
ASF: an Attack Simulation Framework
for wireless sensor networks

Gianluca Dini
Dipartimento di Ingegneria dell’Informazione

University of Pisa, Pisa, Italy
Email: g.dini@iet.unipi.it

Marco Tiloca
Dipartimento di Ingegneria dell’Informazione

University of Pisa, Pisa, Italy
Email: m.tiloca@iet.unipi.it

Abstract—Wireless Sensor Networks are vulnerable to quite
a good deal of logical and physical security attacks. However,
providing security countermeasures for every possible attack is
practically unfeasible for cost and performance reasons. Thus,
it is vital to properly rank security attacks in order to establish
priorities and then select appropriate countermeasures. In this
paper, we present ASF, an attack simulation framework that
allows us to describe attacks and quantitatively evaluate their
effects on the application and network behavior and performance.
ASF helps users to evaluate the impact of an attack, a crucial
step in the attacks ranking activity. Also, we present an early
prototype of ASF built on top of the popular simulator Castalia.
Finally, we show the capabilities of ASF by analysing four attacks
against a realistic application scenario.

I. INTRODUCTION

Nowadays, Wireless Sensor Networks (WSNs) are a widely
adopted technology in several fields of application. Their con-
solidated success, both in the academic and industrial world, is
mainly due to standards availability, low cost of sensor nodes,
and world-wide communities support. Their uses include home
automation, plant monitoring, military surveillance, disaster
recovery situations, environment monitoring, and many others.

A WSN may be affected by a great number of security
threats and attacks. WSNs are subject to logical attacks (aka
cyber attacks), as an adversary simply equipped with a radio
receiver-transmitter can easily eavesdrop as well as inject
messages. Furthermore, WSNs are also subject to physical
attacks. Actually, WSNs are often deployed in environments
that are open, unattended, and possibly hostile. This allows an
adversary to physically attack sensor nodes in order to repro-
gram, misplace, or, even, break them. All these attacks may
lead to unreliable data collection, inaccuracy in controlling
processes, or even safety problems.

There are lot of possible attacks against WSNs [9][16][19].
They can have different objectives, be performed at different
levels, and result in different effects. Physical attacks comprise
node capture [13], and tampering with sensor nodes [6]. On
the other hand, logical attacks include the HELLO flooding
attack [8], the Sybil attack [12], the sinkhole attack [8],
the wormhole attack [21], the blackhole attack [7], and the
Distributed Denial of Service (DDoS) attack [20].

However, providing a security countermeasure for every
possible attack would result in a huge security overhead, which
is difficult to afford and would overwhelm the scarce resources

available on sensor nodes [14][15]. Thus, it is vital to properly
rank security attacks, in order to evaluate their severity, state
protection priorities, and select appropriate countermeasures.
That is, it would be useful to quantitatively evaluate the effects
of attacks, in order to assign them a priority, and select
adequate countermeasures. Most of the times, this information
becomes available when it is too late, i.e. once attacks have
already occurred. Instead, it would be better to have it even
before network deployment takes place.

In this paper, we present ASF, our attack simulation frame-
work for WSNs. Thanks to ASF, users can describe attacks,
reproduce their effects, and quantitatively evaluate their impact
on the overall functionality and performance. ASF helps users
to evaluate the severity of an attack, and therefore constitutes
a valuable tool for the attack ranking process. We show that
the architecture of ASF is general and independent of the
underlying network simulator.

Also, we present an early prototype of ASF built on top
of Castalia [2], the popular WSNs simulator. Then, we show
the capabilities of ASF by considering a realistic case study
and analysing four different attacks. Specifically, we compare
the effects of these attacks on system functionality and perfor-
mance with respect to the case when the system is attack-free.

The rest of this paper is organized as follows. Section
II discusses related work. In Section III, we present the
ASF framework, and our prototype implemention. Section IV
presents the application scenario we refer to, while Section V
shows and discusses results of attacks simulations. Finally, we
draw our conclusive remarks in Section VI.

II. RELATED WORK

Simulative analysis can provide a quantitative idea of the ef-
fects of attacks. However, little work has been done on attacks
simulation so far. In fact, most of the adopted approaches focus
on network simulation and performance evaluation. Also, they
consider analytical models or algorithms aimed at detecting
specific attacks upon their occurrence. Then, simulation is
typically used to validate such models.

For instance, in [24], the authors describe a distributed
wormhole detection algorithm, and show simulation results in
order to prove its low false toleration and false detection rates.
In [17], Kaplantzis et al. propose an intrusion detection scheme
which detects blackhole and selective forwarding attacks.



