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As location-based services emerge, many people feel exposed to high privacy threats. Privacy protection
is a major challenge for such services and related applications. A simple approach is perturbation, which
adds an artificial noise to positions and returns an obfuscated measurement to the requester. Our main
finding is that, unless the noise is chosen properly, these methods do not withstand attacks based on sta-
tistical analysis. In this paper, we propose UNILO, an obfuscation operator which offers high assurances on
obfuscation uniformity, even in case of imprecise location measurement. We also deal with service dif-
ferentiation by proposing three UNILO-based obfuscation algorithms that offer multiple contemporaneous
levels of privacy. Finally, we experimentally prove the superiority of the proposed algorithms compared
to the state-of-the-art solutions, both in terms of utility and resistance against inference attacks.

� 2015 Published by Elsevier B.V.
1. Introduction

Recent years have seen the widespread diffusion of cheap local-
ization technologies. The most known is GPS, but there are many
other examples, like cellular positioning and ultra-wide band
positioning. [1–3]. The emergence of such technologies has
brought to the development of location-based services (LBS) [4–6],
which rely on the knowledge of location of people or things. The
retrieval of people’s location raises several privacy concerns, as it
is personal, often sensitive, information. The indiscriminate disclo-
sure of such data could have highly negative effects, from unde-
sired location-based advertising to personal safety attempts.

A classic approach to the problem is to introduce strict access-
control policies in the system [7,8]. This approach has a main
drawback: if the entity does not need complete (or exact) informa-
tion, granting the access to it is a useless exposure of personal data.
The ‘‘permit-or-deny’’ outcome of access control is often too rigid.

Samarati and Sweeney [9,10] proposed the concept of k-anon-
ymity: a system offers a k-anonymity to a user if his identity is
undistinguishable from at least k� 1 other users. k-anonymity
concepts have been applied to location privacy [11–13] by obfus-
cating the user’s position in such a way to confuse it with the posi-
tions of other k� 1 users. Location k-anonymity offers high levels
of privacy, because it protects the user’s identity. However, since
k-anonymity does not permit the identification of the user, it is
not applicable in services in which the user authenticates, e.g. pay-
able services or location-based social networks. In addition, they
require the presence of k� 1 users in the proximity, that could
be missing, and a central anonymizer, that could not be fully
trusted by the users.

A different and promising approach is data obfuscation [14,15].
The aim is not to reach anonymity, but rather to artificially reduce
the precision of location data before disclosing it. In this way, the
service can still be delivered, but an adversary cannot infer other
sensitive information. We focus on obfuscation through noise per-
turbation [16,17]. An underrated problem in the literature is how
to choose a suitable noise to effectively perturb data. We found
that, if noise is not chosen properly, perturbation will not resist
to attacks based on statistical inference. In particular, an obfusca-
tion operator must offer a spacial uniformity of probability. Such
a requirement is often postulated, rather than fulfilled, by state-
of-the-art perturbation methods.

We propose UNILO, a location obfuscation operator able to guar-
antee uniformity even in the presence of imprecise location mea-
surements. UNILO does not require a centralized and trusted
obfuscator. We deal with service differentiation by proposing and
comparing three UNILO-based obfuscation algorithms offering mul-
tiple contemporaneous levels of privacy. Finally, we experimen-
tally prove that UNILO outperforms state-of-the-art perturbation
algorithms both in terms of utility and resistance against inference
attacks. This paper extends our previous work [18] with multiple
levels of privacy and an in-depth analysis of the utility and the
resistance against inference attacks. All the simulations scripts of
the present paper can be downloaded from [19].
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The rest of the paper is organized as follows. Section 2 analyzes
some related works and the differences with UNILO techniques.
Section 3 introduces some basic concepts concerning the system
model and the terminology. Section 4 formally describes the
agnostic adversary model, the concept of uniformity, and a way
to quantify it. Section 5 presents the basic UNILO operator and
show its properties in terms of uniformity. Section 6 presents the
problem of offering multiple levels of privacy and three algorithms
to adapt UNILO in this sense. Section 7 evaluates UNILO algorithms
in terms of utility on an example location-based service. Section 8
evaluates UNILO algorithms in terms of resistance against inference
attacks. Finally, the paper is concluded in Section 9.

2. Related works

Approaches for location privacy can be roughly divided in iden-
tity protection and data protection. Identity protection avoids the re-
identification of anonymous users. Data protection avoids the dis-
closure of precise locations.

2.1. Identity-protection approaches

Gruteser and Grunwald [11] first applied k-anonymity approach
in location-based services. The proposed solution involves the
subdivision of the map in quadrants with different granularities.
The user does not release his precise position, but a quadrant of
the grid containing other k� 1 users, in such a way his identity
is confused with theirs. The k-anonymity approach is broadly used
in many research works [12,13,20–22]. However, these methods
require the presence of k� 1 users in the proximity, that could
be missing, and a central anonymizer, that could not be fully
trusted by the users. In addition, they do not permit the identifica-
tion of the user, so that they are not applicable in those cases in
which the user authenticates himself, e.g. payable services or loca-
tion-based social networks. Our approach aims at protecting the
position, rather than the identity, and it is suitable also for authen-
ticated users.

Xu and Caie [23] and Abul et al. [24] approach the problem
of trajectory k-anonymity, offering methods to protect user’s pri-
vacy in continuous tracking systems. Although it could be
extended in that sense, the present work focuses on single-posi-
tion queries, as they encompass a wide range of location-based
applications.

A problem complementary to anonymity is pseudonym unlinka-
bility in tracking systems, usually approached with the technique
of mix zones [25–27]. Mix zones are areas of the map where users
cannot be tracked and change their pseudonym. By carefully plac-
ing and dimensioning such mix zones it is possible to thwart the
adversary from linking two consecutive pseudonyms of the same
user.

2.2. Data-protection approaches

Location obfuscation aims at reducing the precision of location
data before disclosing it. This can be done by adding noise [14]
(noise-based obfuscation) as well as with other methods, for exam-
ple by replacing the exact position with a quadrant of a grid [15].
Research on this topic has focused mainly on what kind of service
can be delivered with imprecise positions [15,28–30]. The problem
of generating such imprecise positions in a proper way is often
underrated. In particular, the uniformity of the noise-based obfus-
cation is often postulated, rather than evaluated. As a result, the
proposed solutions turn out to be poorly resistant against inference
attacks. In this paper we focus entirely on noise-based obfuscation,
so from now on we will omit the ‘‘noise-based’’ specification as
implicit.
Ardagna et al. [14] proposed a set of obfuscation operators that
perturb the location: radius enlargement, radius restriction, center
shift. These operators transform a measurement area into an
obfuscated one. Our approach guarantees both more private and
more useful obfuscated areas. More private because UNILO noise
significantly increases the uniformity of the resultant privacy
areas. More useful because we always guarantee that the privacy
areas contain the user’s position. A service provider can thus rely
on more powerful assumptions and offer more quality of service.
In addition, in [14] the resistance against attacks relies on the fact
that the adversary is unaware of the privacy preference of the user.
This could be an optimistic assumption, which features a form of
‘‘security by obscurity’’ that should be avoided [31].

Krumm [16] surveyed many different obfuscation methods and
applied them to real-life GPS traces. The objective was to prevent
an attacker from inferring users’ home positions. Krumm tried also
a noise-based method, which involved noise with a Gaussian mag-
nitude. He found that this method requires a high quantity of noise
(r ¼ 5 km) in order to effectively prevent inference attacks. Our
approach offers higher levels of uniformity, and reduces the
amount of noise needed to resist to inference attacks.

