
Integration of Privacy Protection Mechanisms
in Location-Based Services

Gianluca Dini, Pericle Perazzo
Dept. of Information Engineering

University of Pisa
Pisa, Italy

Email: [name.surname]@iet.unipi.it

Abstract—In the next few years, we will see the upcom-
ing of location-based services. Such LBSs will be extremely
heterogeneous. Protecting the privacy of the users in such
a situation requires flexible approaches. A single privacy
protection mechanism is often insufficient. The contribution of
this paper is two-fold. First we present LbSprint, a middleware
architecture for location-based services which integrates dif-
ferent privacy mechanisms by means of the standard XACML
language. The system administrator can configure and extend
the set of such mechanisms. To the best of our knowledge,
this is the first proposal of an architecture which integrates
many privacy mechanisms in an extensible way. Secondly, we
present practical optimizations which considerably improves
the performance of the XACML policy evaluation process.

Keywords-privacy; location-based services; integration; mid-
dleware;

I. INTRODUCTION

Due to the proliferation of tracking technologies, like
GPS, the interest in location-based services (LBSs) is grow-
ing fast. Nowadays, a plethora of technologies are capable of
localizing people: palm GPS, RFID, video cameras, and so
on. Recent studies [1] showed that users feel that the privacy
risks of using LBSs still outweigh the benefits. Therefore,
in order to be accepted by users, LBSs must be trusted on
the standpoint of privacy [2], [3]. Protecting privacy in an
LBS is not an easy task. Privacy policies need be flexible,
integrated, customizable and context-aware [1], [4], [5], [6].
Current solutions [1], [6], [7], [8], [9], [10] focus on access
control approach, i.e. the system decides which information
will be released and which not, basing on some authorization
rules. Such rules are context-aware, meaning that they take
into account the current date and time, the location of the
user, and the situation of the user or the system itself (e.g.
the presence of alarms in a particular building, etc.). Though
access control is essential, the “permit-or-deny” logic behind
it forces the users to choose from having the service or
having the privacy. Recent years have seen the emergence of
more flexible mechanisms [11], [12], [13], [14], [15]. Many
applications prefer anonymization approaches, in which the
identity of the user is detached from the information. Many
others prefer obfuscation approaches, in which the system
artificially degrades the precision of information before

releasing it. In this way, users can tailor their own trade-
off between privacy and quality of service.

However, this may not be enough. For many services,
a single mechanism is not sufficient to meet the privacy
requirements, which can be instead fulfilled only by a proper
integration of different protection mechanisms. Think about
a simple find-the-nearest-restaurant service. The user gives
her position to a service provider in order to get the name of
the nearest restaurant which meets some requirements. How
can we protect the privacy of the user? Her identity is un-
necessary, so the location information could be anonymized.
Also, the service provider does not need the exact position,
so an obfuscation algorithm could be applied.

The contribution of this paper is two-fold. First, we
present LbSprint (Location-Based Service PRivacy IN-
Tegrator), a middleware layer for privacy protection in
location-based services. LbSprint supports multiple privacy-
protection mechanisms, allows system administrators to de-
fine new ones, and allows users to setup flexible and context-
aware privacy policies. LbSprint implements these features
by means of the XACML language capabilities [16]. Sec-
ondly, we present optimizations that considerably improves
the performance of the XACML policy evaluation. These
contributions apply to LBSs as well as on privacy-protection
architectures in general.

The rest of the paper is organized as follows. Section II
presents some related works, and underlines similarities
with and differences from LbSprint. Section III explains
the system requirements and presents a typical use case.
Section IV includes a detailed description of the system
architecture and the privacy protection module. Section V
analyzes the performance of the system and describes some
optimizations to improve it. Finally, we draw our conclu-
sions in Section VI.

II. RELATED WORKS

To the best of our knowledge, the problem of privacy
mechanism integration in LBSs has not yet been addressed
by research or industry.

Commercial LBSs have a poor support for privacy protec-
tion. See [1] for a complete survey. The most known exam-



ples are maybe Foursquare [8], Loopt [10] and Google’s
Latitude [9]. Recent facts suggest that they will move
towards a better protection of users’ privacy, especially after
the diffusion of so-called “stalker apps” [17].