Also, simulative results are presented to validate such scheme.
In [10], the authors propose a scheme based on weighted-trust
evaluation, aimed at detecting malicious nodes, and verify its
correctness and efficiency by means of simulations. Bonaci et
al. consider physical node capture attacks, develop a network
response strategy, and validate it by means of simulations [18].

In [23], Wang and Bagrodia present SenSec, a framework for
security evaluation in WSNs. SenSec allows for simulating the
occurrence of attacks against the network, by injecting events
into real application simulators. They test SenSec on TiQ [22],
a framework for executing TinyOS applications [5], and use it
to evaluate the impact of a number of attacks against routing
and time synchronization protocols.

III. ATTACK SIMULATION FRAMEWORK

The ASF framework provides: i) an Attack Specification
Language to simply specify attacks; ii) an Attack Database to
store attacks descriptions; iii) an Attack Compiler to convert
attacks descriptions into XML configuration files; and iv) an
Attack Simulator to evaluate effects of attacks. Figure 1 shows
an overview of the ASF framework architecture.

Fig. 1. Overview of the ASF framework architecture.

First, the user specifies the attacks to be evaluated by means
of the Attack Specification Language (ASL), and possibly
stores attacks descriptions in the Attack Database. Then, the
Attack Compiler (AC) takes such specifications as input, and
converts them into an XML Attacks Configuration File (ACF).
The user must specify the name of the specific simulator
to be used. By doing so, XML statements in the ACF can
be correctly parsed and acquired by the adopted simulator.
Finally, the Attack Simulator takes the ACF as input, in order
to reproduce attacks and evaluate their effects.

A. Attacks specification

The Attack Specification Language (ASL) is a collection of
primitives which allow users to specify attacks to be evaluated.
From our framework standpoint, we define an attack as a
sequence of events, which takes place atomically. That is, the
user specifies the sequence of events that compose an attack
by means of ASL primitives.

We consider two sets of primitives. Node primitives allow
for altering nodes behavior, thus performing physical attacks.

Instead, packet primitives allow for performing a number of
actions on network packets, thus carrying out logical attacks.
The following two node primitives are available.

destroy(nodeID, t);
At time t, remove node nodeID from the network.

move(nodeID, t, x, y, z);
At time t, move node nodeID to position (x;y;z).

Also, the following six packet primitives are available.

drop(packet);
Discard the packet packet.

create(packet, field, content);
Create a new packet packet, and fill its field field with content.

clone(srcPacket, dstPacket);
Create a new packet dstPacket as a perfect copy of srcPacket.

change(packet, field, newContent);
Write newContent into the field field of packet packet.

retrieve(packet, field, content);
Retrieve the content of the field field of packet packet, and
write it into content.

put(packet, dstNodes, direction, delay);
After delay milliseconds, put packet packet either in the
transmission or reception buffer of all nodes in the dstNodes
list. Possible values for direction are TX and RX, which refer
to the transmission or reception buffer, respectively.

The ASL allows for defining three different kinds of attacks,
i.e. physical attacks, conditional attacks, and unconditional
attacks. In the following, we describe how to specify them.

Physical attacks. They consist in a single event, modeled
by either the destroy() or move() node primitive. As described
above, such primitives require to specify the time t at which
the event takes place, and the node affected by the attack.

Conditional attacks. This class of attacks considers a
number of nodes that intercept packets to be examined, and,
potentially, manipulated or even discarded. The user must
specify the time t starting from which the attack takes place,
and the list of network nodes that perform the attack.

Events occurrence may depend on the evaluation of a
conditional statement, namely a packet filter. We define a
packet filter as a set of simple boolean conditions c1, c2, ..., cN
joined by logic operators, i.e. AND, OR, and NOT.

What follows is an example of conditional attack specifica-
tion. Starting from time 200 s, nodes 1, 2, and 7 intercept all
packets travelling through their communication stack. Then,
such nodes check if each intercepted packet satisfies the
packet filter. In case of a positive match, the attack is actually
reproduced, i.e. the specified list of events is executed.



from t = 200; nodes = "1 2 7" do {
if(<packet filter>)

<List of events>
}

Unconditional attacks. Unlike conditional attacks, these
attacks are not related to interception of packets by network
nodes. However, new packets can be created, and possibly
cloned, in order to be naughtly injected into the network.
The user must specify the time t starting from which the
attack takes place, and the occurrence frequency f according
to which the attack has to be repeatedly reproduced over time.
For this class of attacks, events occurrence does not depend
on the evaluation of conditional statements.

