
MADAM: a Multi-Level Anomaly Detector for
Android Malware

Gianluca Dini1, Fabio Martinelli2, Andrea Saracino1,2, and Daniele Sgandurra2

1 Dipartimento di Ingegneria dell’Informazione
Università di Pisa, Pisa, Italy

firstname.lastname@iet.unipi.it
2 Istituto di Informatica e Telematica

Consiglio Nazionale delle Ricerche, Pisa, Italy
firstname.lastname@iit.cnr.it

Abstract. Currently, in the smartphone market, Android is the plat-
form with the highest share. Due to this popularity and also to its open
source nature, Android-based smartphones are now an ideal target for
attackers. Since the number of malware designed for Android devices is
increasing fast, Android users are looking for security solutions aimed at
preventing malicious actions from damaging their smartphones.
In this paper, we describe MADAM, a Multi-level Anomaly Detector
for Android Malware. MADAM concurrently monitors Android at the
kernel-level and user-level to detect real malware infections using ma-
chine learning techniques to distinguish between standard behaviors and
malicious ones. The first prototype of MADAM is able to detect several
real malware found in the wild. The device usability is not affected by
MADAM due to the low number of false positives generated after the
learning phase.

Keywords: Intrusion detection, Android, Security, Classification

1 Introduction

In the last years, mobile devices, such as smartphones, tablets and PDAs, have
drastically changed by increasing the number and complexity of their capabil-
ities. Current mobile devices offer a larger amount of services and applications
than those offered by personal computers. At the same time, an increasing num-
ber of security threats targeting mobile devices has emerged. In fact, malicious
users and hackers are taking advantage of both the limited capabilities of mobile
devices and the lack of standard security mechanisms to design mobile-specific
malware that access sensitive data, steal the user’s phone credit, or deny access
to some device functionalities. In 2011, malware attacks increased by 155 percent
across all platforms [1]: in particular, Android is the platform with the highest
malware growth rate by the end of 2011.

To mitigate these security threats, various mobile-specific Intrusion Detection
Systems (IDSes) have been recently proposed. Most of these IDSes are behavior-
based, i.e. they do not rely on a database of malicious code patterns, as in the



case of signature-based IDSes. A behavior-based (or anomaly-based) IDS is a
system that attempts to learn the normal behavior of a device. To this end, the
system is firstly trained by receiving as input a set of parameters that describes
the way the user normally behaves. Secondly, during the normal usage, the IDS
is able to recognize as suspicious any behavior that strongly differs from those
well-known, i.e. learnt during the first phase.

In this paper, we describe MADAM, a Multi-level Anomaly Detector for
Android Malware, which monitors Android both at the kernel-level and user-level
to detect real malware infections. MADAM exploits machine learning techniques
to distinguish between standard behaviors and malicious ones. A first prototype
of MADAM has been implemented for Android smartphones, but its theoretical
approach can be extended to other mobile operating systems (OS) as well. The
first set of results show that this approach works well with real malware and it
is usable since it has a very low false positive rate.

The main contributions of the paper are the following:

– We describe the design and implementation of MADAM, a host-based real-
time anomaly detector that exploits a multi-level view of the monitored
smartphone, which considers both OS events, namely the issued system calls,
and smartphone parameters, e.g. the user activity/idleness, to detect intru-
sion attempts.

– We show that a dataset with a small number of parameters (13 features), and
a relatively small number of elements, is effective in describing the smart-
phone behavior to a machine learning system; furthermore, MADAM can
self-adapt to new behaviors by including new elements in the training set
learnt at run-time.

– The framework has been implemented and tested on real devices (Samsung
Galaxy Nexus) to understand the users’ experience. The tests have been
performed with more than 50 popular applications and several user behaviors
to measure the false positives; on the average, a user receives less than 5 false
positives per day, and the overall performance overhead is acceptable, i.e. 3%
of memory consumption, 7% of CPU overhead and 5% of battery.

– To the best of our knowledge, MADAM is the first anomaly-based IDS for
Android that has been tested using real malware: furthermore, at the time of
the tests, some of the tested malware were zero-day-attacks and current off-
the-shelf security solutions were not able to detect them. The system shows
a detection rate of 93%, and in particular of 100% with rootkits.