Dürr et al. [17] proposed an obfuscation approach with multiple
levels of privacy. They build different ‘‘shares’’ which are random
vectors concatenated to the user’s position. They store the shares
in different servers to avoid a single point of trust. Each service
provider reconstructs the position by ‘‘fusing’’ one or more shares
from one or more servers. The privacy level is proportional to the
number of shares the service provider is allowed to access. The
authors generate the shares as random vectors having uniform
magnitude. Our obfuscation operators guarantee more resistance
against inference attacks.

Inspired by differential privacy [32], Andrés et al. [33] intro-
duced the concept of �-geo-indistinguishability. The idea is that
the user obtains more privacy in the surroundings of his true posi-
tion, and less farther. To achieve this, they perturb the true posi-
tion with a 2-dimensional extension of the Laplacian noise. Such
a noise is highly non-uniform. As a consequence, geo-indistin-
guishability offers far less resistance to inference attacks compared
to UNILO.

Other notable obfuscation-based approaches are [28–30]. All
these works postulate uniformity rather than providing for it. In
contrast, our approach offers guarantees on the obfuscation uni-
formity, even in presence of imprecise location measurements.

Another research track [34–38] applies private information
retrieval (PIR) techniques to protect user’s location. The objective
is to provide a location-based service without disclosing the user’s
location at all. While PIR approaches offer strong and provable
security, they are quite resource-demanding at the server side.
Actually, they require complex, computational intensive crypto-
graphic operations or the employment of trusted hardware archi-
tectures. In contrast obfuscation techniques only provide for
statistical guarantees in terms of privacy, but they are more afford-
able for the service provider.
3. System model

In our system, a user is someone whose location is measured by
a sensor. A service provider is an entity that receives the user’s loca-
tion in order to provide for a location-based service. The user applies
an obfuscation operator to location information prior to releasing it
to the service provider. The obfuscation operator purposefully
reduces the precision to guarantee a certain privacy level. Such a
precision is defined by the user and reflects his requirements in
terms of privacy. The more privacy the user requires, the less pre-
cision the obfuscation operator returns.



Fig. 1. Measurement area.

Fig. 2. Obfuscation and shift vector.
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A location measurement is affected by an intrinsic error that
limits its precision. Such an error depends on several factors
including the localization technology, the quality of the sensor,
the environment conditions. If the measurement error is small
compared to the obfuscation, as it happens in professional GPS
receivers, it can be approximated to zero. Otherwise, as it happens
in cheap GPS receivers mounted on smartphones, or in Wi-Fi and
cellular positioning, we cannot neglect it. This implies that the
location cannot be expressed as a geographical point but rather
as a neighborhood of it. We assume that locations are always
represented as planar circular areas, because it is a good approx-
imation for many location techniques [14,39,40]. We will use the
notation A ¼ hC; ri to mean that A is a circle with center C and
radius r. A measurement area (Fig. 1) is defined as follows:

Definition 1 (Measurement area). Let X be the actual position of
the user. A measurement area is a circle A0 ¼ hX0; r0i, such that
X 2 A0 (Accuracy Property). We call X0 the measured position and
r0 the error radius.

The Accuracy Property guarantees that the measurement area
contains the user, or, equivalently, that the distance XX0 does not
exceed the error radius. We assume that the error radius is con-
stant over time. This means either that the precision does not
change over time, or that we consider the worst-case precision.

A user specifies his privacy preference in terms of a privacy
radius r1 > r0, meaning that he wishes to be located with a preci-
sion not better than r1. The privacy radius is quite an easy metric
to be understood by the users. This improves the overall usability
of the obfuscation system. The task of an obfuscation operator is
to produce a privacy area A1 with radius r1, appearing to the provi-
der as a measurement area with a lower precision.

Definition 2 (Privacy area). Let X be the actual position of the
user. A privacy area is a circle A1 ¼ hX1; r1i with r1 > r0, such that
X 2 A1 (Accuracy Property). We call X1 the obfuscated position and
r1 the privacy radius.
Definition 3 (Obfuscation operator). Let A0 be a measurement area,
and r1 > r0 a privacy radius. An obfuscation operator obfð�Þ trans-
forms A0 into a privacy area A1:

A1 ¼ obf A0ð Þ ð1Þ

With reference to Fig. 2, in order to produce a privacy area, the
obfuscation operator applies both an enlargement and a transla-
tion of the measurement area. The enlargement aims at decreasing
the precision and thus achieving the desired privacy radius. The
translation is made through a randomly selected shift vector d1,
i.e., X0 þ d1 ¼ X1. The obfuscator has to keep the shift vector secret.

The enlargement and translation operations must be such that,
when composed, the resulting privacy area satisfies the Accuracy
Property. We state the following:

Proposition 1. A privacy area A1 fulfills the Accuracy Property iff:
d1k k 6 r1 � r0ð Þ ð2Þ
Proof. The proof stems directly from geometrical considerations
(cfr. Fig. 2). h
4. Agnostic adversary and uniformity index

For the scope of the present paper, every service provider
receiving an obfuscated position is a potential adversary. We
assume the adversary knows the privacy area and the error radius.
She aims at discovering the actual user’s position. Since it cannot
be known with infinite precision, the result of the attack will have
a probabilistic nature. From now on, we will use the notation f ajb to
refer to the conditional probability density function of the random
variable a given the information b.

Three pieces of information could help the adversary: (1) the
employed localization technology; (2) the employed obfuscation
operator; (3) other auxiliary information. They are modeled by
three probability densities in R2:

1. The error density f XjA0
(Fig. 3a), which describes the actual posi-

tion given a measurement of it. We have no control over this
density. Our obfuscation operators are supposed to be unaware
of it. As a consequence, they are flexible enough to be applicable
with every kind of density (i.e. with every kind of measurement
technology), as long as it is bounded by the error radius. On the
contrary, the adversary is supposed to know the error density.
For example she should assume it is Gaussian, as it is usually
done in GPS measurements [41].

2. The obfuscation density f X0 jA1
(Fig. 3b), which describes the mea-

sured position given an obfuscated version of it. We can control
this density, and this is our main weapon against the adversary.
The adversary can compute this density by analyzing the obfus-
cation operator, which is considered to be publicly known. She
starts from the inverse density f A1 jX0

, which describes the possi-
ble output of the obfuscation operator, and then applies
Bayesian inference. In noise-based obfuscation, f A1 jX0

depends
on the density of d1, while f X0 jA1

depends on the density of �d1.
3. The auxiliary information density f Xjauxinfo (Fig. 3c), which

describes the position given a set of auxiliary information.
Examples of auxiliary information are the street map where
the users are moving, the average distribution of the users in
a given city at a given hour, the average daily behavior of a par-
ticular user, etc. We have no control over this density and it is
hard to make hypotheses on it. The adversary could have much
or little information.

Dealing with auxiliary information is a recurring problem in
privacy topics [9,32]. The adversary could use it in several ways.



Fig. 3. Adversarial information.
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A simple attack consists in cutting away the zones of the privacy
area where the user cannot be, basing on a public street map. In
this way, the adversary restricts the effective privacy area of the
user. A common approach [42,43] involves enlarging the privacy
radius to ‘‘compensate’’ the area loss. However, this comes at a
price on data utility. Depending on the street map, the privacy
radius could become much larger, and this could make it useless
for the aim of providing the service. In this paper we preferred
not to do that, and let the user free of choosing his final privacy
radius. In practice, we provide an assurance on the radius, rather
than on the area. We believe that a radius (e.g. being cloaked
within 500 m) is a more understandable and usable privacy metric

than an area (e.g. being cloaked inside 1 km2, irregularly shaped on
a street map).