What follows is an example of unconditional attack specifi-
cation. Starting from time 200 s, the attack occurs repeatedly
every 10 s, i.e. the specified list of events is executed.

from t = 200; every f = 10 do {
<List of events>

}

In the following, we consider different kinds of attacks,
and specify them by means of ASL primitives. For the sake
of simplicity, we refer to packet fields with a simplified and
extremely general notation. However, in a more general case,
the user must be aware of which specific network protocols
are in use. That is, for each communication layer, she must
be aware of packet header structures and fields.

In such a general case, the user relies on a packet.layer.field
notation, in order to access the field field of packet packet in
the header of layer layer. Being available this information, it
is possible to access specific header fields, in order to check
and alter their content. As a practical example, the OMNeT++
platform [3] and the WSNs simulator Castalia [2] provide a set
of objects, namely descriptors, aimed at handling packets of
a given communication layer and accessing their header fields.

Node removal. Nodes 5 and 10 are removed from the
network, at time 200 s and 500 s, respectively.

destroy(5,200);
destroy(10,500);

Node misplacement. Node 10 is moved to position
(80; 10; 0) at time 200 s. Similarly, node 11 is moved to
position (60; 10; 0) at time 200 s.

move(10,200,80,10,0);
move(11,200,60,10,0);

Node reprogram. Starting from time 400 s, nodes 5 and 7
replace the original payload of application data packets sent by
node 10 with the minimum possible value. Then, data packets
are regularly sent to their scheduled destination.

from t = 400; nodes = "5 7" do {
if(packet.APP.source==10 &&

packet.APP.type==DATA)
change(packet,APP.payload,MIN);

}

Wormhole attack. Starting from time 200 s, MAC data

packets sent by node 3 are intercepted. Then, they are provided
to distant nodes 15, 17, and 18, which receive them in their
reception buffer after 100 milliseconds. This is basically a
wormhole attack, where a subset of packets are captured from
a given portion of the network, and forwarded to a number of
distant nodes through a low-latency channel.

dstList={15,17,18};
from t = 200; nodes = "*" do {
if(packet.MAC.source==3 &&

packet.MAC.type==DATA)
put(packet,dstList,RX,100);

}

As mentioned above, attacks specifications can be stored
into the Attack Database. Of course, the user can retrieve
them subsequently, by querying the Attack Database. Querying
parameters include the lapse of time during which attacks are
supposed to be performed, or a list of involved nodes.

Thanks to the Attack Database, the user does not have to
necessarily define new attacks from scratch. Instead, she can
rely on stored specifications, or modify their behavior and
severity for different network and application scenarios.

B. ASF network architecture

As depicted in Figure 2, ASF considers every node as
composed by a generic Sensing & Application module, a
Communication stack module, and a Local Filter module.

Fig. 2. Sensor node architecture in ASF.

The Sensing & Application module may be composed of
different submodules, which model the actual node application
as well as physical sensing processes. The Communication
stack module may include an arbitrarily complex combination
of communication layers, e.g. Routing and MAC. Finally, the
Local Filter module intercepts all packets travelling through
the communication stack. Thus, it is able to collect packets that
the node application has transmitted or is about to receive.

The Local Filter can inspect and alter packets content, add
new packets to be transmitted, or even discard them. Also, it
can alter the node behavior at different layers, change the node
position in space, or even remove the node from the network.

Furthermore, one single Global Filter module is connected
with every Local Filter module. That is, Local Filters of
different nodes can communicate and cooperate with each
other through the Global Filter module, in order to reproduce
and evaluate more complex attacks, e.g. a wormhole attack.



Fig. 3. Overview of ASF network architecture.

Figure 3 shows the overall ASF network architecture, in the
presence of two sensor nodes, i.e. Node1 and Node2.

C. Attacks reproduction

An Attacks Configuration File (ACF) is divided into three
sections. The first section regards physical attacks, and con-
tains the list of node primitives to be performed. We recall
that each node primitive specifies the involved node and the
time when the attack takes place.

The second section of the ACF consists of the list of
conditional attacks to be reproduced. For each one of them,
the following elements are specified: i) the time starting from
which the attack occurs; ii) the set of nodes that perform the
attack; iii) the packet filter; and, finally, iv) the list of packet
primitives to be executed.

Finally, the third section of the ACF consists of the list
of unconditional attacks to be reproduced. For each one of
them, the following elements are specified: i) the time starting
from which the attack occurs; ii) the occurrence frequency
according to which the attack has to be performed over time;
and, finally, iii) the list of packet primitives to be executed.

