
Evaluating the Trust of Android Applications through
an Adaptive and Distributed Multi-Criteria Approach

Gianluca Dini∗, Fabio Martinelli†, Ilaria Matteucci†, Marinella Petrocchi†, Andrea Saracino∗†, Daniele Sgandurra†
∗ Dipartimento di Ingegneria dell’Informazione

Università di Pisa, Italy
name.surname@iet.unipi.it

† Istituto di Informatica e Telematica
Consiglio Nazionale delle Ricerche

Pisa, Italy
name.surname@iit.cnr.it

Abstract—New generation mobile devices, and their app
stores, lack a methodology to associate a level of trust to appli-
cations to faithfully represent their potential security risks. This
problem is even more critical with newly published applications,
for which either user reviews are missing or the number of
downloads is still low. In this scenario, users may not fully
estimate the risk associated with downloading apps found on on-
line stores. In this paper, we propose a methodology for evaluating
the trust level of an application through an adaptive, flexible,
and dynamic framework. The evaluation of an application trust
is performed using both static and dynamic parameters, which
consider the application meta-data, its run-time behavior and the
reports of users with respect to the software critical operations.

We have validated the proposed approach by testing it on
more than 180 real applications found both on official and unof-
ficial markets by showing that it correctly categorizes applications
as trusted or untrusted in 94% of the cases and it is resilient to
poisoning attacks.

I. INTRODUCTION

App stores for mobile devices are continuously growing
both in their number and in the amount of proposed appli-
cations. Android is currently the mobile platform with the
largest market share and its official market, Google Play, hosts
hundred of thousands of applications that are continuously
published by third-party developers. Users browse app-stores
to choose and install applications on their smartphones or
tablets, either for free or paying the app’s price established by
the developer. However, both official and the unofficial mar-
kets do not perform strict controls on published applications.
In fact, even on official markets, applications infected with
malicious software (malware) have been found [1].

Malicious apps may leak user credit, private data, and even
cause physical damage to the device itself. The native Android
security mechanisms have proven to be not so effective in
protecting users and devices from some kind of malware, such
as trojanized apps. The main reason is the semantic of the
Android Permission System, which requires a user to be able
to understand the hazardousness of an application by reading at
install-time the list of resources the application should access.
Several critics have been raised against this system, since a
large share of Android users does not fully understand the
permissions required by an application [2].

In this paper, we propose MAETROID (Mobile Application
Evaluator of TRust for andrOID), a framework for evaluating
the level of trust of Android applications, which extends the
framework proposed in [3]. This framework estimates the level
of trust for an application using static analysis only. However,
since several applications lack some meta-data used to estimate
their level of trust, MAETROID collects information about
the dynamic behavior of applications and provides feedback
concerning software issues, such as bugs, which may be
symptoms of security threats. These pieces of information are
collected by a central server and become available to other
users that may download and install the same application.
In this way, MAETROID evaluates the trust level for an
applications on the base of both a distributed user-experience
system and a set of static meta-data. MAETROID has proven
to be effective in helping users to classify the level of trust
of applications, especially for brand-new applications (from
official and unofficial markets) and those coming from markets
that do not provide rating scores.

The remainder of the paper is organized as follows. Section
II describes some related works. Section III briefly recalls the
framework proposed in [3], which is extended by the work
proposed in this paper. Section IV describes MAETROID, the
voting architecture and the score system to evaluate the trust
level of applications. Some results and the resilience to some
attacks aimed at forging the feedback system are discussed in
Section V. Finally, Section VI briefly concludes by proposing
some future extensions.

II. RELATED WORK

This work extends [3], which proposes a multi-criteria
evaluation of Android applications to help the user to easily
understand the trust degree of an application, both from a
security and a functional point of view. Several extensions
and improvements to the Android permissions system have
been recently proposed. [4] proposes a security framework that
regulates the actions of Android applications defining security
rules concerning permissions and sequence of operations. New
rules can be added using a specification language. The appli-
cation code is analyzed at deployment-time to verify whether
it is compliant to the set of rules, if not it is considered
as malicious code. Our proposal does not require the code
to be decompiled and analyzed, since it only requires the



permissions list that can be retrieved from the manifest file
and other generic information that can be retrieved from the
website where the application can be downloaded.