We cannot suppose how much auxiliary information the adver-
sary knows, and we cannot make the adversary ‘‘forget’’ it.
Therefore, our true aim is to give her no additional information
other than the simple one: ‘‘X is inside A1.’’ We model such a
requirement with the concept of ideal obfuscation:

Definition 4 (Ideal obfuscation).

f Xjauxinfo;A1
x; yð Þ ¼ f Xjauxinfo;X2A1

x; yð Þ ð3Þ

An obfuscator which performs ideal obfuscation is an ideal
obfuscator. Note that ‘‘given A1’’ in the left term of Eq. (3) differs
from ‘‘given X 2 A1’’ in the right term. The former means that the
adversary knows the privacy area generated by the obfuscation
operator. The latter means that the adversary knows that the user
is inside an area A1, not necessarily generated by an obfuscation
operator. Intuitively, in order Eq. (3) to hold, the obfuscation opera-
tor should produce a privacy area in such a way that the actual
position is uniformly distributed inside it. We state the following:
Definition 5 (Uniformity Property). A privacy area A1 fulfills the
Uniformity Property iff f XjA1

x; yð Þ is uniform over A1. An obfuscator
fulfills the Uniformity Property iff all the produced privacy areas
fulfill the Uniformity Property.
Theorem 1. An obfuscator which offers Uniformity Property is ideal.
Proof. From the definition of conditional probability, we have
that:

f Xjauxinfo;X2A1
¼

f XjauxinfoRR
A1

f Xjauxinfodxdy
in A1

0 outside

8<
: ð4Þ

On the other hand, if Uniformity Property holds:
f XjA1
¼

1
sizeðA1Þ

in A1

0 outside

(
ð5Þ

Combining (5) with the auxiliary information:

f Xjauxinfo;A1
¼

f Xjauxinfo � f XjA1RR
R2 f Xjauxinfo � f XjA1

dxdy

¼
f XjauxinfoRR

A1
f Xjauxinfo dxdy

in A1

0 outside

8<
: ¼ f Xjauxinfo;X2A1

ð6Þ

Theorem 1 tells us that Uniformity Property is important
regardless of the auxiliary information the adversary has, because
it gives her no additional one. h

No obfuscation system can provide uniformity against an
adversary holding some auxiliary information. This is because the
adversary will have a non-uniform f Xjauxinfo, which is an a priori
probability density of the user’s position. In order to study the uni-
formity of a generic obfuscation operator, we suppose an adversary
who ignores any auxiliary information, i.e. whose f Xjauxinfo is uniform
over the whole world map. We will call such an adversary the
agnostic adversary. The agnostic adversary is purely theoretic,
however: (a) it permits us to study the uniformity of obfuscation
operators; and (b) if an obfuscation operator enjoys Uniformity
Property against the agnostic adversary, it also gives no additional
information to a real adversary (it is ideal).

4.1. Uniformity index

We use the agnostic adversary to measure the uniformity of a
generic obfuscation method. Basing on the error density and the
obfuscation density, the agnostic adversary computes the pdf
f XjA1

x; yð Þ of the user’s position. After that, she defines a confidence

goal c 2 0;1ð � and computes the smallest area Âc # A1 which con-
tains the user with a probability c. We call this area the smallest
c-confidence area.

Definition 6 (Smallest c-confidence area).

Âc ¼ arg min
A2Ac

sizeðAÞf g ð7Þ

where:

Ac ¼ AjA � R2; P X 2 AjA1f g ¼ c
� �

ð8Þ

P X 2 AjA1f g ¼
ZZ

A
f XjA1

x; yð Þdxdy ð9Þ

The smallest c-confidence area is the adversary’s most precise
estimation of the actual position, and it will cover the zones where
f XjA1

x; yð Þ is more concentrated. The adversary can find it by means



Fig. 4. u and l pdf’s of a UNILO vector.
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of a Monte Carlo approach. First, she synthesizes many ‘‘measure-
ment-plus-obfuscation’’ operations, finding many tuples with the
form:

hactual pos:;measured pos:;obfuscated pos:i

Then, she selects only those tuples whose obfuscated position
matches with the one she wants to deobfuscate. The actual posi-
tions of the selected tuples follows f XjA1

x; yð Þ. Finally, the adversary
determines the smallest c-confidence area by connecting the zones

having highest concentrations. The smaller Âc , the more precisely
the adversary locates the user. A good obfuscation operator should

keep Âc as larger as possible. This is done by making the obfuscation
as uniform as possible. The best case occurs when the Uniformity
Property is fulfilled, and the obfuscator is ideal. Unfortunately, it
is impossible to provide for Uniformity Property in the general case.
As an example, think about a measurement with a Gaussian error
density, followed by a small obfuscation (r1 � r0). Independently
of which noise the obfuscator adds, the final pdf will be dominated
by the Gaussian component, thus it will be strongly non-uniform.
Depending on the error density, every obfuscation will produce
some ‘‘irregularities,’’ over which the pdf is not perfectly uniform.
Thus, we developed a way to quantify the uniformity of an
obfuscation.

Another way to state the Uniformity Property is the following:

Proposition 2. A privacy area A1 fulfills the Uniformity Property iff:

8A # A1; P X 2 AjA1f g ¼ sizeðAÞ
sizeðA1Þ

ð10Þ

That is, each region of the privacy area contains the user with a
probability proportional to its size. In such a case:

sizeðÂcÞ ¼ c � sizeðA1Þ ð11Þ
Otherwise:

sizeðÂcÞ 6 c � sizeðA1Þ ð12Þ

The uniformity can be quantified by means of Eq. (12), by mea-

suring how much, for a given c; sizeðÂcÞ gets close to c � sizeðA1Þ. We
define the following uniformity index by fixing c ¼ 90%:

Definition 7 (Uniformity index).

unif A1ð Þ ¼
sizeðÂ90%Þ

90% � sizeðA1Þ
ð13Þ

The uniformity index ranges from 0% (worst case), if the user’s posi-
tion is perfectly predictable, to 100% (best case), if the user’s posi-
tion is perfectly uniform. A uniformity index of 100% is necessary
and sufficient for the Uniformity Property.

Uniformity index is proportional to the lack of precision of the
attack. For example, if a privacy area of 400 m2 has a uniformity
index of 80%, the agnostic adversary cannot find his position (with
90% confidence) with more precision than 80% � 90% � 400 ¼
288 m2. Note that the uniformity index is not our privacy metric,
but rather an estimator of the obfuscation resistance. Our true
privacy metric is still the privacy radius, which is chosen by the
user as a preference.

4.2. Time-correlation of user’s position

An adversary could use past and present privacy areas in order
to infer the current position. For example, she could take two pri-
vacy areas generated very close in time and locate the user inside
their intersection, supposing that he has not moved too much in
the meanwhile. Another possibility is to do the same with two
privacy areas generated at times when the user visits a recurring
place (e.g. his home at 8:00 and at 18:00). All these attacks are
based on the fact that positions at different instants are similar
or strictly correlated (time-correlation attacks). This problem is
orthogonal to the one of providing uniformity within the single pri-
vacy area, and can be addressed separately. The simplest way to
counteract time-correlation attacks is to provide for reuse policies,
i.e. algorithms to reuse past privacy areas in certain cases. For
example, the obfuscator could reuse the same privacy area in case
of two queries close in time and space, or in case of queries from a
recurring place. In this way we avoid the possibility of intersec-
tions. The reuse policies should be tailored and evaluated depend-
ing on the kind of user: his average query frequency, his daily
mobility model, etc. Some simulators can help in doing this [44].
Though these aspects are interesting, we did not investigate them
in the present paper. We focused on developing a set of high-resis-
tant obfuscation operators that are flexible enough to be extended
with reuse policies. The operators we present are ready to be
deployed if the queries can be assumed to be uncorrelated (e.g.
randomly walking users making sporadic queries), and they should
be integrated with reuse policies otherwise.