– MADAM is able to detect unwanted outgoing SMSes stealthily sent by An-
droid malicious applications.

The rest of the paper is organized as follows. Section 2 lists some related work.
Section 3 describes the MADAM architecture and its current implementation.
Section 4 reports some preliminary tests and results. In Sect. 5 we discuss the
features and the current limitations of the framework. Finally, Sect. 6 concludes
by discussing some future works.



2 Related Work

Crowdroid [2] is a machine learning-based framework that recognizes Trojan-
like malware on Android smartphones, by analyzing the number of times each
system call has been issued by an application during the execution of an action
that requires user interaction. A genuine application differs from its trojanized
version, since it issues different types and a different number of system calls.
Crowdroid builds a vector of m features (the Android system calls). Differently
from this approach, MADAM uses a global-monitoring approach that is able to
detect malware contained in unknown applications, i.e. not previously classified.
Furthermore, on Crowdroid only two trojanised applications have been tested,
whereas on MADAM we tested ten real malware. A similar approach is presented
in [3], which also considers the system call parameters to discern between normal
system calls and malicious ones.

Another IDS that relies on machine learning techniques is Andromaly [4],
which monitors both the smartphone and user’s behaviors by observing several
parameters, spanning from sensors activities to CPU usage. 88 features are used
to describe these behaviors; the features are then pre-processed by feature selec-
tion algorithms. The authors developed four malicious applications to evaluate
the ability to detect anomalies. Compared to Andromaly, MADAM uses a smaller
number of features (13), and has been tested on real malware found in the wild,
and shows better performance in terms of detection and, especially, of false posi-
tives rate. After the learning phase, the false positive rate of MADAM is 0.0001,
whereas that of [4], which uses a sampling method similar to that of MADAM
and with a comparable sampling rate (2 seconds), is 0.12. The detection rate of
MADAM is 93%, while that of [4] is 80%.

Other approaches only monitor misbehaviors on a limited number of func-
tionalities such as outgoing/incoming traffic [5], SMS, Bluetooth and IM [6], or
power consumption [7] and, therefore, their detection accuracy is higher of other
work but less general.

[8] monitors smartphones to extract features that can be used in a machine
learning algorithm to detect anomalies. The framework includes a monitoring
client, a Remote Anomaly Detection System (RADS) and a visualization com-
ponent. RADS is a web service that receives, from the monitoring client, the
monitored features and exploits this information, stored in a database, to im-
plement a machine learning algorithm. In MADAM, the detection is performed
locally and, more importantly, in real-time. [9] proposes a behavior-based mal-
ware detection system (pBMDS ) that correlates user’s inputs with system calls
to detect anomalous activities related to SMS/MMS sending. MADAM is more
general since it considers all the activities on a smartphone. A further frame-
work targeted at SMS/MMS monitoring is Proactive Group Behavior Contain-
ment [10], which is aimed at containing malicious software spreading in these
messaging networks.

[11] and [12] propose Kirin security service for Android, which performs
lightweight certification of applications to mitigate malware at install time. Kirin
certification uses security rules that match undesirable properties in security



configuration bundled with applications. [13] performs static analysis on the
executables to extract functions calls usage using readelf command. Hence,
these calls are compared with malware executables for classification. Finally,
[15] surveys some security solutions for mobile devices.

3 MADAM Approach

MADAM is a Multi-level Anomaly Detector for Android Malware that concur-
rently monitors Android at the kernel-level and user-level to detect real malware
infections using machine learning techniques to distinguish between standard
behaviors and malicious ones. In fact, the problem of anomaly detection can be
seen as a problem of binary classification, in which each normal behavior is clas-
sified as “Standard”, whereas abnormal ones are classified as “Suspicious”. Some
behavior-based IDSes rely on computational intelligence and machine learning
techniques, such as clustering [2], probability-based classifiers [4] [5], decision
trees [5] and others. Henceforth, we will use the generic term “classifier” for
these techniques.

Classifiers automatically learn how to classify a set of items. In the proposed
scenario they could be seen as a black-box whose input is a set of behaviors
and the output for each behavior is “Standard” or “Suspicious”. A classifier
understands how to correctly classify elements after the execution of a training
phase. This phase is critical, since it determines the accuracy of the classifier.
Hence, it is fundamental to provide the classifier with a good training set.