At its startup, the Attack Simulator retrieves the configura-
tions of the attacks to be reproduced from the ACF. Then, the
following data structures are initialized.

Physical attacks. The simulator considers every node n
among the N nodes involved in at least one physical attack.
For each node n, the simulator creates a list of physical attacks
LPA, containing NPA elements. Such elements represent
physical attacks that involve node n, and are ordered in
a chronological fashion, according to their occurence time.
Finally, the simulator starts N sets of timers, one for each
node n. That is, for each node n, it starts NPA timers, one
for each attack in LPA, thus scheduling their occurrence.

Conditional attacks. The simulator considers every node n
among the N nodes involved in at least one conditional attack.
For each node n, the simulator creates a list of conditional at-
tacks LCA, containing NCA elements. Such elements represent
conditional attacks performed by node n, and are ordered in
a chronological fashion, according to their starting time. Each
element includes: i) the packet filter; and ii) the list of events

that define the attack. Finally, the simulator prepares N sets
of timers, one for each of the above mentioned nodes. Then,
for each node n, it starts NCA timers, one for each attack in
LCA, thus scheduling the beginning of their occurrence.

Unconditional attacks. The simulator creates a list of
unconditional attacks LUA, containing NUA elements. Such
elements represent unconditional attacks to be reproduced,
and are ordered in a chronological fashion, according to their
starting time. Each one of them includes: i) the occurrence
frequency according to which the attack is reproduced over
time; and ii) the list of events that define the attack. Finally,
the simulator starts NUA timers, one for each attack in LUA,
thus scheduling their first occurrence.

Then, the Attack Simulator relies on the above mentioned
data structures, and reproduces attacks as follows.

Physical attacks. When the timer associated to a physical
attack expires, the simulator retrieves the corresponding attack
A from the right LPA list, and reproduces it on the involved
node. Then, the attack A is removed from the LPA list.

Conditional attacks. When the timer associated to a condi-
tional attack expires, the simulator retrieves the corresponding
attack A from the right LCA list, associated to node n. From
then on, node n starts to intercept packets by means of its
own Local Filter, and filters them according to the packet
filter specified in A. Then, for each packet that satisfies the
packet filter, node n executes the list of events defined in A.
The actual reproduction of conditional attacks may involve the
Global Filter, as well as more than one Local Filter module.

Unconditional attacks. When the timer associated to
an unconditional attack expires, the simulator retrieves the
corresponding attack A from the LUA list. From then on,
the list of events defined in A is executed, and repeatedly
performed according to the specified occurrence frequency.
The Global Filter is responsible for starting the actual
reproduction of unconditional attacks.

It is worth remarking that we are interested in simulating
and evaluating the effects of attacks. That is, we assume that
attacks have been entirely and successfully performed, and
focus on their effects on the WSN. Unlike described in [23],
we do not simulate the actual occurrence of attacks. Instead,
we reproduce their final effects on the sensor network.

Finally, it is worth noting that our architectural model
is general, and can be further extended. In fact, the Local
Filter module is able to deal with arbitrary compositions of
communication layers. This makes ASF potentially suitable
for any discrete event network simulator.

D. ASF prototype implementation

We implemented a prototype of ASF for the WSNs simula-
tor Castalia [2], based on the OMNeT++ platform [3]. Castalia
considers the network as a collection of nodes, which sense
values according to a given physical process, and communicate
through a commonly shared wireless channel.



In the original architecture of Castalia, nodes are composed
of different submodules. Sensor nodes applications interact
with the physical process through a sensor manager module,
and retrieve physical information from the environment.

Also, nodes are provided with a full communication stack,
composed by a Routing, a MAC, and a Radio layer. Thanks to
such communication modules, the application sends (receives)
packets to (from) the wireless channel. Also, Castalia provides
the implementations of different Routing and MAC layers.

Fig. 4. Enhanced architecture of Castalia node.

Our ASF implementation for Castalia improves the original
node architecture by introducing the Local Filter module.
As shown in Figure 4, the Local Filter intercepts incoming
and outgoing packets travelling through the communication
stack, between every pair of layers. Finally, every Local Filter
module is connected to the Global Filter module.

IV. APPLICATION SCENARIO

We consider a room, whose size is 100 by 20 meters. The
room is composed by three different areas, and each one of
them hosts a heater, i.e. S1, S2, and S3. Every heater has a
constant temperature of 200 °C.