5. UNILO obfuscation operator

UNILO (Uniform Location Obfuscation) [18] adds to the mea-
sured position a shift vector d1 ¼ l cos u;l sin uð Þ, where l is
the magnitude and u is the angle. l and u have the following
probability densities (Fig. 4):

f U uð Þ ¼
1

2p u 2 0;2p½ Þ
0 otherwise

(
ð14Þ

f M lð Þ ¼ 2l=ðr1 � r0Þ2 l 2 0; r1 � r0½ �
0 otherwise

(
ð15Þ

These densities produce shift vectors with magnitude less than or
equal to r1 � r0, and a perfectly uniform spacial probability density.
This produces a good level of uniformity of f XjA1

. However, remind
that f XjA1

also depends on the error density, over which we have
no control. So f XjA1

will not be perfectly uniform in the general case.
UNILO fulfills the following properties:

� Accuracy Property. The privacy area always contains the user
(Theorem 2).
� High uniformity index. UNILO outperforms all the other noise

shapes used in the literature in terms of uniformity index, for
all values of r1=r0.
� Uniformity Property as r0 ! 0. With highly precise sensors,

UNILO tends to be an ideal obfuscator (Theorem 3).
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Theorem 2. UNILO fulfills Accuracy Property.
Proof. By construction, d1k k 6 r1 � r0. Hence, from Prop. 1,
Accuracy holds. h
Theorem 3. As r0 ! 0, UNILO fulfills Uniformity Property.
Proof. If r0 ! 0, A0 will narrow to a point, with X � X0, and the
probability density of the magnitude in Eq. (15) will become:

f MðlÞ ¼
2l=r2

1 l 2 0; r1½ �
0 otherwise

(
ð16Þ

To show the Uniformity, we have to pass from the polar repre-
sentation to the Cartesian representation. So we have to transform
the densities f MðlÞ, f UðuÞ to the joint density f X;Yðx; yÞ. In order to
perform this variable change, we equal the areas of the rectangle
spaced by dx and dy, and of the annulus sector spaced by dl and
du:

dxdy ¼ ðlþ dlÞ2 � l2

2
du ¼ l � dldu ð17Þ

Then, we equal the probabilities inside them:

f X;Y ðx; yÞdxdy ¼ f MðlÞdl � f UðuÞdu ð18Þ

¼ 2l=r2
1dl � 1

2p du l 	 r1

0 otherwise

(
ð19Þ

From Eqs. (17) and (19), we have:

f X;Yðx; yÞ ¼
1

r2
1p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
	 r1

0 otherwise

(
ð20Þ

which is spatially uniform in A1. h

We will use the following notation:

d1 ¼ UniLOðr1; r0Þ

to say that d1 is a shift vector created by the UNILO operator with
privacy radius r1 and precision radius r0. UNILO operator will be
our basic block to build more complex obfuscators.

We evaluated the uniformity index of UNILO on simulated loca-
tion measurements. The error on the location measurements was
assumed to follow a Gaussian distribution, as it is usually done
in GPS [41]. We truncated the distribution at r0 ¼ 3r, so that no
sample falls outside the measurement area. Such a truncated
Gaussian distribution differs from the untruncated one for only
1% of samples. The tests aim at evaluating the uniformity of
UNILO with respect to the ratio r1=r0 (radius ratio).

Fig. 5 shows the statistical distribution of X in A1 for different
values of the radius ratio. We note that the distribution tends to
be perfectly uniform as r1=r0 !1. The inner areas are the smallest
90%-confidence areas.

We compared UNILO with other state-of-the-art obfuscation
noises1:

� Gaussian noise, used for modeling 2-dimensional measurement
errors.
1 In case of unbounded noises (e.g. Gaussian), we fulfilled Accuracy Property by
truncating their magnitude at ðr1 � r0Þ. To make meaningful comparisons, we tailored
the parameters in such a way to truncate always 1% of the samples. Namely, we
tailored r ¼ ðr1 � r0Þ=3 for Gaussian noise, r ¼ ðr1 � r0Þ=2:6 for Krumm’s noise [16],
and � ¼ 6:5=ðr1 � r0Þ for Andrés’ noise [33].
� Krumm’s noise, used by Krumm to perturb GPS data [16].
Krumm’s noise has a uniformly distributed angle and a magni-
tude drawn from a Gaussian distribution.
� Andrés’ noise, used by Andrés et al. [33]. This noise is a 2-dimen-

sional extension of the Laplacian noise, and it is used to achieve
geo-indistinguishability. Refer to [33] for further information.
� Dürr’s noise, used by Dürr et al. in their ‘‘a posteriori share

generation algorithm’’ [17]. This is the simplest 2-dimensional
noise: it has a uniformly distributed angle and a uniformly dis-
tributed magnitude. We compare UNILO with this because it is
the obfuscation method most similar to ours.
� Ardagna’s noise, used by Ardagna et al. in their location obfus-

cation operators [14]. These are a set of obfuscation operators
that reduce/enlarge/shift the measurement area to produce
the privacy area. The user expresses his privacy preference in
terms of final relevance, which is assumed to be unknown by
the adversary. With ‘‘Ardagna’s noise’’ we refer here to the
cumulative effect of (a) the random selection of the final rele-
vance, (b) the random selection of the obfuscation operator,
and (c) the random selection of the shift angle. These obfusca-
tion operators do not guarantee the Accuracy Property, and
the user could be outside the privacy area. Refer to [14] for fur-
ther information.

Fig. 6 shows the uniformity indexes of the noises. We can see that
UNILO outperforms all the other noises for all the radius ratii. In
the average case, Ardagna’s noise is particularly easy to predict,
because it has not been designed to thwart statistical attacks. On
the other hand, it enjoys quite a high uniformity for very small pri-
vacy radii (r1 < 2r0). However, such an improved uniformity is
obtained at the cost of violating the Accuracy Property, and thus
possibly degrading the utility of the service. Krumm’s and
Gaussian noises are not so good at obfuscating. We believe this is
the reason why Krumm needed a surprisingly high quantity of noise
(r ¼ 5 km) to effectively withstand inference attacks [16]. Andrés’
noise for geo-indistinguishability is quite predictable too.
6. Multiple levels of privacy

A user may require different privacy radii for different services.
He can require high levels of privacy for some services, for instance
a friend-finder service, and small levels of privacy for others, for
instance safety-related services. In general, an obfuscator must offer
a user a set of N possible privacy radii, and must create a set of N ran-
dom shift vectors, one for each privacy radius. The error radius of
the sensor can be considered as the minimum privacy radius. In
other words, the smallest privacy area is the measurement itself.

Let q ¼ r0; r1; r2; . . . ; rNf g, with r0 < r1 < r2 < � � � < rN , be the pri-
vacy radius set, i.e. the set of the privacy radii provided by the
obfuscator. Then:

� di : i ¼ 1;2; . . . ;Nf g ¼ d is the shift vector set,
� Xi ¼ X0 þ di : i ¼ 1;2; . . . ;Nf g is the center set,
� Ai ¼ hXi; rii : i ¼ 1;2; . . . ;Nf g is the privacy area set.

We will refer to ri�1 and riþ1 as, respectively, the previous and
the successive privacy radii of ri. The same convention holds for

shift vectors and privacy areas. We will use the notation Âc
i to refer

to the smallest c-confidence area found by an agnostic adversary
able to access to the i-th privacy level.