To build a good dataset for smartphones, i.e. one that represents a typical
smartphone behavior, MADAM considers elements that represents behaviors
both when the user is active and when she is idle. Moreover, our training set also
contains some malicious behaviors, which strongly differ from the standard ones.
Usually, the collected features come from several sources of events [4]: choosing
the right features to best represent the smartphone behaviors is a critical task,
since their number and correlation determine the quality of the training set [16].
As discussed in Sect. 3.1, MADAM considers two levels, the kernel-level and the
application-level. Table 1 provides a list of features that can be monitored at the
kernel and user-level.

3.1 Multi-Level Detection

MADAM is a Multi-level Anomaly Detector for Android Malware that com-
bines features extracted from several levels to (i) provide a wider range of mon-
itored events and (ii) discover correlations among these events belonging to dis-
tinct levels. Currently, MADAM considers two levels, the kernel-level and the
application-level. At the first level, MADAM monitors system calls. In fact, we
believe that system calls are a good representative sample of the smartphone
behavior, since their usage is a monitor for user activity, files and memory ac-
cess, incoming/outgoing traffic, energy consumption and sensors status. More
importantly, they can be used as monitors for intrusion attempts: this is based



Level Features

Kernel

system calls
running processes
free RAM
CPU usage

User/Applications

idle/active
key-stroke
called numbers
sent/received SMS
Bluetooth/Wi-Fi analysis

Table 1. Features at Distinct Levels

upon the assumption that an attacker has to execute one (or several) system
calls to harm the system. At the second level, the extracted features consider
whether the user is idle or not, and the number of sent SMSes. A high-level view
of MADAM architecture is depicted in Fig. 1.

To extract features from these two levels, the framework includes two moni-
tors. The first one is a kernel-level monitor that intercepts all the critical system
calls, and that records the number of their occurrences during a period T . Hence,
if m is the number of monitored system calls, this monitor returns a vector of
dimension m at each period T .

Fig. 1. Functional Blocks of MADAM

The second monitor is at the application-level, and it can be split in two sub-
monitors that handle two different tasks: (i) to periodically measure the number
of SMS sent in a time interval; (ii) to monitor the user idleness. The user idleness
is a fundamental feature since the activity of the device is usually more intense



when the user is interacting with the device itself: hence, the number of issued
system calls depends upon the status of the device/user. Since after a very short
period of user inactivity the smartphone screen is turned off by the OS, the user
can be considered active either if the screen is on or a voice call is active [17].

The elements of the datasets are vectors with m+ 2 features, where m is the
number of monitored (critical) system calls and the last two features represent,
respectively, the device status (idle or active) and the number of sent SMSes.
A collector receives these features from all the monitors and then builds the
vectors. These vectors are stored in local files using a logger module so that they
can be used to build a training set, which is composed of t

T vectors, where t
is the total time spent collecting data and T is the logging interval (an input
parameter of the framework). A training set is then used to obtain a trained
classifier. This phase of data gathering, preprocessing and classifier training, is
called the Training Phase. In the Operative Phase, which is the phase where the
user actually uses the smartphone, each monitored vector is given as input to the
trained classifier and, if it is classified as suspicious, a notification is immediately
shown to the user.

3.2 Implementation

We have developed the framework on a Samsung Galaxy Nexus HSPA, with OS
Android Ice Cream Sandwich version 4.0.1, and Linux kernel version 3.0.1.
The lowest-level component of MADAM framework is the system call monitor,
which has been implemented as a Linux kernel module that hijacks the execution
of the monitored system calls: each system call is coupled with a counter that
is incremented before its execution. In the current implementation, this module
considers only a subset of all the available system calls on Android Linux, those
that are rather critical, in term of security, in the description of the system
behavior (see Sect. 4.1). The kernel module contains a task that periodically
(with a period of T ) logs the actual value of the counters on a shared buffer with
the collector and then resets all the counters. The inclusion and execution of the
hijacking module requires the Super User (SU) permissions: since on the Android
production builds (the OS version installed on device by manufacturers) SU is
disabled, during the tests the devices required rooting, which is a procedure to
get root permissions.