Authors of [5] present a finer grained model of the Android
permission system. They propose a framework, named TISSA,
that modifies the Android system to allow the user to choose
the permissions she wants to grant to an application and those
that have to be denied. Using data mocking, they ensure that an
application works correctly even if it is not allowed to access
the required information. However, their system focuses on
the analysis of privacy threatening permissions and it relies on
the user expertise and knowledge. A work similar to TISSA is
presented in [6]. The authors designed an improved application
installer that allows to define three different policies for each
permission: allow, deny, or conditional allow. Conditional
allow is used to define a customized policy for a specific
permission by means of a policy definition language. However,
the responsibility of choosing the right permissions still falls
on the user.

In [7], applications have been classified based upon their
required permissions. Applications have been divided in func-
tional clusters by means of Self Organizing Maps, by proving
that apps with the same set of permissions have similar func-
tionalities. However this work does not differentiate between
good and trojanized apps. Finally, another analysis of Android
permissions is presented in [8], where the authors discuss a
tool, Stowaway, which discovers permission over-declaration
errors in apps. Using this tool, it is possible to analyze the
85% of Android available functions, including the private ones,
to return a mapping between functions and permissions. [9]
discusses whether users can be trusted to assess the security of
an app. In particular, the authors explore the security awareness
of users when downloading apps from official markets. The
paper shows that most of the users trusts the repository
regardless of the security alerts during application selection
and installation. Hence, there is a need of a simple mechanism
that helps users to easily and clearly understand the security
criticalities of an application. We propose MAETROID as a
possible solution.

In [10], a set of comments on Android Market has been
manually analyzed to verify if users are concerned about
security and how much they speak about security and permis-
sions in the comments. Only 1% of the comments contains
references to application permissions. Hence, a framework
that analyzes application permissions, such as MAETROID, is
needed. The security issues brought by unofficial application
markets have been also addressed in [11], which presents
a framework that leverages application meta-data to detect
malicious applications coming from unofficial markets. The
framework also implements a kill-switch to uninstall detected
malicious applications from all of the smartphone that install
it, extending this feature of the official market to unofficial
ones.

III. ASSESSMENT OF ANDROID APPS THROUGH AHP

In this section, we recall the approach for assessing the trust
level of an Android application proposed in [3]. The approach
exploits the AHP decision process briefly described hereafter.

The Analytic Hierarchy Process (AHP) [12] [13] is a multi-
criteria decision making technique, which has been largely
used in several fields of study. Given a decision problem, where
several different alternatives can be chosen to reach a goal,
AHP returns the most relevant alternative with respect to a set
of previously established criteria. The problem is structured
as a hierarchy, as shown in Figure 1, by linking goals and
alternatives through the chosen criteria. This approach requires
to subdivide a complex problem into a set of sub-problems,
equal in the number to the chosen criteria, and then to compute
the solution by properly merging the various local solutions
for each sub-problem. Local solutions are computed by means
of comparison matrices, that describe for each criterion how
much an alternative is more relevant with respect to another
one in a pairwise fashion.

Figure 1: Generic AHP Hierarchy

In [3] the authors describe an instantiation of the AHP
decision methodology to asses the trust level of an Android
application as follows. Given an Android application with the
following parameters:

• a threat score σ,

• a developer δ,

• a number of downloads η,

• a market µ,

• a user-rating ρ,

then the goal consists in assigning to an application one of
the following alternative labels:

• Trusted: the application correctly works and should
not hide malicious functionalities;

• Untrusted: the application could violate the security
of the mobile device;

• Deceptive: the application is neither functional nor
secure.

The problem is parametric with respect to the application
and, for two different applications, the same fixed alternatives
have a different relevance to the same criterion. Hence, the
five parameters (σ, δ, η, µ, ρ), which are the criteria of the
problem, assume different values for different applications. To
each value of the five criteria is assigned a different comparison
matrix, leading AHP to take a different decision. Notice that
AHP asseses the decision using the parameters all together.
Each parameter taken as stand-alone may be not significant,
but is however helpful to the decision process.