In order to regularly monitor the heat level, eighteen
static sensor nodes n1, n2, . . . , n18 are positioned within the
room in a regular fashion. That is, they form three rows
of six nodes each. The network is divided into three dif-
ferent node clusters, each one covering a different area,
i.e. {n1, n2, n7, n8, n13, n14}, {n3, n4, n9, n10, n15, n16}, and
{n5, n6, n11, n12, n17, n18}. Basically, each node is responsi-
ble for periodically monitoring the temperature in its cluster.

An additional node is placed in the very center of the room,
and acts as sink. The sink node collects reports received by
other nodes, and computes average temperatures over time.
In particular, it computes and stores average temperatures for
each one of the three clusters, as well as for the whole room.

Figure 5 depicts the room described above. The heaters are
represented by squares, one for each area. The sink node is
the triangle above the central heater. Finally, the eighteen black
circles represent the sensor nodes deployed in the room.

Fig. 5. Application scenario and network topology.

A. Threat model

In such a scenario, an adversary may be interested in
compromising the service availability, or altering reports cor-
rectness before they are collected by the sink. We consider four
possible attacks to the monitoring wireless sensor network.

Removal attack. The adversary removes a number of sensor
nodes from the network. By doing so, the computation of
average temperatures is clearly altered. However, this attack
is relatively simple to detect, since the sink is supposed to not
receive temperature reports from removed nodes anymore.

Misplace attack. The adversary moves a number of sensor
nodes from their original position to a new one. By properly
choosing the new positions, it is possible to alter the computa-
tion of average temperatures on the sink node, or even worse.
In fact, if a temperature warning threshold is defined, an alarm
can be erroneously raised, because of a dangerously fake high
temperature. This attack is far more difficult to detect, since the
sink assumes that all nodes’ original positions are unchanged.

Reprogram attack. The adversary tampers with a number of
sensor nodes, and reprograms their behavior. In particular, she
can force them to erroneously report either the minimum or
the maximum possible temperature value, or even a randomly
generated value. In the latter case, the random value is
comprised among the minimum and maximum possible value.
This attack is quite hard to be detected, although comparisons
with other nodes’ reports may help to contrast its effectiveness.

Drop attack. The adversary forces a number of sensor nodes
to drop a subset of packets, according to specified criteria.
For instance, a node can be forced to drop all data packets
sent to the sink by a certain group of senders. This attack is
quite hard to be detected, since packet loss may be erroneously
considered due to packets corruption or medium access issues.

V. SIMULATIVE ANALYSIS

In this section, we refer to the application scenario described
in Section IV, with network nodes sensing temperature in their
proximity one time per second. Then, we evaluate the effects
of the four attacks presented in Section IV-A by using our
prototype implementation of ASF for the Castalia simulator.

In our simulations, we consider the Multipath Rings routing
protocol [1], the IEEE 802.15.4 MAC protocol [11], and the
CC2420 radio chipset [4]. Results were obtained by means of
10 simulation runs, whose length was 600 seconds each.

The heat propagation model is based on the Customizable
Physical Process provided by Castalia [1]. We assume that
sensor nodes are able to report 0 °C and 1000 °C as minimum
and maximum temperature value, respectively.

In the following, we consider the attacks described in
Section IV-A. For each one of them, we provide an example of



attack configuration using ASL primitives presented in Section
III-A, and discuss its impact on the application.

Considered attacks occur at time t = 200 s, and may involve
three different pairs of nodes. In particular, the adversary
manages to compromise either i) not a node; ii) nodes {2,3};
iii) nodes {9,10}; or iv) nodes {12,18}.

With reference to Figure 5, nodes 9 and 10 are supposed
to be the most important ones, being very close to the central
heater S2 and the sink node. On the other hand, nodes 12 and
18 are supposed to be less important, being positioned at the
extreme right side of the room and far from the sink node.

A. Removal attack
At time t = 200 s, the adversary removes either nodes

{2,3}, {9,10}, or {12,18} from the network. In case nodes
{2,3} are removed, the attack can be described as follows.

destroy(2,200);
destroy(3,200);

 90

 95

 100

 105

 110

 115

 120

 0  100  200  300  400  500  600

T
em

p
er

at
u
re

 (
°
 C

)

Time (s)

No attack
Nodes 2 3

Nodes 9 10
Nodes 12 18

Fig. 6. Average room temperature with nodes removal.

Figure 6 shows variations of the average perceived room
temperature, in case different pairs of nodes are removed. It is
evident that the average value remains almost the same, and
barely changes only if nodes {9, 10} are removed.

This result is reasonable, since the Multipath Rings routing
protocol introduces redundancy in network connectivity, which
results to be pretty robust. Then, messages sent by a given
node are likely to be successfully delivered to the sink, through
some of the other nodes acting as relay.