The highest-level component of the framework includes an Android Appli-
cation in Java, which has been implemented using the Android SDK. The first
component of the Java Application is the MADAM collector, which periodi-
cally reads (i) the buffer shared with the kernel monitor, (ii) the user status
(idle/active), (iii) the number of SMSes sent in the period T . Since Android
only allows monitoring SMSes that are sent through the default SMS manager,
i.e. an application can send SMSes without the user being notified, to detect sent
SMSes MADAM exploits the Android system log file (LogCat), which contains
the output of a low level function that is called each time an SMS is being sent.
Furthermore, the Java application also includes two parallel tasks. The first one
is the application-level logger (Figure 1), which reads the vectors built by the



collector and logs them in a log file that results in a matrix with t
T rows. The

second task is the classifier that states if the vectors built by the collector are
good or suspicious. In the latter case, the classifier sends a notification to the
user and logs those vectors that have been classified as suspicious, for further
analysis. For classification we used Weka3 version 3.6.6, an open source library
in Java that includes several classification tools.

4 Experimental Results

In this section we describe in detail the tests which were performed both for
malware detection and false positives measurement.

Application Type Native Application Type Native

Adobe Reader PDF reader No AlarmDroid Alarm Manager No

Angry Birds Game No Angry Birds Space Game No

Astro File Manager No Browser Internet Browser Yes

Calculator Utility Yes Compass Utility No

Calendar Utility Yes Voice Composer User Interface Yes

Color Note Memo Manager No Defender II Game No

Camera Video Capture Yes Contacts Contact Manager Yes

Download Download Browser Yes Dropbox Cloud Storage No

Earth 3D Map Utility No Email E-Mail Manager Yes

Facebook Social Network No Flash Player SWF player No

Fruit Ninja Game No Gallery Multimedia Viewer Yes

GMail Cloud E-Mail Yes Google Talk Google Chat Yes

Google+ Social Network Yes ilMeteo Weather Forecasting No

Hamster Bomb Game No Opera Web Browser No

Instagram Picture Sharing No Jewels Star Game No

SIM Manager SIM Manager Yes Latitude Advanced Navigator Yes

Places Smart Maps Yes Maps Maps Utility Yes

Messages SMS/MMS Manager Yes Messenger Chat Manager Yes

MADAM IDS No Movie Studio Video Editor Yes

Music Audio Player Yes Navigator Navigator Yes

News and Meteo News Utility Yes One Touch Drawing Game No

Play Store Application Installer Yes QR Droid QR Scanner No

Google Web Search Yes Skype VoIP No

System Panel Task Manager No Smart System Manager Task Manager No

Superuser Rooting Utility No Phone Call Manager Yes

Temple Run Game No TGCom24 News Utility No

Google Translator Utility No Viber VoIP No

Wikipedia Encyclopedia No YouTube Video Streaming Yes

Table 2. Tested Applications

4.1 Training Set and Classifiers

To do so, we have logged the behavior (through system calls) of the phone during
the execution of normal actions performed by a user. In this logging phase we

3 http://www.cs.waikato.ac.nz/ml/weka/



have tried to ensure that the device has not been infected: we have installed only
popular applications from the official site (Google Play) having a high rating and
positive comments. For a full list of tested applications refer to Tab. 2.

After a first set of preliminary tests, we have noticed that the system calls
that best describe the device behavior are the following: open, ioctl, brk, read,
write, exit, close, sendto, sendmsg, recvfrom, recvmsg. We expected such a
result, since Android is a framework composed by several functional blocks that
communicate using the mechanisms provided by the underlying Linux kernel and
an increase in the smartphone activity causes directly a sharp increase in the
occurrences of these system calls, all of which concern buffer or file operations,
or communications between the framework components. This is why the change
in the number of occurrences of these system calls is generally related with the
user idleness. Hence, to build the training set, we consider as standard vectors
those with a low number of occurrences of these system calls and the user idle,
and those where the number of system call occurrences is high and the user is
active.