We have developed a framework to analyze and classify
Android applications, which fully implements the previous
strategy [3]. The test-set was composed of 180 Android
applications of different categories, which are known to be:

• Good App: an application that behaves correctly both
from the security and functional point of view. These
applications may come from official markets or un-
official ones: in the last case, sometimes AHP may
not have enough data (e.g., user rating and number
of downloads) to asses the quality of the applications
and, hence, the application is considered untrusted.
However, the adaptive solution that we propose in this
paper may supply this lack of information as soon as
a sufficient number of user reports have been issued.
An application in this category should be classified as
Trusted;

• Infected App: an application infected by a malware.
An application in this category should be classified as
Untrusted;

• Bad App: an application that is malfunctioning (e.g.,
it often crashes) or unusable, and it is not trojanized.
An application in this category should be classified as
Deceptive.

Notice that the three classes are not overlapping, i.e. they are
composed of three disjoint sets of applications. The framework
proposed in [3] assigns to all these applications one of the
previous alternative label by instantiating the AHP decision
procedure. Hence, the goal is to correctly assign labels to
applications, i.e. Trusted to Good App, Untrusted to Infected
App and Deceptive to Bad App. However, in some cases,
since some applications lack some meta-data used to properly
estimate their level of trust, the framework [3] could classify
them as Untrusted, even if these application were Good App. In
the next Section, we discuss an improvement to the framework
to address this issue.

Figure 2: Framework Architecture

IV. ADAPTIVE FRAMEWORK

The framework described in the previous section computes
a first evaluation of an application level of trust using static

information only. However, some unofficial markets do not
provide user ratings or the number of downloads and, hence,
some applications coming from these markets can be consid-
ered as Untrusted by the decision system even if they are Good
Apps or vice-versa.

A. Architecture

To address this problem, we propose MAETROID (Mobile
Application Evaluator of TRust for andrOID), a dynamic and
distributed user-based evaluation protocol, which allows smart-
phones to periodically exchange feedback on applications’
behavior. The MAETROID framework is depicted in Fig. 2,
where the application (MAETROID-App) implements both
AHP and the new adaptive protocol. Basically, once a user
has installed MAETROID-App, an evaluation module imple-
ments the standard AHP algorithm on a newly-downloaded
application (Sect. III) and produces a first decision on the
application trust level. Then, MAETROID-App allows users to
collaborate to a reporting network to produce feedback on the
app’s (mis-)behavior. These reports are automatically sent by
the MAETROID-App to the MAETROID server (see Fig. 2),
which analyzes the received data to build AHP matrices for
a new criterion, which we call user-experience, for the AHP
decision process.

The rationale behind this new criterion is that, if several
users notice that an application contains several bugs, or it
continuously crashes, or its usage strongly affects the battery
duration, then the AHP decision should be recomputed and
either shifted towards the Deceptive or Untrusted alternative,
since these features may be symptom of an application hiding
malware. Conversely, a Good App from unofficial markets (or
one that initially has a low score), which may be initially
categorized in the Untrusted class, after receiving several good
reviews from users, should be labelled as Trusted.

To evaluate if an application misbehaves, users send feed-
back through a report1, which can be easily understood and
filled in (directly on the MAETROID-App) by an average user.
The report is based upon the following five parameters, which
we have chosen as indicative of the application behavior and
that may be signals of several misbehaviors:

• crashes (CR): if the application has ever terminated
unexpectedly;

• battery depletion (BD): the amount of battery con-
sumed as experienced by the user;

• usability (US): evaluation of the application respon-
siveness;

• credit leakage (CL): if the application deceitfully
consumes user credits;

• misbehavior (MI): if the application shows some crit-
ical bugs, in a way clearly observable by the user.

For example, the battery depletion may be caused by a mali-
cious and hidden use of smartphone sensors by a malware. For
each parameter, users select one out of three possible values,
which are listed in Table I.

1Notice that the report differs from the app rating, which considers the app
functionalities, while a report only considers app misbehaviors.



Parameter Possible Values
CR Never Seldom Often
BD Avg Slight Strong
US OK Some Issues Unusable
CL None Maybe For Sure
MI None Few Several

Table I: Report Parameter

Each value in Table I is associated with a number in the
range [0, 6] ∈ N. We denote as ri the score of the i-th feedback
received by the MAETROID-server for an app, defined as:

ri = 7− (CR+BD + US + CL+MI)

If ri is negative, the server changes its value to 1, hence ri ∈
[1, 7], where a low value means a bad behavior and a high
value means a good behavior of the app. For each app a, for
which at least one report has been received, the MAETROID-
server stores a score si(a) (henceforth si) as defined in Eq.
1.

si = (1− α)si−1 + αri, si ∈ [1, 7] (1)

In Eq. 1, which is the canonical form of a convex hull (with
α� 1), the new value of si is computed in a way where the
last received report ri slightly affects the new value of si.