Actually affecting temperature monitoring requires to re-
move either a consistent amount of nodes, or the most relevant
ones. Observable effects can be seen if nodes {9, 10} are
removed, because of their proximity to the sink node, and
their major contribution in the packet relaying process.

Figure 7 shows the amount of temperature reports received
by the sink from each node. The graph confirms that the
amount of received reports can be drastically reduced, depend-
ing on the specific pair of nodes removed from the network.
Also, if a pair of nodes is removed, reports from other nodes
are more likely to be delivered to the sink. This is due to a
reduced number of nodes contending to access the medium.

 0

 1000

 2000

 3000

 4000

 5000

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18

R
ec

ei
v
ed

 r
ep

o
rt

s

Source node ID

No attack
Nodes 2 3

Nodes 9 10
Nodes 12 18

Fig. 7. Reports reception with nodes removal.

B. Misplace attack

At time t = 200 s, the adversary moves either nodes
{2,3}, {9,10}, or {12,18} to the specified new position. More
specifically: i) nodes {2,3} are moved to position (0;10;0); ii)
nodes {9,10} are moved to position (100;10;0); and, finally,
iii) nodes {12,18} are moved to position (50;10;0). In case
nodes {2,3} are moved to position (0;10;0), the attack can be
described as follows.

move(2,200,0,10,0);
move(3,200,0,10,0);

 80

 100

 120

 140

 160

 180

 200

 220

 0  100  200  300  400  500  600

T
em

p
er

at
u
re

 (
°
 C

)

Time (s)

No attack
Nodes 2 3

Nodes 9 10
Nodes 12 18

Fig. 8. Average room temperature with nodes misplacing.

Figure 8 shows variations of the average perceived room
temperature, in case different pairs of nodes are misplaced. As
depicted in the graph, the nodes pair {12,18} is the only one
that not negligibly affects the average temperature perceived
in the room. This is because such two nodes are supposed to
be at the room border and distant from the sink. Then, they
are moved to the room center, at the very same position of
the sink and the central heater S2, thus altering the average
perceived temperature of up 20%.

If we focus on the right cluster, the misplace attack appears
to be much more effective. As shown in Figure 9, nodes



 80

 100

 120

 140

 160

 180

 200

 220

 0  100  200  300  400  500  600

T
em

p
er

at
u
re

 (
°
 C

)

Time (s)

No attack
Nodes 2 3

Nodes 9 10
Nodes 12 18

Fig. 9. Average right cluster temperature with nodes misplacing.

{12,18} are still the only ones that consistently affect the
average temperature in the right cluster, if moved away from
their legitimate positions. However, the average temperature
in the right cluster is erroneously perceived as considerably
different, i.e. up to 70% higher. Clearly, if a monitoring system
took into account also single clusters, this attack might easily
succeed in improperly raising an alarm.

C. Reprogram attack

At time t = 200 s, the adversary reprograms either nodes
{9,10} or {12,18} to change the content of their own applica-
tion data packets, i.e. their temperature reports, before sending
them to the sink. The new content can be either the minimum,
the maximum, or a random temperature value. In case nodes
{9,10} replace their reported temperature with a random value,
the attack can be described as follows.

from t = 200; nodes = "9 10" do {
if(packet.APP.source==SELF &&

packet.APP.type==DATA)
change(packet,APP.payload,RAND);

}

 0

 100

 200

 300

 400

 500

 0  100  200  300  400  500  600

T
em

p
er

at
u
re

 (
°
 C

)

Time (s)

No attack
Min value
Max value

Random value

Fig. 10. Average room temperature with nodes {9, 10} reprogrammed.

Figure 10 shows variations of the average perceived room
temperature, in case nodes {9, 10} are reprogrammed. As
depicted in the graph, forcing nodes to provide a random
temperature value results in erroneously perceiving the room
temperature up to 100% higher. Moreover, if the nodes report
the maximum possible value, the average perceived room
temperature is over 200% higher. Thus, by performing this
attack, it is easy to improperly raise an alarm within the room.

 0

 50

 100

 150

 200

 250

 0  100  200  300  400  500  600

T
em

p
er

at
u
re

 (
°
 C

)
Time (s)

No attack
Min value
Max value

Random value

Fig. 11. Average room temperature with nodes {12, 18} reprogrammed.

As shown in Figure 11, this attack is less severe in case
nodes {12, 18} are reprogrammed. In fact, such nodes are
located at the right room border, i.e. far from the sink, and
not so close to an heater (especially node 18), i.e. they are
less influent in the temperature monitoring process. Thus, if
nodes are forced to report the maximum possible value, the
average perceived room temperature can be up to 40% higher.