6.1. On collusion attack

A subtle attack is possible when two or more service providers
collude. Let us suppose that a service provider knowing A1 colludes



Fig. 5. UNILO spatial distribution (2000 Monte Carlo runs).

Fig. 6. unif A1 wrt the radius ratio (500 K Monte Carlo runs for each point).
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with a service provider knowing A2. If the shift vectors are not cho-
sen wisely, the adversaries can intersect A1 and A2 (Fig. 7) to find a
smaller area containing the user. To avoid this possibility, an obfus-
cator should force each privacy area to enclose all the smaller ones.
We state the following:

Definition 8 (Inclusion Property). A privacy area Ai (i P 2) fulfills
the Inclusion Property iff Ai�1 � Ai. An obfuscator fulfills the
Inclusion Property iff all the produced privacy areas fulfill the
Inclusion Property.

With Inclusion Property, we assure that a group of adversaries
(even unlimited in number) has not more power than the most
powerful of them, i.e. the one accessing to the smallest privacy
area.
Fig. 7. Collusion attack.
If a privacy area must enclose the previous one, the distance
between the centers must not be larger than the radii difference.
Formally:

Proposition 3. A privacy area Ai (i P 2) fulfills the Inclusion Property
iff:

di � di�1k k 6 ri � ri�1ð Þ ð21Þ

It is worth to stress that the Inclusion Property is not manda-
tory. In particular, it can be released if both the system prevents
service providers from accessing different privacy levels, and dif-
ferent service providers do not collude. The Inclusion Property low-
ers the uniformity index of the privacy areas.
6.2. UNILO for multiple levels of privacy

We will now adapt the basic UNILO operator for offering a set
q of N shift vectors. The simpler solution is to apply N times
UNILO, obtaining N shift vectors independent of each other.
Formally:

di ¼ UniLOðri; r0Þ 8i

We will refer to this solution as Independent Vectors UNILO (IV-
UNILO). Fig. 8 shows an example with q ¼ fr0; r1 ¼ 4r0; r2 ¼ 16r0g.

IV-UNILO trivially fulfills the Accuracy Property for all the pri-
vacy areas. It also offers a good level of uniformity, especially for
large privacy radii (ri 
 r0). Fig. 8 shows that A2 does not enclose
A1. Thus, IV-UNILO does not fulfill the Inclusion Property and does
not defend against collusion.
6.3. VC-UNILO: Vector Chain UNILO

The idea of VC-UNILO is to fulfill Inclusion by assuring that the
distance between X1 and X2 never goes beyond ðr2 � r1Þ. To do this,
we create d2 as the sum of d1 and an incremental vector d1;2, which
is a random vector with maximum magnitude ðr2 � r1Þ. The incre-
mental vector represents in fact the distance between X1 and X2.
The same procedure is repeated for d3 � � �dN . In this way, we fulfill
both Accuracy and Inclusion, as stated by the following two
Theorems:

Theorem 4. VC-UNILO fulfills the Accuracy Property for all the privacy
areas.
Proof. We prove this by induction. From Theorem 2, A1 fulfills
Accuracy. If Accuracy holds for Ai�1, then di�1k k 	 ri�1 � r0ð Þ. By
construction di�1;i

�� �� 	 ðri � ri�1Þ. It follows that:



Fig. 8. IV-UNILO example. Fig. 9. VC-UNILO example.
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dik k 	 di�1k k þ di�1;i

�� �� 	 ri�1 � r0ð Þ þ ri � ri�1ð Þ ¼ ri � r0ð Þ

Hence, from Prop. 1, Accuracy Property holds for all privacy areas. h
Theorem 5. VC-UNILO fulfills the Inclusion Property for all the privacy
areas.
Fig. 10. p-Partitionability regions.
Proof. We consider the generic privacy area Ai. By construction,
di � di�1k k ¼ di�1;i

�� �� 	 ri � ri�1ð Þ. Hence, from Prop. 3, Inclusion
Property holds for all privacy areas. h

For di�1;i we choose vectors created by UNILO operator:

di�1;i ¼ UniLOðri; ri�1Þ

This is the simplest choice and still offers a good level of uniformity
for Ai. To sum up, VC-UNILO algorithm creates the shift vectors with
the following formula:

di ¼
UniLOðr1; r0Þ i ¼ 1
di�1 þ UniLOðri; ri�1Þ i > 1

�

The i-th shift vector is created by concatenating vectors, hence the
name Vector Chain. Fig. 9 shows an example with q ¼ fr0; r1 ¼ 4r0;

r2 ¼ 16r0g.
VC-UNILO defends against collusion but offers a lower unifor-

mity index than IV-UNILO. The problem is that dik k (i > 1) has a
low probability of being large. In fact, di is the sum of two vectors
(di�1 and di�1;i) and its magnitude gets close to the maximum (ri)
only if the vectors are aligned on the same direction and both have
high magnitudes. This is a very rare event. In the majority of cases,
di will have a small magnitude. So the user will be near the center
with greater probability than near the borders. This limits the uni-
formity of the resultant privacy area Ai.

Forcing di�1;i to have the same direction as di�1 is not a viable
strategy, because it would make the centers Xi, Xi�1 and X0 aligned.
Therefore, an adversary knowing Ai�1 and Ai would automatically
have a preferred direction where to find A0. In general, di�1;i should
be independent of the value of di�1.

6.4. DVC-UNILO: Discrete Vector Chain UNILO

The idea of DVC-UNILO is to improve the uniformity index of
VC-UNILO by changing the way the incremental vectors are built.
We will first introduce the p-Partitionability Property, which is a
weaker form of Uniformity, and then present DVC-UNILO, which
offers such a property.

Ensuring the Uniformity Property is a hard problem, since it
states that all the possible regions of the privacy area contain the
user with a probability proportional to their size. A weaker
requirement is to ensure this for at least some regions. We define
p-Partitionability Property, which states that at least p regions,
which partition the whole privacy area, have such a property.
Formally:

Definition 9 (p-Partitionability Property). A privacy area Ai fulfills
the p-Partitionability Property iff the partition of equally-spaced
concentric annuli PðAiÞ ¼ fa0; . . . ;ap�1g (Fig. 10) divides Ai in such
a way that:

8j; P X 2 ajjAi
� �

¼ sizeðajÞ
sizeðAiÞ

ð22Þ

DVC-UNILO fulfills the p-Partitionability of Ai by leveraging on
the Accuracy of Ai�1. With reference to Fig. 10, suppose that A1 con-
tains X and the magnitude of d1;2 is equal to 5r1. Then, we can be
sure that X is inside the annulus a2. If we generate such a magni-
tude with probability 5/9, then X will be inside a2 with the same
probability, which is proportional to the size of a2. We can repeat
the same reasoning for the other annuli a0 and a1. The magnitude
l of the vector d1;2 becomes a discrete random variable having the
probability mass function (pmf) shown in Fig. 11. In this way, A2 ful-
fills 3-Partitionability Property. Obviously this method is possible
only if 2ri�1 divides exactly ri.

By generalizing the formula we obtain the following pmf for the
magnitude of di�1;i:

pMðlÞ ¼
ð8jþ 4Þ r2

i�1
r2

i
l ¼ ð2jþ 1Þri�1

0 otherwise

8<
: where j ¼ 0 . . . p� 1; p ¼ ri

2ri�1

ð23Þ

The pmf is depicted in Fig. 12. We call discrete UNILO vector a shift
vector with such a magnitude and a uniform angle. We will use
the following notation:



Fig. 11. l pmf of a discrete UNILO vector (example of Fig. 10).

