhanced Network Node module. In particular, the LEP module intercepts
all application and network packets traveling through a node’s communication
stack. Then, depending on the considered attacks to be evaluated, it can inspect
and alter packets’ content, inject new packets, or even discard intercepted ones.
Finally, the LEP module can also alter the node behavior at different layers,
change its position in space, or even neutralize the node by making it inactive.



Fig 1. The Attack Simulator architecture

A system composed of multiple nodes is simulated by instantiating an En-
hanced Network Node module for each node, and a single Global Event Processor
(GEP) module that connects all the Enhanced Network Node modules with one
another. In particular, the GEP module is separately connected with every LEP
module, so allowing them to synchronize and communicate with one another
in order to implement complex distributed attacks, such as a wormhole attack.
Fig 1 depicts the architecture of the Attack Simulator component, with reference
to a system composed of two interconnected nodes.

3.3 Prototype implementation for INET

We have implemented and released a prototype of SEA++. The Attack Specifi-
cation Interpreter and Attack Simulator components are available at [9]. With
reference to Fig 1, as to the Application and Communication Stack modules we
used INET [1], an off-the-shelf simulator for wired, wireless and mobile networks,
based on the discrete-event simulation platform OMNeT++ [2].

In the original INET architecture, network nodes are composed of different
sub-modules. Also, nodes comprise a full communication stack composed by a
transport, routing and MAC layer. INET provides the implementation of differ-
ent communication protocols for each of such layers, as well as different network
communication interfaces and physical channels. Thanks to the available com-
munication stack, application running on the nodes can send/receive packets
to/from the considered physical channel.

In our implementation of SEA++, we integrated the Local Event Processor
and the Global Event Processor within the INET simulator. In particular, the
Local Event Processor has been adapted to INET, in order to correctly manage
simulation events and network packets. With reference to Fig 1, the Local Event
Processor intercepts incoming and outgoing packets traveling through a node’s
Communication Stack, between every pair of layers.

4 Case study: a traffic light system

In this section, we consider a traffic light application scenario, and use SEA++
to evaluate the impact of two security attacks. In particular, we refer to the



T-intersection depicted in Fig 2, including a secondary one-way road that inter-
sects a main road. The vehicular traffic in the intersection is managed by means
of three traffic lights, i.e. TL1 and TL2 on the main road, and TL3 on the sec-
ondary road. We assume that a single Traffic Controller node periodically sends
control messages to the three traffic lights (every 2.5 seconds in our setting),
with the intent to adapt their behavior to the experienced vehicular traffic. Fur-
thermore, the three traffic lights periodically send a feeedback message to the
Traffic Controller (every 0.2 seconds in our setting), reporting about the actual
traffic light time experienced during the last time interval. So doing, the Traffic
Controller can check the correct behavior of traffic lights, and possibly adjust
them by means of additional control messages. We assume that the regular traf-
fic light timing has a period of 10 seconds, and is set as {5s; 1s; 4s}. That is, the
red light is on for 5 seconds, followed by the yellow light active for 1 second, after
which the green light is on for 4 seconds before concluding the period. This is
shown in the graph reported in Fig 2, where values 5, 0 and −5 stand for green
light on, yellow light on and red light on, respectively.

(a) Example of traffic flow

-15

-10

-5

 0

 5

 10

 15

 0  10  20  30  40  50  60  70  80  90

T
ra

ff
ic

 l
ig

h
t 

ti
m

in
g

Time (s)

TL3 behavior
TL1, TL2 behavior

(b) Regular traffic light timing

Fig 2. Traffic light scenario

Hereafter, we consider an adversary who has managed to compromise the
traffic light TL3, so being able to drop and alter feedback messages intended
to the Traffic Controller. Also, the considered adversary is able to perform a
number of attacks against the network. For instance, she can inject fake control
messages intended to TL3. Having said that, the final goal of the adversary
consists in altering the behavior of TL3, in order to create inconsistent traffic
light configurations, which can be dangerous or prone to traffic stalemate, when
both directions have red and green light, respectively. Besides, the adversary is
insterested in concealing the effects of performed attacks to the Traffic Controller.