D. Drop attack

At time t = 200 s, nodes {9,10} start to retain all MAC data
packets sent by nodes {1,2,7,8,13,14}. Then, they discard such
packets, rather than relaying them to the sink according to the
Multipath Rings routing protocol. In case nodes {9,10} are
forced to drop MAC data packets from other nodes, the attack
can be described as follows. The utility function belong()
returns true in case the list specified as first argument includes
the value specified as second argument.

srcList={1,2,7,8,13,14};
from t = 200; nodes = "9 10" do {
if(belong(srcList,packet.MAC.source) &&

packet.MAC.type==DATA)
drop(packet);

}

Even if nodes {9,10} drop MAC data packets, the amount
of reports received by the sink is basically not affected. As
a consequence, the average perceived temperature within the
room remains the same, even if a Drop attack occurs. We
performed more simulations, where either nodes {2,3} or
{12,18} perform the attack, and obtained similar results.

This is mainly due to the adopted Multipath Rings routing
protocol. As discussed for the Removal attack in Section V-A,



sensor nodes act as relay at the network layer, thus introducing
redundancy in network connectivity. Thus, even if temperature
reports from sensor nodes are dropped, they are likely to
be eventually delivered to the sink. This means that, in the
considered application scenario, two nodes dropping MAC
data packets are not sufficient to alter network activity and
application performance in a relevant way.

Also, we think that if non trivial routing mechanisms are
adopted, an attack which consists only in discarding packets
can hardly affect applications and performance. Instead, dis-
carding packets may be effective as part of more complex
attacks, together with other basic actions (e.g. altering packet
contents, reprogramming nodes, injecting fake packets).

VI. CONCLUSION

We have presented ASF, our framework for simulative
evaluation of attacks in WSNs. ASF provides an Attack
Specification Language to specify different kinds of attacks,
and an Attack Simulator to quantitatively evaluate their effects.
This allows users to evaluate attacks severity, and thus define
protection priorities and select appropriate countermeasures.

We have considered a realistic application scenario, and
used our ASF prototype for the Castalia simulator to evaluate
the effects of four different attacks. Our results show how
considered attacks affect the application and network behavior.
Also, they suggest to ensure reliability of communications, and
provide physical protection to sensor nodes.

Our future work will focus on further improving the
ASF framework, in order to specify and evaluate more com-
plex attacks, potentially combined with one another. Also,
we will consider a wider range of application scenarios, and
evaluate more complex attacks and countermeasures to them.

ACKNOWLEDGMENT

This work has been supported by EU FP7 Network of Ex-
cellence CONET (Grant Agreement no. FP7-224053) and EU
FP7 Integrated Project PLANET (Grant agreement no. FP7-
257649). We would also like to thank Roberta Daidone and
Alessandro Pischedda for their valuable help during the im-
plementation phase of our work.

REFERENCES

[1] “Castalia - A simulator for Wireless Sensor Networks and Body
Area Networks, Version 3.2 User’s Manual.” [Online]. Available:
{http://castalia.npc.nicta.com.au/pdfs/Castalia-UserManual.pdf}

[2] “National ICT Australia - Castalia.” [Online]. Available: http:
//castalia.npc.nicta.com.au/

[3] “OMNeT++ Network Simulation Framework.” [Online]. Available:
http://www.omnetpp.org/

[4] “Texas Instruments CC2420 2.4 GHz IEEE 802.15.4 / ZigBee-ready
RF Transceiver.” [Online]. Available: {http://www.ti.com/lit/ds/symlink/
cc2420.pdf}

[5] “TinyOS Home Page.” [Online]. Available: http://www.tinyos.net/
[6] A. Becher, E. Becher, Z. Benenson and M. Dornseif, “Tampering with

Motes: Real-World Physical Attacks on Wireless Sensor Networks,” in
Proceeding of the 3rd International Conference on Security in Pervasive
Computing (SPC), 2006, pp. 104–118.

[7] B. Sun, K. Wu and U. Pooch, “Secure Routing Against Black-hole
Attack in Mobile Ad Hoc Networks,” in International Conference on
Communications and Computer Networks (CCN’02), November 2002.

[8] C. Karlof and D. Wagner, “Secure routing in wireless sensor networks:
attacks and countermeasures,” in Sensor Network Protocols and Appli-
cations, 2003. Proceedings of the First IEEE. 2003 IEEE International
Workshop on, May 2003, pp. 113–127.