Fig. 12. l pmf of a discrete UNILO vector.
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di�1;i ¼ D-UniLOðri; ri�1Þ

to say that di�1;i is a vector created by the discrete UNILO operator
with privacy radius ri and precedent privacy radius ri�1.

If 2ri�1 does not divide ri, DVC-UNILO will behave like VC-
UNILO. The general formula for creating shift vectors is the
following:

di ¼
UniLOðr1; r0Þ i ¼ 1
di�1 þ D-UniLOðri; ri�1Þ i > 1; ri ¼ 2pri�1

di�1 þ UniLOðri; ri�1Þ otherwise

8><
>: where p 2 N

It is trivial to show that DVC-UNILO fulfills Accuracy and Inclusion
Properties for all the privacy areas, like VC-UNILO does. In addition,
we state the following:

Theorem 6. For each privacy area Ai having i � 2 and ri ¼ 2pri�1,
DVC-UNILO fulfills p-Partitionability Property.
Proof. In the following, l ¼ di�1;i

�� ��, and lj ¼ ð2jþ 1Þri�1. Let us

compute the probability P X 2 aj
� �

.

P X 2 aj
� �

¼ ð24Þ

¼ P l ¼ lj

n o
� P X 2 ajjl ¼ lj

n o
þ ð25Þ

þ P l – lj

n o
� P X 2 ajjl – lj

n o
ð26Þ

If Ai�1 enjoys Accuracy Property and l ¼ lj, then the user will surely

be in annulus aj. Thus, P X 2 ajjl ¼ lj

n o
¼ 1. On the other hand,

P X 2 ajjl – lj

n o
¼ 0 for the same reason. Hence:

P X 2 aj
� �

¼ P l ¼ lj

n o
ð27Þ

¼ ð8jþ 4Þ r
2
i�1

r2
i

ð28Þ

¼ sizeðajÞ
sizeðAiÞ

ð29Þ

The proof is complete. h

DVC-UNILO is an improvement of VC-UNILO. It fulfills the
Inclusion Property and offers a better uniformity.
6.5. Uniformity analysis

We performed Monte Carlo simulations to compute the unifor-
mity indexes of the privacy areas produced by IV-UNILO, VC-UNILO
and DVC-UNILO under different conditions. We also compared
them with ‘‘a posteriori share generation algorithm’’ by Dürr et al.
[17] which offers multiple levels of privacy with a perturbation
approach. Dürr used a noise uniform in angle and uniform in mag-
nitude to obfuscate user’s positions. Actually, Dürr’s algorithm
dealt only with location measurements with infinite precision
(r0 ¼ 0). To make meaningful comparisons, we adapted it to deal
with finite-precision localization technologies. This is easily done
by creating shift vectors with maximum magnitude equal to
r1 � r0, as UNILO-based algorithms do. We simulated a localization
technology with r0 ¼ ð1=10Þr1. Tests showed that our algorithms
outperform Dürr’s ones in terms of uniformity.

Fig. 13a shows the uniformity index of the second-level privacy
area wrt r2=r1, with a precise localization technology. Note that
IV-UNILO gets closer to the optimum than all the other methods.
DVC-UNILO improves the performance of VC-UNILO when r2=r1 is
not too large. Dürr’s algorithm performs always worse than
UNILO-based algorithms.

The performance of DVC-UNILO remains high at higher levels of
privacy. Fig. 13b shows the uniformity indexes of A1–A6 with
ri ¼ 2ri�1 (i > 1). The tests revealed that all the four methods
approach constant values at higher privacy levels: 28:8% for
Dürr’s algorithm, 39:2% for VC-UNILO, 70:4% for DVC-UNILO, and
100:0% for IV-UNILO. The asymptotic value of the uniformity index
unif A1ð Þ depends only on the algorithm employed and on the
radius ratio ri=ri�1. Fig. 13c shows unif A1ð Þ wrt the radius ratio.
We can easily see that UNILO-based algorithms outperforms
Dürr’s obfuscation algorithm.

To sum up, in order to guarantee an optimal level of uniformity,
the privacy radius set must be configured wisely. In particular, it is
always better to set the first privacy radius far greater than the
error radius of the sensor (r1 
 r0). In addition, if we want to
defend against collusion attacks, it is better to use DVC-UNILO
and set each privacy radius to be the double or quadruple of the
previous one. In this way, we have both a good granularity on
the privacy radii, and a good uniformity index, which tends to
70–84% (with collusion resistance) or 100:0% (without collusion
resistance) with the growing of i.

7. Utility analysis on an example application

We will describe now an example social application, called
‘‘close friends’’, in which users share their obfuscated positions
with their friends. Alice wants to find out which of her friends
are in her proximity. We define ‘‘being in the proximity of Alice’’
as ‘‘being at a distance of 400 m or less from Alice’’. The service
provider gathers the obfuscated positions of Alice’s friends and
sends them to Alice. While Alice knows her own position, the loca-
tions of her friends are obfuscated. Suppose Bob is one of Alice’s
friends. Since Alice does not know his exact location, the question
‘‘is Bob in my proximity?’’ will necessarily have a probabilistic
answer.

The problem can be modeled as depicted in Fig. 14. Alice builds
a circle centered on its position and with 400 m of radius (proxi-
mity area, PAlice), and computes the intersection between that area
and the privacy area of Bob (A1). If Bob is inside this intersection, he
will be in Alice’s proximity. The probability that such an event hap-
pens is:

P Bob 2 PAlicef g ¼
ZZ

PAlice\A1

f X;Y x; yð Þdxdy ð30Þ



Fig. 13. Uniformity index (500 K Monte Carlo runs for each point).

Fig. 14. ‘‘Close friends’’ application.
Fig. 15. Uncertainty of ‘‘close friends’’ service (1000 Monte Carlo runs for each
point).
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To make such a calculus, Alice should perform a statistical analysis
of Bob’s position and then compute numerically the integral. This
operation is quite inefficient. However, if A1 is assumed to be
Uniform and Accurate, Eq. (30) will simplify in:

P Bob 2 PAlicef g � sizeðPAlice \ A1Þ
sizeðA1Þ

ð31Þ

Alice performs this calculus only for each friend whose X1 is nearer
than r1 þ 400 m. The others have no intersection, and thus 0%
probability.

We evaluated the utility of the presented obfuscation operators
in our example ‘‘close friends’’ application. Our utility metric is the
mean uncertainty in the service’s answer. We define the uncer-
tainty as the absolute difference between the computed proximity
probability and the true answer, i.e. 1 if the friend is close, 0 other-
wise. More formally, if PAlice is the proximity area of Alice and Ai is
the privacy area of Bob:

uncertðAiÞ ¼
sizeðPAlice \ AiÞ

sizeðAiÞ
� proxðBobÞ

����
���� ð32Þ

proxðBobÞ ¼
1 if Bob is in the proximity
0 otherwise

�
ð33Þ

Low values of uncertainty mean that the computed answers are
close to the true answers. In the simulations, Bob’s position is
taken in Alice’s proximity with 50% probability. Locations are mea-
sured with r0 ¼ 10 m, and the privacy radii follow a geometric pro-
gression q ¼ 100 m;200 m;400 m; . . .f g. Fig. 15 shows the mean
uncertainty of Alice using the ‘‘close friends’’ service, versus the
privacy preferences of her friends. We can see that the uncertainty
depends mainly on the size of the privacy area, and only marginally
on the obfuscation operator. For i > 5, corresponding to a privacy
radius r5 ¼ 1:6 km, the obfuscated positions lose their utility in
determining the proximity. This suggests that for this kind of ser-
vice, i 2 ½0;5� is a suitable range of privacy preferences.