Yahoo!’s Fire Eagle [7] has been one of the first commer-
cial LBS platforms posing particular attention to location
privacy. Users are capable of specifying relatively complex
privacy policies in terms of who can access their locations
and when. It gives also support for obfuscation. Locations
can be specified with several degrees of granularity (exact
position, ZIP code, neighborhood, city, etc.). However, it
does not offer the possibility to integrate different privacy
protection mechanisms and to define new ones.

Locaccino [6] is a privacy-centric application for location
sharing, based on the Facebook platform. Its features came
from some surveys the authors did to investigate privacy
preferences of people. Users can create simple policies
specifying who, when and where can see their location.
Locaccino is focused on access control, and gives to the
users the option to permit or deny the access to their location.
It poses little focus on integration between privacy mecha-
nisms. The authors chose not to include any obfuscation
mechanism, because surveys [5] showed that people do not
use it to protect their privacy. However, the obfuscation
method investigated in such surveys was quite an inflexible
one. It gave the user the possibility to release either her
exact position, or the position with city-level granularity. In
LbSprint, we take into account more flexible obfuscation
methods, that offer finer granularities. These methods are
suitable for a plethora of location-based services, as we will
show in Section III.

From the research world, one of the first privacy-centric
tracking systems has been LocServ [18]. In LocServ,
location-based applications make their location requests and
specify the privacy policies they will adopt in using such
information. The users provide for location data and specify
their own privacy preferences, represented by components
called validators. Before releasing information to an appli-
cation, LocServ asks the correspondent validator whether
the policy of the application is compatible with the user’s
preferences. A validator, during its decisional process, can
consult the user or other (possibly external) subordinate
validators.

A related problem is the reliable communication of pri-
vacy policies [19]. Geopriv is a standard developed by IETF,
aimed at the representation and transmission of location
data [20]. The basic idea is that the privacy policies and the
location data are encapsulated in a unique entity, the location
object. So they are always transmitted together. The integrity
of the location object is guaranteed by a digital signature. If
Alice wants to share her position, she will define a privacy
policy, which specifies how her location must be used and
distributed. Each user able to read Alice’s position is himself
aware of the rules stated by Alice. Geopriv does not really

forbid other users to share Alice’s information. It just ensures
that, if someone breaks a rule, he cannot claim he was
unaware of it. LbSprint focuses on the orthogonal problem of
privacy mechanism configurability and extensibility. Geopriv
mechanisms are utilizable in LbSprint as well.

III. THE CASE FOR INTEGRATION OF PRIVACY
PROTECTION MECHANISMS

The following is a use-case story which illustrates several
location-based services in an example scenario: an airport.
Each service needs a customized mix of privacy protection
mechanisms.

John has to take a flight together with his little
son, Tim. They reach the airport and they get to
the check-in area. Before leaving his luggage, John
subscribes to the track-my-luggage service. Such
a service tracks the position of John’s baggage
for security purposes. See [21] for an example of
this. John is informed about it whenever he wants
through his smartphone.

Once they checked-in, John and Tim want
to have lunch. John prefers vegetarian food but
he does not have time for searching a vegetar-
ian restaurant. So, he uses the find-the-nearest-
restaurant service, which finds the nearest vegetar-
ian restaurant. After lunch, Tim wants to visit a toy
shop he saw before. John lets him go, but he wants
to track him position, because he does not want
him to get too far. To do this, John uses the track-
a-child service. After a while, John realizes that
the boarding time is soon. He quickly reaches Tim,
because he knows his position, and they easily get
to the gate.

For all the story time, John and Tim had used
several other location-based services. For example
the track-for-safety service, which tracks John and
Tim’s positions in order to help rescuers in case
of fire, and the find-my-friends service, a social
service that informs John about the proximity of
friends.

Also, the track-the-employees service is active
on the airport. Such a service allows an operator to
track the position of the personnel for management
purposes.

Each of the above services requires a different mix of
mechanisms for the protection of the privacy. Track-my-
luggage needs only authorization, since only John is allowed
to know the location of his baggage. Permitting anyone else
could be harmful for the security (e.g. luggage stealing).
Find-the-nearest-restaurant does not need to know the exact
position or the identity of John. Thus, John’s position is
obfuscated and John’s identity anonymized. The service
provider is allowed to receive such a position, other entities
are not. Track-a-child requires authorization, as only John is



Figure 1. LbSprint architecture

Service type: Authorized receivers: Anonymized: Obfuscated:
Track-my-luggage the owner – –
Find-the-nearest-restaurant the service provider yes yes
Track-a-child the parents – –