We assess the value of α : R+ → [0, 1] as a function of the
number of the expected received reports i for an application.
To estimate the value of α we suppose that the MAETROID-
server receives for the same application an amount i of costant
valued reports, to change the value stored from an initial value
s0 to a final chosen value si. Thus, solving the following
equation we compute the value of α:

α(i) =
γ

i
, γ = si − s0

For example, let us consider an application with an initial
neutral score s0 = 4 (that is exactly what happens when a new
application is added to the server). We want to compute the
correct value of α to shift the score of the app to the value
of si = 7, after receiving 1000 reports of value ri = 7. The
resulting value of α is α = 3 ∗ 10−3. The number of expected
received reports is parametric with the number of users that
have downloaded the application under evaluation.

B. Re-Assessing the Decision

To reassess the decision, the server constantly updates a
value S ∈ [1, 7] ⊂ N, which is computed by rounding the
current value of si. S is used as an index to choose the
comparison matrix that will be used by the app evaluator
(AHP) for the new criterion, called user experience.

For the user experience criterion we define seven AHP
comparison matrices {U1, . . . , U7}, one for each possible
value of S, where U4 is a neutral comparison matrix, i.e. each
matrix element U4

i,j = 1,∀i, j. This matrix is assigned to an
application that has never received reports. On the other hand,
U1 is a matrix assigned to an application that has received

Value of S Issues
7 No issues
6 Negligible issues
5 Lesser issues, such as faster battery depletion
4 Neutral, non evaluated or some issues
3 Several Issues and bugs
2 Major bugs or strong battery depletion
1 Critical security or functional issues

Table II: Score Interpretation

very bad reports, and U7 is assigned to an application that has
received several good reports (see Fig. 3 and Tab. II).

When evaluating a particular application, the newly pro-
posed AHP instantiation considers the criteria listed in Sec-
tion III, plus the criterion user experience. The matrix US

(where S is the current score for that application) is added
to the whole AHP decision process. This matrix compares
the three alternatives, Trusted, Untrusted, and Deceptive with
respect to the value of S.

Figure 3: Values of Index S

After each received report, the server computes si as in
Eq. 1, rounds its value and if a change in S occurs then
it triggers again the AHP decision process. In this way, the
new comparison matrix US is used by AHP decision process,
and the app’s level of trust is recomputed. Hence, new users
installing the considered application will receive the updated
decision, whereas users that already own this app will be
notified by MAETROID-App only if the new value of S causes
a change in the decision process, e.g., a Trusted application
becomes Untrusted (due to several bad reports). However, the
score si on the MAETROID server is updated each time a user
sends a new report.

A common issue of user report-based systems is the
possibility for an attacker to send fake reports, for maliciously
poisoning the app’s evaluation. Common patterns of these
attacks consist of sending burst, i.e., a large amount of good
(or bad) reports sent in a small amount of time by groups
of users that collude to maliciously increase (or decrease) the
score of an app. To address this issue, we propose a modified
version of Eq.1 that considers the time elapsed between two
reports:

si = (1− β)si−1 + βri, β = α

(
1− 1

∆t

)
(2)

With Eq. 2, a burst of reports received in a small time interval



slightly influences the value of si; in fact, the value of β ranges
in the interval [0, α] and it is a function of ∆t. ∆t is the
time elapsed between two successive reports ti, ti−1 and it is
defined as:

∆t =

{
1 if ti − ti−1 < 1
ti − ti−1 otherwise

Hence, the value of β, that is the weight for the last received
score, is closer to zero for small values of ∆t, so that a burst
of votes will slightly affect the score si of the application
(and consequently S). Notice that is unlikely that several
non-colluding users send a report for the same application
at the same time. Hence, the influence of the Eq. 2 on the
effectiveness of genuine reports should be neglectible.

V. RESULTS

To prove the effectiveness of our approach, we have tested
MAETROID on the same set of 180 applications used in [3].
We remind the reader that this acts as a validation set, since we
know in advance which one is a Good, Bad, or Infected app
(see Section III). Furthermore we have run several simulations
taking into account also user reports. In particular, we have
tested:

• the effectiveness of changing the decision from Un-
trusted to Trusted for a brand new application that
receives positive reports;

• the resilience to reputation tampering attacks;

• the resilience to reputation tampering attacks with
report bursts.