Together with the utility, it is interesting to measure the error
that Alice makes in considering the privacy areas as uniform when
they are not. Many privacy-aware services [14,28] postulates the
uniformity, rather than providing it. In practice, they use an
approximate calculus (Eq. (31)) instead of an exact one (Eq. (30)).
The impact of such an approximation can be quite high, if the
obfuscation does not provide for Uniformity and Accuracy
Properties. We evaluated this by measuring the mean service error,
i.e. the mean absolute difference between the probability com-
puted with and without the approximation. More formally:

errorðAiÞ ¼
sizeðPAlice \ AiÞ

sizeðAiÞ
� P Bob 2 PAlicef g

����
���� ð34Þ

Low values of service error mean that the computed proximity
probabilities are close to the real ones. We compared UNILO algo-
rithms with other noises, namely Dürr’s ‘‘a-posteriori share genera-
tion algorithm’’ [17], Krumm’s noise [16], and Ardagna’s
obfuscation operators [14]. Fig. 16 shows the results of the sim-
ulations. We can see that the service’s mean error depends mainly
on the uniformity of the obfuscation noise. IV-UNILO and DVC-
UNILO perform near to the optimum of 0% error, as they are highly
uniform and they respect Accuracy Property. On the contrary,
Ardagna’s obfuscation performs particularly bad, because it respects
neither Uniformity nor Accuracy.
8. Resistance against inference adversary

In previous sections we used the concept of agnostic adversary
to measure the uniformity of an obfuscation operator. Now we
introduce a realistic adversary, which owns auxiliary information



Fig. 16. Error of ‘‘close friends’’ service (1000 Monte Carlo runs for each point).

Fig. 17. Success of inference attack (1000 Monte Carlo runs for each point).
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(the map), and we show that a better uniformity improves the
resistance against such a threat.

The inference adversary tries to infer sensitive information from
the user’s position and other auxiliary information. Let us suppose
that there is a ‘‘sensitive point’’ on the map, in the sense that the
proximity to that point can allow the adversary to infer sensitive
information about the user. An example of that could be a hospital
for the cancer treatment. If Bob sends his position from inside or
from the close proximity of the hospital, the adversary could easily
infer his health condition. Such an adversary could be the ‘‘close
friends’’ service provider, or Alice herself. Let us suppose that
Bob actually is in the hospital, and that the adversary knows his
privacy area. The adversary performs a statistical analysis of
Bob’s position, knowing the localization technology and the obfus-
cation operator employed. Then she uses her auxiliary information
by excluding those zones that cannot contain users (inside walls,
rivers, etc.). The result of this analysis is a probability distribution
over the map. Finally, the adversary computes the probability that
Bob is in the hospital close proximity, say, inside a proximity area
Phospital of 200 meters of radius (cfr. Fig. 14). If such a probability is
50% or more, the adversary successfully infers the health condition
of Bob.

We evaluated the success probability of the inference adversary
on a real map of Pisa city center, extracted from public
OpenStreetMap data [45]. Fig. 17 shows the probability that the
adversary has in guessing the health condition of Bob wrt his
privacy radius. We can see that UNILO algorithms offer perfect
protection even for small privacy radii (400 meters for IV-UNILO
and DVC-UNILO). Ardagna et al.’s obfuscation offers no protection
against inference attacks.

9. Conclusion

We proposed UNILO, a location obfuscation operator able to
guarantee uniformity even in the presence of imprecise location
measurements. UNILO does not require a centralized and trusted
obfuscator. We dealt with service differentiation by proposing
and comparing three UNILO-based obfuscation algorithms offering
multiple contemporaneous levels of privacy. Finally, we experi-
mentally proved that UNILO outperforms state-of-the-art per-
turbation algorithms both in terms of utility and resistance
against inference attacks.

Acknowledgments

This work has been supported by EU FP7 Integrated Project
PLANET (Grant No. FP7-257649), and by Italian Research Project
TENACE (Pr. No. 20103P34XC_008).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.comcom.2015.02.
014.

References

[1] F. Gustafsson, F. Gunnarsson, Mobile positioning using wireless networks, IEEE
Signal Process. Mag. 22 (4) (2005) 41–53.

[2] M. Anisetti, C.A. Ardagna, V. Bellandi, E. Damiani, S. Reale, Map-based location
and tracking in multipath outdoor mobile networks, IEEE Trans. Wireless
Commun. 10 (3) (2011) 814–824.

[3] G. Sun, J. Chen, W. Guo, K.R. Liu, Signal processing techniques in network-aided
positioning, IEEE Signal Process. Mag. 22 (4) (2005) 12–23.

[4] L. Barkuus, A. Dey, Location-based services for mobile telephony: a study of
users privacy concerns, in: Proceedings of INTERACT’03, IOS, 2003, pp. 709–
712.

[5] T. D’Roza, G. Bilchev, An overview of location-based services, BT Technol. J. 21
(1) (2003) 20–27.

[6] F. Espinoza, P. Persson, A. Sandin, H. Nyström, E. Cacciatore, M. Bylund,
GeoNotes: social and navigational aspects of location-based information
systems, Tech. Rep. T2001/08, Swedish Institute of Computer Science (SICS),
2001.

[7] S. Duri, M. Gruteser, X. Liu, P. Moskowitz, R. Perez, M. Singh, J.-M. Tang,
Framework for security and privacy in automotive telematics, in: Proceedings
of WMC’02, ACM, 2002, pp. 25–32.

[8] G. Myles, A. Friday, N. Davies, Preserving privacy in environments with
location-based applications, IEEE Pervasive Comput. 2 (1) (2003) 56–64.

[9] P. Samarati, L. Sweeney, Protecting privacy when disclosing information: k-
anonymity and its enforcement through generalization and suppression, Tech.
rep., Computer Science Laboratory SRI International, 1998.

[10] P. Samarati, Protecting respondents identities in microdata release, IEEE Trans.
Knowl. Data Eng. 13 (6) (2001) 1010–1027.

[11] M. Gruteser, D. Grunwald, Anonymous usage of location-based services
through spatial and temporal cloaking, in: Proceedings of MobiSys’03, ACM,
2003, pp. 31–42.

[12] P. Kalnis, G. Ghinita, K. Mouratidis, D. Papadias, Preventing location-based
identity inference in anonymous spatial queries, IEEE Trans. Knowl. Data Eng.
19 (12) (2007) 1719–1733.

[13] B. Gedik, L. Liu, Protecting location privacy with personalized k-anonymity:
architecture and algorithms, IEEE Trans. Mob. Comput. 7 (1) (2008) 1–18.

[14] C.A. Ardagna, M. Cremonini, S. De Capitani di Vimercati, P. Samarati, An
obfuscation-based approach for protecting location privacy, IEEE Trans.
Dependable Secure Comput. 8 (1) (2011) 13–27.

[15] S. Mascetti, C. Bettini, D. Freni, X.S. Wang, S. Jajodia, Privacy-aware proximity
based services, in: Proceedings of MDM’09, IEEE, 2009, pp. 31–40.

[16] J. Krumm, A survey of computational location privacy, Pers. Ubiquit. Comput.
13 (6) (2009) 391–399.

[17] F. Dürr, P. Skvortsov, K. Rothermel, Position sharing for location privacy in non-
trusted systems, in: Proceedings of PerCom’11, IEEE, 2011, pp. 189–196.

[18] G. Dini, P. Perazzo, Uniform obfuscation for location privacy, in: Proceedings of
DBSec’12, Springer, 2012, pp. 90–105.

[19] Matlab simulation scripts for UniLO. <www.iet.unipi.it/g.dini/download/code/
UNILO-simulations.zip>.