[9] G. Padmavathi and D. Shanmugapriya, “A Survey of Attacks, Security
Mechanisms and Challenges in Wireless Sensor Networks,” Interna-
tional Journal of Computer Science and Information Security, vol. 4,
no. 1 & 2, pp. 117–125, August 2009.

[10] I. M. Atakli, H. Hu, Y. Chen, W. S. Ku and Z. Su, “Malicious node
detection in wireless sensor networks using weighted trust evaluation,”
in Proceedings of the 2008 Spring simulation multiconference, ser.
SpringSim ’08. San Diego, CA, USA: Society for Computer Simulation
International, 2008, pp. 836–843.

[11] IEEE Std. 802.15.4-2006, IEEE Standard for Information technology
- Telecommunications and information exchange between systems -
Local and metropolitan area networks - Specic requirements Part
15.4: Wireless Medium Access Control (MAC) and Physical Layer
(PHY) Specifications for Low-Rate Wireless Personal Area Networks
(WPANs), Institute of Electrical and Electronics Engineers, Inc., New
York, September 2006.

[12] J. Newsome, E. Shi, D. Song and A. Perrig, “The Sybil attack in sensor
networks: analysis & defenses,” in Third International Symposium on
Information Processing in Sensor Networks, (IPSN 2004), April 2004,
pp. 259–268.

[13] P. Tague and R. Poovendran, “Modeling node capture attacks in wireless
sensor networks,” in 46th Annual Allerton Conference on Communica-
tion, Control, and Computing, September 2008, pp. 1221–1224.

[14] R. Daidone, “Experimental evaluations of security impact on IEEE
802.15.4 networks,” in 2011 IEEE International Symposium on a World
of Wireless, Mobile and Multimedia Networks (WoWMoM 2011), June
2011, pp. 1–2.

[15] R. Daidone, G. Dini and M. Tiloca, “On experimentally evaluating the
impact of security on IEEE 802.15.4 networks,” in 2011 International
Conference on Distributed Computing in Sensor Systems and Workshops
(DCOSS 2011), June 2011, pp. 1–6.

[16] S. Han, E. Chang, L. Gao and T. Dillon, “Taxonomy of Attacks
on Wireless Sensor Networks,” in EC2ND 2005, Blyth, Andrew, Ed.
Springer London, 2006, pp. 97–105.

[17] S. Kaplantzis, A. Shilton, N. Mani and Y. A. Sekercioglu, “Detect-
ing Selective Forwarding Attacks in Wireless Sensor Networks using
Support Vector Machines,” in Intelligent Sensors, Sensor Networks and
Information, 2007 (ISSNIP 2007). 3rd International Conference on,
December 2007, pp. 335–340.

[18] T. Bonaci, L. Bushnell and R. Poovendran, “Node capture attacks in
wireless sensor networks: A system theoretic approach,” in Decision
and Control (CDC), 2010 49th IEEE Conference on, December 2010,
pp. 6765–6772.

[19] T.-G. Lupu, “Main types of attacks in wireless sensor networks,” in
Proceedings of the 9th WSEAS international conference on signal,
speech and image processing, and 9th WSEAS international conference
on Multimedia, internet & video technologies, ser. SSIP ’09/MIV’09.
World Scientific and Engineering Academy and Society (WSEAS),
2009, pp. 180–185.

[20] W. Du, L. Fang and P. Ning, “LAD: Localization Anomaly Detection
forWireless Sensor Networks,” in 19th IEEE International Parallel and
Distributed Processing Symposium (IPDPS’05), April 2005.

[21] Y. Hu, A. Perrig, D. Johnson, “Packet Leashes: A Defense against
Wormhole Attacks in Wireless Ad Hoc Networks,” in IEEE INFOCOM
2003, April 2003.

[22] Y-T. Wang and R. Bagrodia, “Scalable emulation of TinyOS applications
in heterogeneous network scenarios,” in IEEE 6th International Confer-
ence on Mobile Adhoc and Sensor Systems (MASS 2009), October 2009,
pp. 140–149.

[23] Y.-T. Wang and R. Bagrodia, “SenSec: A Scalable and Accurate Frame-
work for Wireless Sensor Network Security Evaluation,” in Distributed
Computing Systems Workshops (ICDCSW), 2011 31st International
Conference on, June 2011, pp. 230–239.

[24] Y. Xu, G. Chen, J. Ford and F. Makedon, “Detecting Wormhole Attacks
in Wireless Sensor Networks,” in Critical Infrastructure Protection’07,
2007, pp. 267–279.