Track-for-safety the safety operators – –context: fire alarm on
Find-my-friends the service provider – optional

Track-the-employees the personnel manager – yescontext: working hours

Table I
SUMMARY OF THE PRIVACY POLICIES IN USE-CASE STORY

permitted to access the location of his son. However, a parent
wants to know its children’s position very precisely. So
no obfuscation method is applied. Track-for-safety requires
authorization, because only rescuers can access passengers’
locations, but no anonymization neither obfuscation, as
they could hinder the emergency operations. However, the
passengers’ locations can be accessed only in a particular
context, i.e. in case of a fire alarm. Find-my-friends needs
to know John’s identity and those of his friends, but does not
need their exact positions. Thus, John can decide whether to
obfuscate or not his own position. The service provider (i.e.
the social network platform) is allowed to receive such a
position, other entities are not. Finally, track-the-employees
needs authorization, as only the personnel manager can
access employees’ positions and only during the working
hours, and obfuscation. The current time and the presence
of alarms are examples of context attributes. Table I sum-
marizes the privacy mechanisms applied for each service.
The “authorized receivers” column lists who is allowed
to receive location information. The “anonymization” and
“obfuscation” columns tells us whether the locations will be
respectively anonymized and obfuscated.

It follows that an effective location-based service mid-
dleware must support different mechanisms for privacy
protection as well as different ways of integrating them.

IV. ARCHITECTURE AND IMPLEMENTATION

LbSprint follows a centralized architecture, as shown in
Figure 1. Every location receiver first authenticates to Lb-

Figure 2. LbSprint human-machine interface

Sprint, and then asks for and receives location notifications.
All communications are secure in terms of confidentiality,
authenticity and integrity. Different receivers have different
rights for accessing location data, as summarized in Ta-
ble I. LbSprint supports various localization technologies:
handheld GPS and Wi-Fi positioning, RFID, CCTV (Close-
Circuit TeleVision) [22]. The localization sensors generate
streams of raw location measurements, and send them to
LbSprint through a plethora of legacy protocols. Some
sensors (GPS, Wi-Fi positioning, RFID) provide for the
identity of tracked users too. Some other (CCTV) does not,
so that location measurements are associated to pseudonyms



Figure 3. Example of Location

Figure 4. Workflow of the filter engine

(e.g. urn:lbsprint:user001). An adapter module converts the
different formats of location measurements in a common
format (location data). A filter engine manipulates it, basing
on a privacy policy. Finally, the location data stream is
forwarded to the receiver by means of the LbSprint proto-
col. LbSprint provides also for a human-machine interface
(HMI), which visualizes the location data on a map. The
HMI is a web application which authenticates as a normal
receiver. Figure 2 shows a screenshot of it, taken from a
practical implementation in a company.

The LbSprint protocol is built over SOAP [23]. Through
the entire architecture, the location data is represented by an
XML structure called Location (Figure 3). A Location
contains the position along with possible other meta-data,
such as the identity of the user, the sensor ID and type, and
so on.

A. Filter engine

LbSprint uses the filter engine to protect the privacy of the
users. The filter engine’s privacy policy is configurable by
the system administrator and by the users. The privacy policy
takes into account many factors, including the context, and
specifies different privacy mechanisms, e.g. authorization,
anonymization and obfuscation.

Figure 4 shows how the filter engine works. Before
LbSprint sends a Location A to a location receiver,
it passes A to the policy enforcement point (PEP). The
PEP makes a filter strategy request to the policy decision
point (PDP). The PDP is a module which interprets the
privacy policy and decides which manipulations must be
applied on A (filter strategy). The PEP applies the specified

Figure 5. Perturbation example

manipulations and releases A′ as output. A filter strategy
could force a complete filtering, that is the location data is
not disclosed at all (A′ = null). This corresponds to a denial
of access. On the other hand, a no filtering strategy releases
the location data “as-is”, without manipulations (A′ = A).
Other filter strategies could apply one or more manipulation
algorithms on A, in order to anonymize it, obfuscate it,
etc. Subsection IV-C will show how users can specify and
configure such filter strategies.

B. Obfuscation methods

As a proof of concept, we provided LbSprint with
two simple obfuscation mechanisms: generalization and
UniLO [12]. They both replace an exact position with a
location area, which contains such a position but has a larger
extension. The larger is the location area, the less precise is
the obfuscated location.