[20] M.F. Mokbel, C.-Y. Chow, W.G. Aref, The new Casper: query processing for
location services without compromising privacy, in: Proceedings of VLDB’06,
ACM, 2006, pp. 763–774.

[21] T. Wang, L. Liu, Privacy-aware mobile services over road networks, in:
Proceedings of VLDB’09, VLDB Endowment, 2009, pp. 1042–1053.

[22] G. Ghinita, K. Zhao, D. Papadias, P. Kalnis, A reciprocal framework for spatial k-
anonymity, Inf. Syst. 35 (3) (2010) 299–314.

[23] T. Xu, Y. Cai, Exploring historical location data for anonymity preservation in
location-based services, in: Proceedings of INFOCOM’08, IEEE, 2008, pp. 547–
555.

http://dx.doi.org/10.1016/j.comcom.2015.02.014
http://dx.doi.org/10.1016/j.comcom.2015.02.014
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0005
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0005
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0010
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0010
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0010
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0015
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0015
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0020
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0020
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0020
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0020
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0025
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0025
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0035
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0035
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0035
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0035
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0040
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0040
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0050
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0050
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0055
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0055
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0055
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0055
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0060
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0060
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0060
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0065
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0065
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0070
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0070
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0070
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0075
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0075
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0075
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0080
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0080
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0085
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0085
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0085
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0090
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0090
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0090
http://www.iet.unipi.it/g.dini/download/code/UNILO-simulations.zip
http://www.iet.unipi.it/g.dini/download/code/UNILO-simulations.zip
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0100
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0100
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0100
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0100
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0110
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0110
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0115
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0115
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0115
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0115


32 P. Perazzo, G. Dini / Computer Communications 64 (2015) 21–32
[24] O. Abul, F. Bonchi, M. Nanni, Never walk alone: uncertainty for anonymity in
moving objects databases, in: Proceedings of ICDE’08, IEEE, 2008, pp. 376–385.

[25] A.R. Beresford, F. Stajano, Location privacy in pervasive computing, IEEE
Pervasive Comput. 2 (1) (2003) 46–55.

[26] J. Freudiger, R. Shokri, J.-P. Hubaux, On the optimal placement of mix zones, in:
Proceedings of PETS’09, Springer, 2009, pp. 216–234.

[27] B. Palanisamy, L. Liu, MobiMix: protecting location privacy with mix-zones
over road networks, in: Proceedings of ICDE’11, IEEE, 2011, pp. 494–505.

[28] R. Cheng, Y. Zhang, E. Bertino, S. Prabhakar, Preserving user location privacy in
mobile data management infrastructures, in: Proceedings of PETS’06, Springer,
2006, pp. 393–412.

[29] M.L. Yiu, C.S. Jensen, X. Huang, H. Lu, SpaceTwist: managing the trade-offs
among location privacy, query performance, and query accuracy in mobile
services, in: Proceedings of ICDE’08, IEEE, 2008, pp. 366–375.

[30] M. Duckham, L. Kulik, A formal model of obfuscation and negotiation for
location privacy, in: Proceedings of the Pervasive’05, Springer, 2005, pp. 152–
170.

[31] B. Schneier, Secrecy, security, and obscurity, 2002. <www.schneier.com/
crypto-gram-0205.html>.

[32] C. Dwork, Differential privacy, in: Proceedings of ICALP’06, Springer, 2006, pp.
1–12.

[33] M.E. Andrés, N.E. Bordenabe, K. Chatzikokolakis, C. Palamidessi, Geo-
indistinguishability: differential privacy for location-based systems, in:
Proceedings of SIGSAC’13, ACM, 2013, pp. 901–914.

[34] G. Ghinita, P. Kalnis, A. Khoshgozaran, C. Shahabi, K.-L. Tan, Private queries in
location based services: anonymizers are not necessary, in: Proceedings of the
2008 ACM SIGMOD International Conference on Management of Data, ACM,
2008, pp. 121–132.
[35] R. Paulet, M.G. Koasar, X. Yi, E. Bertino, Privacy-preserving and content-
protecting location based queries, in: 2012 IEEE 28th International Conference
on Data Engineering (ICDE), IEEE, 2012, pp. 44–53.

[36] H. Hu, J. Xu, Q. Chen, Z. Yang, Authenticating location-based services without
compromising location privacy, in: Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, ACM, 2012, pp. 301–312.

[37] S. Papadopoulos, S. Bakiras, D. Papadias, Nearest neighbor search with strong
location privacy, Proc. VLDB Endowment 3 (1–2) (2010) 619–629.

[38] A. Khoshgozaran, C. Shahabi, H. Shirani-Mehr, Location privacy: going beyond
K-anonymity, cloaking and anonymizers, Knowl. Inf. Syst. 26 (3) (2011) 435–
465.

[39] P.A. Zandbergen, Accuracy of iPhone locations: a comparison of assisted GPS,
WiFi and cellular positioning, Trans. GIS 13 (s1) (2009) 5–26.

[40] A. Pal, Localization algorithms in wireless sensor networks: current
approaches and future challenges, Netw. Protocols Algorithms 2 (1) (2010)
45–74.

[41] B. Hofmann-Wellenhof, H. Lichtenegger, J. Collins, Global Positioning System:
Theory and Practice, Springer, 2001.

[42] C.A. Ardagna, M. Cremonini, G. Gianini, Landscape-aware location-privacy
protection in location-based services, J. Syst. Architect. 55 (4) (2009) 243–254.

[43] P. Skvortsov, F. Dürr, K. Rothermel, Map-aware position sharing for location
privacy in non-trusted systems, in: Proceedings of Pervasive’12, Springer,
2012, pp. 388–405.

[44] F. Giurlanda, P. Perazzo, G. Dini, HUMsim: a privacy-oriented human mobility
simulator, in: Proceedings of S-CUBE’14, 2014.

[45] OpenStreetMap. <www.openstreetmap.org>.

http://refhub.elsevier.com/S0140-3664(15)00094-8/h0120
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0120
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0120
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0125
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0125
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0130
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0130
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0130
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0135
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0135
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0135
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0140
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0140
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0140
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0140
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0145
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0145
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0145
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0145
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0150
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0150
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0150
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0150
http://www.schneier.com/crypto-gram-0205.html
http://www.schneier.com/crypto-gram-0205.html
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0160
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0160
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0160
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0165
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0165
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0165
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0165
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0170
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0170
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0170
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0170
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0170
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0175
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0175
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0175
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0175
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0180
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0180
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0180
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0180
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0185
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0185
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0190
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0190
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0190
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0195
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0195
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0200
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0200
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0200
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0205
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0205
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0205
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0210
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0210
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0215
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0215
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0215
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0215
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0220
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0220
http://refhub.elsevier.com/S0140-3664(15)00094-8/h0220
http://www.openstreetmap.org

	A uniformity-based approach to location privacy
	1 Introduction
	2 Related works
	2.1 Identity-protection approaches
	2.2 Data-protection approaches

	3 System model
	4 Agnostic adversary and uniformity index
	4.1 Uniformity index
	4.2 Time-correlation of user’s position

	5 UniLO obfuscation operator
	6 Multiple levels of privacy
	6.1 On collusion attack
	6.2 UniLO for multiple levels of privacy
	6.3 VC-UniLO: Vector Chain UniLO
	6.4 DVC-UniLO: Discrete Vector Chain UniLO
	6.5 Uniformity analysis

	7 Utility analysis on an example application
	8 Resistance against inference adversary
	9 Conclusion
	Acknowledgments
	Appendix A Supplementary data
	References