4.1 Attack impact and ranking

In the following, we consider two distinct attacks. In the first attack, namely
Injection, the adversary regularly injects faked control messages intended to
the traffic light TL3, specifying a traffic light timing {2s; 2s; 2s}. Then, upon



receiving a fake control message, TL3 sets the traffic light period to 6 seconds,
and starts to observe a traffic light timing {2s; 2s; 2s}, i.e. 2 seconds are assigned
to each one of the red, yellow and green light. We refer to different injection
periods, i.e. different time intervals between two consecutive transmissions of
fake control messages. Note that, upon receiving a genuine control message from
the Traffic Controller, TL3 starts again the regular traffic light period of 10
seconds, according to the regular traffic light timing {5s; 1s; 4s}.

In the second attack, namely Bypass, TL3 ignores some genuine control mes-
sages received from the Traffic Controller. Specifically, TL3 may bypass some
control messages upon their reception, and instead set the traffic light period
to 6 seconds and start to observe a traffic light timing {2s; 2s; 2s}. That is, 2
seconds are assigned to each one of the red, yellow and green light. We refer to
different Bypass intervals, i.e. the number of control messages before the next
one to be bypassed. Note that, in case a control message is regularly accepted
and processed, TL3 starts again the regular traffic light period of 10 seconds,
according to the regular traffic light timing {5s; 1s; 4s}.

In both attacks, TL3 keeps on regularly sending feedback messages to the
Traffic Controller, although always specifying the expected regular traffic light
timing, i.e. {5s; 1s; 4s}. As a consequence, the Traffic Controller is not able to
recognize that the observed traffic light timing differs from the expected one.
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(a) Injection attack
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Fig 3. Traffic light timing under attack

Fig 3a and Fig 3b report the behavior of the traffic light system when the
Injection attack or the Bypass attack are performed. Specifically, Fig 3a considers
an Injection period of 1 s, whereas Fig 3b considers a Bypass interval of 2
messages. In both cases, the considered attack starts at time t = 30 s and is then
performed throughout the simulation experiment. The two lines in the graphs
depict the evolution of the traffic light configuration over time, separately for
the main and the secondary road. Besides, every overlap of the two lines denote
a misbehavior due to the considered attack, i.e. the occurrence of an undesired
configuration.

Table 1 sorts the considered attacks according to their severity. In particular,
attacks are sorted according to the amount of time that the system under attack
experiences in a misbehavior state (see column Incorrect). Results are expressed



Table 1. Attack ranking
Incorrect GG GY YY RR Correct

Bypass (all messages) 51% 14% 17% 3% 17% 49%

Injection (Period 0.5 s) 41% 11% 14% 3% 13% 59%

Injection (Period 1 s) 36% 9% 12% 3% 12% 64%

Injection (Period 1.5 s) 35% 9% 9% 3% 14% 65%

Bypass (every 2 messages) 24% 8% 8% 0% 8% 76%

Bypass (every 3 messages) 9% 1% 6% 0% 2% 91%

as the percentage of time when the system observes a given traffic light config-
uration, while being under attack. In particular, the column Incorrect refers to
all possible undesired configurations observed on the main and secondary road,
i.e. Green-Green (GG), Green-Yellow (GY), Yellow-Yellow (YY) and Red-Red
(RR). Separate results for each undesired configurations are reported in the rel-
ative dedicated columns. Finally, the Correct column refers to all possible licit
configurations, i.e. Red-Green and Red-Yellow. We considered Injection periods
0.5 s, 1 s and 1.5 s for the Injection attack, and Bypass intervals 1, 2 and 3
messages for the Bypass attack.

As reported in Table 1, bypassing all control messages from the traffic con-
troller results to be the most effective attack against the traffic light system.
This suggests that this attack, especially when mounted at its maximum extent,
is the one which deserves more to be addressed and counteracted. The Injection
attack follows right after. In particular, as expected, the shorter the injection
period, the more the attack is effective. Similarly, the Bypass attack is more
effective when larger Bypass intervals are considered.

5 Conclusions

We have presented SEA++, a tool for simulative evaluation of attack impact
based on the INET framework and the OMNeT++ platform. SEA++ allows
the user to describe cyber-physical attacks and quantitatively evaluate their
effects on the network and application. SEA++ does not require the user to
modify any component of the simulation platform. As a case-study, we have
showed the use of SEA++ to evaluate the impact of two different attacks on a
traffic light management application scenario. In future work, we will integrate
additional off-the-shelf simulators (e.g., Castalia, Simulink) to apply SEA++
to more complex systems such as smart grids and industrial plants. Finally, we
intend to introduce the node primitive disable which complements destroy

and disables every application activity of a node.
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