Generalization is based on a hierarchical description of the
map (generalization tree), which defines zones with different
coarseness. For example, a generalization tree applicable to
a company could be the following: Exact position → Room
→ Sector → Building → Entire system. Generalization takes
a parameter k and replaces the exact position with a zone
which is k levels away from the bottom of the generalization
tree. For instance, k = 0 corresponds to returning the
exact position of the user (Exact position), whereas k = 3
corresponds to returning the building in which the user
currently is (Building).

On the other hand, UniLO [12] aims at generating circular
location areas. The original location data carries an indi-
cation of the precision radius of the sensor. For example,
r = 5m. UniLO takes a parameter r′ > r, for example
r′ = 25m, and adds noise to artificially increase the
precision radius to r′. The noise is a random vector, which
is added to the original coordinates. Figure 5 shows an
example of UniLO application. X and r are respectively
the original position and precision radius, whereas X′ and
d are the perturbed position and the random vector. The
circle centered at X′ and with radius r′ is the resulting
location area. If the location is asked again, and the user



Figure 6. Privacy policy structure

is still inside the same location area, the same location area
is returned. This is in order to avoid that someone intersects
many location areas to find the true location of the user.
The random vector has a specific probability distribution, in
order to generate obfuscated locations as uniform as possible
from the probabilistic standpoint.

Generalization and UniLO cannot be applied together.
Since no method is better than the other, the policy writer
must choose the most suitable method for each case. Gener-
alization is probably more intuitive. Nevertheless, it requires
a hierarchical specification of the map, which could be
missing. On the other hand, UniLO is less intuitive, but
generates circular location areas. Circles have simpler shapes
than rooms or buildings, and they are easier to be processed
by geometry-based algorithms.

We implemented two simple obfuscation algorithms and
a simple anonymization algorithm only to demonstrate the
integration capabilities of the system. Many other mecha-
nisms exist [24], aimed at anonymity [14], [25], [26] or
data obfuscation [11], [13], [27], which could be integrated
as well. The analysis of these techniques falls outside the
scope of this paper.

C. Privacy policies

A privacy policy comprises two parts: a user part and
a system part (Figure 6). The user part contains policies
specific to single users. These can be written by the users
themselves or by the system administrator. The system part
is written by the system administrator. The PDP tries first
to apply the user part, in particular the policy of the user
which location data refers to. If a user did not write her
own policy, or her policy does not apply to the case, the
system part will be applied. If neither the system part is
applicable, a complete-filtering default rule will be applied.
The system administrator can install a new privacy protec-
tion mechanism. For example a new obfuscation algorithm.
In such a case, she must define the URI of the algorithm
(e.g. urn:lbsprint:my-obfuscation), its parameters, and finally
provide a Java class implementing the new algorithm. This
makes our middleware extensible and configurable.

The receiver, the location, and the context are represented
as collections of attributes. Each attribute is a name-value
pair. Each privacy policy is a list of privacy rules. A simple

Figure 7. Example of policy tree

privacy rule is composed of a target and a filter strategy. The
target is a boolean expression on (the attributes of) the lo-
cation receiver, the location data, and the context. It decides
whether the rule is applicable or not. If it is applicable, the
corresponding filter strategy will be applied on location data.
Otherwise, the next rule will be evaluated, and so on. To fix
the ideas, in the use-case story of Section III, a user could
specify the following rule for the find-the-nearest-restaurant
service:

“if the location receiver is find-the-nearest-
restaurant, then apply anonymization and UniLO
obfuscation with r′ = 50m”

The “if” part represents the target, the “then” part represents
the filter strategy.

In such a way, complex policies are represented by long
lists of rules. Such a “flat” schema is simple, but it is not
modular. For example we may need to group all the rules
referring to a particular service type, in such a way to write
more compact, modular, readable policies. In addition, tree-
shaped policies outperform flat ones, as shown in Section V.
For these reasons, LbSprint allows the administrator to
define compound privacy rules. Compound rules contain
no filter strategy, instead they have a target and a list of
sub-rules, each of them can be both simple or compound.
The list of sub-rules cannot be empty. A compound rule is
applicable only if its target evaluates to true and at least
one of its sub-rules is applicable. The filter strategy of the
applicable sub-rule will be the filter strategy of the entire
compound rule. Compound rules allows us to define tree-
shaped policies, which perform better in terms of processing
time. An example of policy could be the following:

“if the location receiver is find-my-friends,
then: if the privacy level is medium, then apply a
generalization of 1 level, otherwise if the privacy
level is high, the apply a generalization of 2 levels”

Figure 7 shows an example of policy, with a simple rule and
a compound one.