In addition to the previous 12 features (11 system calls and user idleness),
the vectors used for classification also includes a further feature representing the
number of sent SMSes in the time interval T . In fact, monitoring SMS usage
is semantically difficult through system calls only and SMS messages can be
used to harm the user, stealing her credit. Moreover, SMSes are strongly related
with the user activity. In fact, in a normal usage, an SMS is sent after the user
has composed the message, which requires an active interaction. However, some
applications send or receive SMSes to provide some kind of services. Since, SMS is
a costly service, if compared to the amount of data that are sent with a message,
applications should avoid SMS as communication channel as much as possible,
and they should require that the user actively agrees with the sending of each
message. Applications that send SMS messages when the user is idle should be
considered suspicious. For all these reasons, we have logged several SMS sending
phases, which represent real-life usage scenarios, and we have added the resulting
vectors to the dataset.

Classifiers are not able to recognize a suspicious element if they are not
trained also with some elements that belong to the suspicious behavior class. As
previously said, a suspicious behavior is one that strongly deviates from those
known to be good. Hence, we have manually defined some suspicious elements
by creating both vectors with a high number of system call occurrences, when
the user is idle, and vectors with an extremely high number of system call in-
vocations, when the user is active. Figure 2 depicts some examples of standard
and suspicious vectors. The picture depicts four sample vectors monitoring oc-
currences for 11 system calls with T = 1 sec. The last number of each vector
means 1 for user active and 0 for user idle.

More malicious vectors were derived from the ones that we have defined using
a data balancing method named SMOTE (Simple Minority Oversampling TEch-
nique), which creates new vectors from those provided by means of interpolation.
To represent malicious behaviors concerning SMS messages, we have manually



Fig. 2. Sample Vectors Monitoring Occurrences for System Calls and Idleness

defined and added to the training set some vectors with a number of sent mes-
sages that is very high compared to the user activity. We would like to point
out that if classifiers are trained using such a dataset, which does not include
malicious vectors generated by real malware, then each malware, if detected, can
be considered as a zero-day-attack.

To increase the detection rate, our application runs in parallel two instances
of the same detection framework, with a different sampling period T . The first
instance is a short-term monitor with Tshort = 1 sec, whereas the second in-
stance constitutes a long-term monitor with Tlong = 60 sec (both values are
configurable at run-time). The cooperation of these two instances detects differ-
ent types of misbehaviors. The short-term monitor is more effective in detecting
“spiky” misbehaviors, i.e. with sudden, brief and sharp increase of the system
call occurrences. On the other hand, the long-term monitor is aimed at detect-
ing misbehaviors that distribute their action constantly in a long period of time,
such as spyware, i.e. whose effect is not immediate.

Hence, two different datasets were built and used to train two classifiers of
the same type. The classifier is a K-Nearest Neighbors (K-NN) [18] with K = 1
(1-NN). This classifier has very good performance and can easily adapt to a large
number of problems, requiring a small amount of computation time to classify
an element and a trivial update algorithm. We have also tested several other
classifiers on our dataset but the 1-NN outperforms them all.

4.2 Experiments Description

Figure 3 describes at a high level the sequence of steps performed during the
experiments.

During the Training Phase, the classifiers are trained with the initial, manually-
defined, training set described in Sect. 4.1. The Learning Phase follows the train-
ing phase and it is used to learn behaviors that are specific of the user. This phase
has been used to obtain an estimate of the False Positive Rate (FPR) trend (see
Sect. 4.3), i.e. how the number of false positives decreases as they are used to pro-
gressively update the trained classifiers. During the Operative Phase, the trained
classifiers are used to perform anomaly detection. During this experiment, this
phase has been divided into two sub-phases: during FPR measuring the device
has been tested with clean applications to compute the number of false positives



Fig. 3. Experimental Phases

raised per day; in Malware Testing trojanized applications have been installed
on the device to determine the detection accuracy of the MADAM classifiers.
Since the learning phase and FPR measurement greatly depend on the usage of
the device, these tests were performed by three distinct users.

The next two sections describe the tests performed during the Operative
Phase.

4.3 False Positive Measurement

Anomaly-based IDS have been criticized since they are more likely to generate
false positives. False positives may strongly reduce the device usability, so we
have performed a critical analysis of their occurrence on our system.