To this end, we have built a test-bed to simulate the reports
using the following series:

1) a series of i reports, all with the maximum score and
constant inter-arrival time;

2) a series of i reports, all with the minimum score and
constant inter-arrival time;

3) a series of i positive reports, with scores spanning
from five to seven. The inter-arrival times of the
reports have been chosen according to a Poisson
process of parameter λ;

4) a series of i negative reports, with scores spanning
from one to three. Poisson process inter-arrival time.

The parameter λ used in series 3) and 4) depends on the
average number of reports received in a time interval for a
specific application. The process of users downloading an app
and sending reports, starting from the time when an application
becomes available on a market, can be modelled as a Poisson
process. The series 3) and 4) represent possible sequences of
votes. Notice that series 1) and 2) are not realistic report sets.
These two series have been used as extreme test case to raise
or lower the score of an application, or to simulate vote bursts.

In the first experiment, we have considered all the ap-
plications in [3] that have been classified as Untrusted due
to the lack of users’ ratings. As anticipated before, actually
those applications should have been classified as Trusted. As a
sample, we report the classification process on Candy Zuma,
a simple video-game found on an unofficial market that does
not provide user ratings. Candy Zuma is a good app, however,

in [3], it has been labelled as Untrusted. The application has
been downloaded by more than 1000 users. Using both the
series 1) and 3), with i = 100, during the simulations the
application receives a score S equals to 7 and 6, respectively.
Using either U7 or U6 as comparison matrix for the newly
introduced criterion user experience, the decision is changed
from Untrusted to Trusted.

Fig. 4 shows a comparison between prior classifications,
obtained without the user experience criterion, and current
classifications, with the use of the new criterion. We can
notice that most of those apps coming from unofficial markets
(“Good-Apps (Unoff)” bar), which have been labelled as
untrusted, are now correctly classified.

Globally, all the infected apps of our validation set have
been correctly classified by MAETROID, which recognizes
them as untrusted apps. The same holds for bad apps: all
of them have been classified as deceptive. The 91% of good
apps have been classified as trusted. Thus, the new framework
achieves a global accuracy of 94%. All of the 24 applications
are considered Trusted using the matrix U7 in the AHP
decision process. Using U6, AHP outputs the same decision
on 13 applications out of the 24 wrongly considered Untrusted
in [3].

Figure 4: Classification Without (Top) and With (Bottom) The
User-Experience Module

Eq. 1 avoids strong fluctuations of an application score
si. In fact, the score changes only after the reception of a
sufficiently large number of users’ reports, with the same trend
(i.e., all positive or negative scores). If we consider popular
applications, such as the well-known game Angry Birds,
downloaded from the official market more than 100 millions
of times and rated by more than 1 million of users, we can see
that this kind of app is characterized by a very small value of
α. In fact, if we suppose i = 100K, then we have α = 3·10−5.
Hence, an attacker that wishes to tamper the user’s score of
Angry Birds, should be able to send a very large number of
negative reports, meaning that she needs, at least, to cooperate
with a very large community of colluding users. Moreover, the



reports should be well distributed in time and not interlaced
with other positive reports.

To show the robustness of our approach, we have raised
the score of the application to 7 using the series 1) with
i = 1K and the series 3) with i = 100K. Then, we have
interlaced a series 3) to simulate others incoming good rates,
and a series 4) to simulate the reputation tampering attack,
both with i = 100K. Such a strong attack has lowered the
application score of only one point. The AHP decision for
Angry Birds remains Trusted also with U6 in place of U7

and, hence, the attack is ineffective.

The parameter β allows the score system to be protected by
bursts of reports that can be sent, for example, from a botnet.
We have tested the effect of a burst of i = 100K negative
reports with an inter-arrival time of 1 sec on Angry Birds.
The burst of reports does not affect the score of the application.