Filter strategy: Final effect: Obligation: Parameter:
No filtering Permit - -
Complete filtering Deny - -
Anonymization Permit urn:lbsprint:anonymize -
Generalization Permit urn:lbsprint:generalize level (k)
UniLO Permit urn:lbsprint:unilo radius (r′ in meters)

Table II
FILTER STRATEGIES

Figure 8. A simple rule in the XACML language

The privacy policies are written in the XACML lan-
guage [16]. XACML (eXtensible Access Control Markup
Language) is an XML dialect standardized by the OASIS
consortium. It expresses extremely flexible rules for ac-
cess control. We used SunXACML, the off-the-shelf PDP
provided by Sun Microsystems, written in the Java lan-
guage [28]. The XACML language allows every authoriza-
tion decision to have only two valid outcomes: “Permit”
or “Deny”. In order to specify more complex filter strate-
gies, we used the XACML <Obligation> tag. Figure 8
shows the find-the-nearest-restaurant simple rule of Figure 7,
expressed in the XACML language. The attributes of the
location receiver, location data and context are referred
by URIs, along with the manipulation algorithms. The
<PolicySet> tag represents either the entire privacy
policy, or a compound rule. A simple rule is represented
by the <Policy> tag. A target is represented by the
<Target> tag. A filter strategy is represented by the
Effect XML attribute and the <Obligation> tag. An
Effect equal to Deny corresponds to a complete filtering.
The <Obligation> tags are used in XACML to dictate
additional duties that the PEP must fulfill before granting
the authorization. For example sending a notification email
to the system administrator. We use such tags to specify
(mixes of) manipulation algorithms to be applied on location
data. The algorithms are applied in the same order of the

Figure 9. XML conversion

corresponding <Obligation> tags. XACML allows us
to specify the parameters of an obligation, by means of
<AttributeAssignment> tags. We use them as the
parameters of the algorithm.

Table II tells us how basic filter strategies are expressed
in terms of final effect, obligations and parameters. Mixed
filter strategies, like “anonymization and generalization” are
expressed with the union of the relative obligations, as
shown in Figure 8. In such a case, the manipulations are
applied in order of appearance.

Note that our integration method can be seamlessly
adapted to XACML extensions focused on geographic data,
like Geo-XACML [29]. For the sake of simplicity —and
without loss of generality— we refer to the basic XACML
standard.

V. PERFORMANCE

The PDP is queried for each Location flowing through
the LbSprint architecture. Therefore, it is a quite critical
module for the system efficiency. Since our PDP is based on
XML, which is a textual representation, some performance-
related concerns could arise. We present a practical ready-to-
use optimization that considerably improves the performance
of the policy evaluation process.

In XACML standard, the authorization requests and the
authorization decisions are represented by XML code. Such
a code is usually sent to the PDP as an XML string.
This is the simplest approach, since the construction of
the request involves only string concatenations. The request
is successively converted in a DOM (Document Object
Model) representation, and then in a PDP-specific internal
representation (Figure 9). The first conversion involves an
XML parsing that is burdensome in terms of computational
resources. If the PEP and the PDP communicate locally,
it is better to send the filter strategy request directly in a



0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

number of rules

de
ci

si
on

 ti
m

e 
[m

s]

 

 
flat
flat, optimized

Figure 10. SunXACML time performance (flat policies)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

number of rules

de
ci

si
on

 ti
m

e 
[m

s]

 

 
tree
tree, optimized

Figure 11. SunXACML time performance (tree policies)

DOM format. Such a DOM must be built node by node, by
means of Java XML APIs. This requires more programming
complexity than just making XML string concatenations.
However, it has a good effect on performance.