FPR Trend. A first experiment has been performed to estimate the FPR trend,
i.e. how the number of false positives decreases as they are used to progressively
update the trained classifiers. The training set that we have manually defined
and given to the short-term classifier contained 900 standard vectors and 100 ma-
licious ones. The long-term classifier has been trained with 250 standard vectors
and 50 malicious ones. These datasets are relatively small and they represent
some standard and basic behaviors (for the standard vectors), such as phone
calling, SMS messages typing and sending, Internet browsing and gameplay of
the popular game Angry Birds. Soon after the first dataset had been manually
set up, and the classifier started, as we expected some false positives were raised
(see Tab. 3 for details). False positives are likely to occur when the user performs
a new behavior that strongly differs from those stored in the training set. Due
to both the high number and the diversity of applications available for Android,
unknown behaviors are likely to occur.

To reduce the occurrence of false positives, MADAM has to learn how the
user behaves in an initialization phase, which we call the learning phase, where
false positives are directly added to the classifier knowledge base without any
user intervention. During the tests, the average duration of a learning phase
to obtain a reasonable number of false positives is 30 minutes. However a new
learning phase can be initiated actively by the user when she wants to update
the classifier with the generated false positives, for example by a newly installed
application (if she considers that application trustworthy). Figure 4 shows how
the FPR decreases immediately after the training phase. During this experiment



we have updated the classifier in five steps: after ten minutes and then each hour
for four hours. More details on this experiment are reported in Tab. 3.

Fig. 4. FPR Decrease During the Learning Phase

Time 10 min 60 min 120 min 180 min 240 min

Vectors 610 3050 3660 3660 3660

False Positives 156 55 23 10 5

FPR 0.26 0.015 0.0061 0.0028 0.0011
Table 3. Learning Phase

FPR Measurement. We used the training set obtained from this learning phase to
re-train the classifiers, and then we performed furthers experiments to estimate
the number of false positives raised in 24 hours. During these tests, one of the
smartphones has been equipped with more than 50 applications (see Tab. 2)
and heavily used during the day. The other two smartphones have been set
up, respectively, for moderate and basic usage. As expected, these smartphones
with the lowest usage have raised a lower number of FP than the first one4.
For this reason, here we only focus on the tests performed on the heavily-used
smartphone.All the applications reported in Tab. 2 have been used during the
24 hours. The table lists, for each application, if it was natively installed on the
device or it has been downloaded from Google Play.

4 during these experiment the classifiers have not been updated with the false positives,
which were added to the training set only at the end of the experiments.



The test returned 15 false positives (FPR = 0.000171), 9 of which were
raised by the short-term classifier (FPR = 0.000104) and 6 by the long-term one
(FPR = 0.004167). We updated the classifiers with the collected false positives,
and then we reiterated the experiment for the following two days. Table 4 shows
these results: on the average, on the heavily-used smartphone less than ten false
positives are raised during 24 hours, with a descending trend.

Further tests have been performed using the non-trojanized version of some
applications used for malware detection, to check if they would raise false posi-
tives as well5. We installed a clean version of the web browser Opera and of the
Hamster Bomb game, while their trojanized versions were infected respectively
by OpFakeA and TGLoader. As expected, no intrusions were detected.

Day Overall FPR Tshort FPR Tlong FPR

1 0.000171 0.000104 0.004167

2 0,000139 0.000116 0.00137

3 0.000114 0.00008102 0.00208
Table 4. False Positive Rate

4.4 Malware Detection

We have tested MADAM with real Android malware hidden in trojanized appli-
cations: all the malware applications are taken from a repository6 that is updated
as soon as new threats are discovered. The tested malware belong to different
categories, e.g. Trojan, Rootkit and Spyware.

open ioctl brk read write exit close sendto sendmsg recvfrom recvmsg idleness SMS Num

2246 25481 4341 47 16899 14416 12916 178 139 179 186 0 2

Table 5. One of the Malicious Vectors Monitored of OpFakeA Malware

Each malware has been monitored as standalone to avoid cross malware
detections. Furthermore, to reduce the likelihood that the suspicious vector has
been caused by a false positive, each malware has been tested three times, restor-
ing the device to a clean state after each test. Table 5 reports one of the vectors
that MADAM (the Tlong instance) classified as malicious during the infection of
the malware OpFakeA (see Tab. 6). The last two elements of the vector are the
most important: they mean that 2 SMS messages sending requests have been

5 these tests have been performed on some applications only because of the difficulty
of finding a clean and trustworthy version of all the trojanized applications, which
are only available on un-official markets.