The same reasoning applies to the opposite situation, in
which a burst of positive reports is sent to artificially promote
a new application. Considering a new application with a neutral
score of 4, the score increases only if a sufficient number of
votes is received, which are fairly distributed in time and that
they have the same positive trend. Otherwise, the score is not
modified and the AHP decision is not affected.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented MAETROID, a framework
for assessing the level of trust of Android applications by
analyzing both static meta-data and user feedback collected
in a distributed manner. MAETROID firstly analyses the apps
meta-data and outputs an initial decision about the application
level of trust. Then, static criteria are merged with a score
index that dynamically change. The reputation index is used
as a new decision criterion, called user-experience, and it is
based upon reports sent by users to a centralized server. The
server interacts with MAETROID each time a new application
is installed, by providing updated information to assess the
application behavior and its level of trust. The effectiveness
of the proposed framework has been tested on a set of 180
applications constituting our validation set, and it has been
proven to be effective, in particular, in classifying the level
of trust of brand-new applications and other apps whose
markets does not provide rating indexes. Finally, MAETROID
is resilient to reputation tampering attacks and vote bursts.

As future work, we plan to distribute the applications to
a large number of users, to verify the compliance of the
proposed model with real use-cases. It is worth noticing that
the reporting architecture can also be built on a pure P2P
network or a hybrid one, where each node (reviewer) can
have a different level of reputation and the decision can be
weighted according to this value. In fact, in the current model
we consider all the reviewers as equally trusted. Finally, we are
going to extend MAETROID to automatically assess the value
of the five parameters used to build the report from which the
user-experience score is derived.

REFERENCES

[1] Xuxian Jiang, “Multiple Security Alerts: New Android Mal-
ware Found in Official and Alternative Android Markets,” 2011,
http://www.csc.ncsu.edu/faculty/jiang/pubs/index.html.

[2] A.P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, D. Wagner,
“Android permissions: User attention, comprehension, and
behavior,” Electrical Engineering and Computer Science-
sUniversity of California at Berkeley, Tech. Rep., 2012,
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-
26.html.

[3] G. Dini, F. Martinelli, I. Matteucci, M. Petrocchi, A. Saracino, D.
Sgandurra, “A Multi-Criteria Based Evaluation of Android Applica-
tions,” in 4th International Conference on Trusted Systems, InTrust
2012. Springer-Verlag, December 2012.

[4] W. Enck, M. Ongtang, P. McDaniel, “On Lightweight Mobile Phone
Application Certification,” in 16th ACM conference on Computer and
Communications Security (CCS’09). ACM, November 2009, pp. 235
– 254.

[5] Y. Zhou, X. Zhang, X. Jiang, V. W. Freeh, “Taming information-stealing
smartphone applications (on android),” in 4th International Conference
on Trust and Trustworthy Computing (TRUST 2011), June 2011.

[6] M. Nauman, S. Khan, X. Zhang, “Apex: Extending Android Permission
Model and Enforcement with User-defined Runtime Constraints,” in
5th ACM Symposium on Information Computer and Communication
Security (ASIACCS’10). ACM, April 2010.

[7] D. Barrera, H.G. Kayacik, P.C. van Oorschot, A. Somayaji, “A Method-
ology for Empirical Analysis of Permission-Based Security Models and
its Application to Android,” in 17th ACM Conference on Computer and
Communications Security (CCS’10. ACM, October 2010.

[8] A.P. Felt, E. Chin, S. Hanna, D. Song, D. Wagner, “Android Permissions
Demystified.” in 8th ACM conference on Computer and Communica-
tions Security (CCS’11). ACM, 2011, pp. 627 – 638.

[9] A. Mylonas, A. Kastania, and D. Gritzalis, “Delegate the smartphone
user? security awareness in smartphone platforms,” Computers &
Security, vol. 34, no. 0, pp. 47 – 66, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167404812001733

[10] E. Ha and D. Wagner, “Do android users write about electric sheep?
examining consumer reviews in google play,” in Consumer Commu-
nications and Networking Conference (CCNC), 2013 IEEE, 2013, pp.
149–157.

[11] D. Barrera, W. Enck, and P. van Oorschot, “Meteor : Seeding a Security-
Enhancing Infrastructure for Multi-market Application Ecosystems,”
in Mobile Security Technologies Workshop (MoST). IEEE, 2012.
[Online]. Available: http://www.ccsl.carleton.ca/ dbarrera/files/most12-
barrera.pdf

[12] T. L. Saaty, “Decision-making with the ahp: Why is the principal
eigenvector necessary,” European Journal of Operational Research, vol.
145, no. 1, pp. 85–91, 2003.

[13] ——, “Decision making with the analytic hierarchy process,” Interna-
tional Journal of Services Sciences, vol. 1, no. 1, 2008.