We have conducted a series of tests aimed at evaluating
the effect of such an optimization. Time efficiency has been
evaluated on synthetic privacy policies containing up to
200 rules. Each target contained string matches and other
comparisons on multiple attributes. Our experiments were
carried out on a laptop PC running Windows 7 with 4Gb of
memory and an Intel Core i7-Q720 processor, with 4 cores
at 1.6GHz and 6Mb cache. Figure 10 shows the trend of the
time performance of the evaluation of a flat policy versus
the number of rules. The efficiency improvement goes from
40% (at 200 rules) to 60% (at 10 rules). In order to test
the optimization effect on compound rules, we reorganized
the policy in a balanced k-ary tree with k = 10. Non-leaf
nodes represents compound rules, whereas leaves represents
simple rules. All the targets evaluate a numerical attribute.
The targets of the compound rules test it for being comprised
inside a range. The targets of the simple rules test it for
being equal to a single value. If the target of a compound
rule evaluates into false, those of its children will not be

evaluated. Thus, in a balanced tree, the number of target
evaluations will grow as log n, where n is the number of
rules. The balanced tree is the best-case structure from the
performance standpoint, whereas the flat structure is the
worst case. Figure 11 shows the trend for such a hierarchical
policy. From the experiments, we see that the evaluation
performance is roughly constant with respect to the number
of rules. This is because the time which the PDP takes to
perform rule-independent tasks (e.g. conversion from DOM
representation to ad-hoc representation) is preponderant with
respect to the target evaluation time. The optimization brings
a uniform efficiency improvement of about 60%.

More optimizations are possible on the PDP, based on
more complex techniques like rule indexing, attribute numer-
icalization, etc. [30], [31] Our optimization focuses on PEP-
PDP communication, rather than on PDP internal working.
So it can be applied in addition to such techniques, to obtain
even more efficient policy decisions.

VI. CONCLUSIONS

We presented LbSprint, a middleware layer for privacy
protection in location-based services. LbSprint supports and
integrates different privacy protection mechanisms, basing
on some user-customizable policies. The privacy rules are
written in the standard XACML language. We used the
XACML obligations to integrate different privacy mecha-
nisms. Then, we presented a practical optimization, which
considerably improves the performance of the XACML
policy decision process.

ACKNOWLEDGMENT

This work has been supported by The EU FP7 Integrated
Project PLANET (Grant agreement no. FP7-257649).

REFERENCES

[1] J. Y. Tsai, P. G. Kelley, L. F. Cranor, and N. Sadeh,
“Location-sharing technologies: Privacy risks and controls,”
in In Research Conference on Communication, Information
and Internet Policy (TPRC, 2010.

[2] L. Ackerman and J. Kempf, “Wireless location privacy: A
report on law and policy in the United States, the European
Union, and Japan,” DoCoMo USA Labs, Tech. Rep., 2003.

[3] L. Barkhuus, B. Brown, M. Bell, M. Hall, S. Sherwood, and
M. Chalmers, “From awareness to repartee: Sharing location
within social groups,” in Proceedings of the twenty-sixth
annual SIGCHI conference on Human factors in computing
systems, ser. CHI ’08. ACM, 2008, pp. 497–506.

[4] M. Benisch, P. G. Kelley, N. Sadeh, T. Sandholm, J. Tsai, L. F.
Cranor, and P. H. Drielsma, “The impact of expressiveness on
the effectiveness of privacy mechanisms for location-sharing,”
in Proceedings of the 5th Symposium on Usable Privacy and
Security, ser. SOUPS ’09. ACM, 2009.



[5] S. Consolvo, I. E. Smith, T. Matthews, A. LaMarca, J. Tabert,
and P. Powledge, “Location disclosure to social relations:
why, when, & what people want to share,” in Proceedings
of the SIGCHI conference on Human factors in computing
systems, ser. CHI ’05. ACM, 2005, pp. 81–90.

[6] E. Toch, J. Cranshaw, P. H. Drielsma, J. Springfield, P. G.
Kelley, L. Cranor, J. Hong, and N. Sadeh, “Locaccino: A
privacy-centric location sharing application,” in Proceedings
of the 12th ACM international conference adjunct papers on
Ubiquitous computing, ser. Ubicomp ’10 Adjunct. ACM,
2010, pp. 381–382.

[7] FireEagle. [Online]. Available: http://fireeagle.yahoo.net

[8] Foursquare. [Online]. Available: http://foursquare.com

[9] Latitude. [Online]. Available: http://www.google.com/latitude

[10] Loopt. [Online]. Available: http://www.loopt.com

[11] C. A. Ardagna, M. Cremonini, S. De Capitani di Vimercati,
and P. Samarati, “An obfuscation-based approach for protect-
ing location privacy,” IEEE Transactions on Dependable and
Secure Computing, vol. 8, no. 1, pp. 13–27, Jan. 2011.

[12] G. Dini and P. Perazzo, “Uniform obfuscation for location
privacy,” in Proceedings of the 26th Annual WG11.3 Con-
ference on Data and Applications Security and Privacy, ser.
DBSec’12. IFIP-Springer, 2012.

[13] M. Duckham and L. Kulik, “A formal model of obfuscation
and negotiation for location privacy,” in Proceedings of the
3rd International Conference on Pervasive Computing, ser.
PERVASIVE’05, H. W. Gellersen, R. Want, and A. Schmidt,
Eds., vol. 3468. Springer Berlin / Heidelberg, 2005, pp.
152–170.

[14] M. Gruteser and D. Grunwald, “Anonymous usage of
location-based services through spatial and temporal cloak-
ing,” in Proceedings of the 1st International Conference on
Mobile Systems, Applications and Services, ser. MobiSys’03.
ACM Press, 2003, pp. 31–42.

[15] S. Mascetti, C. Bettini, D. Freni, X. S. Wang, and S. Jajodia,
“Privacy-aware proximity based services,” in Proceedings
of the MDM 2009: 10th International Conference on Mo-
bile Data Management: Systems, Services and Middleware.
IEEE, 2009, pp. 31–40.

[16] OASIS, “OASIS eXtensible Access Control Markup
Language (XACML),” 2007. [Online]. Available:
http://www.oasis-open.org/committees/xacml/

[17] “Foursquare alters API to eliminate apps
like Girls Around Me.” [Online]. Avail-
able: http://aboutfoursquare.com/foursquare-api-change-girls-
around-me/

[18] G. Myles, A. Friday, and N. Davies, “Preserving privacy in
environments with location-based applications,” IEEE Perva-
sive Computing, vol. 2, no. 1, pp. 56–64, 2003.

[19] M. Langheinrich, “A privacy awareness system for ubiqui-
tous computing environments,” in UbiComp 2002: Ubiqui-
tous Computing, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2002, vol. 2498, pp. 237–245.

[20] A. Cooper and J. Morris, “An Architecture for Location
and Location Privacy in Internet Applications,” RFC 6280
(Informational), Internet Engineering Task Force, Jul. 2011.
[Online]. Available: http://www.ietf.org/rfc/rfc6280.txt

[21] E. A. Crider and V. D. Francies, “Method and apparatus for
electronically tracking luggage,” U.S. Patent, May 2009.

[22] S. Gezici, “A survey on wireless position estimation,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. 44, pp.
263–282, Feb. 2008.

[23] World Wide Web Consortium, “Simple object access protocol
1.1 (SOAP1.1) specification,” May 2000. [Online]. Available:
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

[24] C. Bettini, S. Mascetti, X. Wang, D. Freni, and S. Jajo-
dia, “Anonymity and historical-anonymity in location-based
services,” in Privacy in Location-Based Applications, ser.
Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, 2009, vol. 5599, pp. 1–30.

[25] B. Gedik and L. Liu, “Protecting location privacy with per-
sonalized k-anonymity: Architecture and algorithms,” IEEE
Transactions on Mobile Computing, vol. 7, pp. 1–18, 2008.

[26] L. Marconi, R. Di Pietro, B. Crispo, and M. Conti, “Time
warp: how time affects privacy in LBSs,” in Proceedings
of the 12th international conference on Information and
communications security, ser. ICICS’10. Springer-Verlag,
2010, pp. 325–339.

[27] M. L. Damiani, E. Bertino, and C. Silvestri, “Protecting
location privacy against spatial inferences: the PROBE ap-
proach,” in Proceedings of the 2nd SIGSPATIAL ACM GIS
2009 International Workshop on Security and Privacy in GIS
and LBS, ser. SPRINGL ’09. ACM, 2009, pp. 32–41.

[28] Sun, “Sun XACML implementation.” [Online]. Available:
http://sunxacml.sourceforge.net/

[29] Open Geospatial Consortium, “Geospatial eXtensible Access
Control Markup Language (GeoXACML),” 2008. [Online].
Available: www.opengeospatial.org/standards/geoxacml

[30] A. X. Liu, F. Chen, J. Hwang, and T. Xie, “XEngine: a fast
and scalable XACML policy evaluation engine,” in Proceed-
ings of the 2008 ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems, ser.
SIGMETRICS ’08, 2–6 Jun. 2008, pp. 265–276.

[31] F. Turkmen and B. Crispo, “Performance evaluation of
XACML PDP implementations,” in Proceedings of the 2008
ACM workshop on Secure web services, ser. SWS ’08. ACM,
2008, pp. 37–44.