6 http://contagiominidump.blogspot.it/



issued in a time interval with no user activity, a behavior that should be con-
sidered malicious for the SMS policies formerly discussed. After these tests, the
dataset has not been updated with the suspicious vectors, so that each detected
malware can be effectively considered as a zero-day-attack.

Table 6 shows the results of the three tests performed for each malware.
The table also specifies which instance of the system monitor, i.e. short-term
(Tshort) or long-term (Tlong), has detected the malware. This should give an
idea of which type of misbehavior is performed by the malware. Those malware
that have been detected by both classifiers are usually the most aggressive. We
will further discuss these results in Section 5.

Malware Type Detection Rate T Description

Lena.B BootKit 100% Tshort Modifies files in the system partition.

Moghava Trojan 100% Tlong Modifies pictures stored on the device. Gradually
fills the SDCard memory.

TGLoader RootKit 100% Both Obtains root privileges, installs other malicious
applications, opens a backdoor.

OpFakeA Trojan 100% Tlong Sends SMS with SIM data, downloads applica-
tions and stores them on the SDcard.

NickySpyB Spyware 66% Both Record calls, stores them on the SDcard then
sends them with other user’s data to an external
server.

Gone in 60 sec Spyware 66% Tshort Sends user’s data to an external server.

KMin Trojan 100% Tlong Sends SMS to premium rate numbers

Lotoor Rootkit 100% Both Obtains root privileges and opens several back-
doors.

DroidDream Rootkit 100% Tlong Obtains root privileges and opens a backdoor.

Droid Kung Fu Rootkit 100% Both Sends device information to a remote server.

Table 6. Malware Detection Results

4.5 Performance

In the performed tests, the MADAM’s impact on performance has not greatly
influenced the user experience. The users have not noticed any reduction in re-
sponsiveness or in general visual performance. The periodic services of MADAM
require an average of 7% of CPU overhead and of 3% MB of RAM space. Fig-
ure 5 depicts two different traces of CPU and memory usage, from left to right,
without and with MADAM running, taken using the System Panel application.
The native battery monitor of the Android settings reports that MADAM uses
only 2-5% of the total smartphone battery.

5 Discussion

To the best of our knowledge, MADAM is the first real-time anomaly-based
malware detector developed for real devices, specific for Android, that is able to
detect real malware of different categories. The detection results and FPR are



Fig. 5. Traces of CPU and RAM Consumptions

better than those of previous anomaly-based detection systems for Android ([4],
[2]).

The overall detection accuracy was of 100% for all malware, except for two
that were not detected in one of the tests. These malware (NickySpy and Gone

in 60 seconds) are spyware and their behavior is less aggressive compared to
that of the other monitored malware. NickySpy records all the calls on the
SDCard and then sends them via HTTP to an external server. The monitored
device behaviors during a normal call and during an eavesdropped one show
clear differences. However this misbehavior can be confused with the one in
which a heavy application, such a 3D videogame, is running and, hence, the
system can be deceived in such a situation.

Gone in 60 seconds is not a real malware but an application that a user
intentionally installs on the device and when it is started reads all the user
data, such as SMS messages and contacts, and sends them all to an external
server. Then, the applications is automatically uninstalled, all in no more than
60 seconds (hence the name). During the execution, the application displays
to the user a number that can be inserted on a website, hosted on the same
server where the data have been sent, to retrieve the data. The behavior of this
malware results more aggressive when there are much more data on the phone,
in the other cases its detection can result tricky.

It is important to underline that, differently from previous approaches, our
proposed framework is not based upon a per-application monitoring: instead, it
performs a global monitoring, i.e. it is oblivious of which application(s) generated
the event(s). This method can be more effective in identifying sudden behavior
changes: as an example, a method that could be used to trick per-application
controls is that of developing some applications, harmless if taken as standalone,



but that can cooperate to perform an attack. A proof-of-concept of these appli-
cations is presented in [4], where the malicious application, a video-game, looks
harmless because it does not ask any dangerous Android permission. However,
after the installation, this application shares the permissions with another tro-
janized application that does not performs malicious operations, but that has
the permission to send both SMS and MMS. Then, the video-game starts to send
sensitive information about user’s contacts by means of SMS messages. Such an
attack should be identified more easily by means of a global monitoring system,
which considers all of the system calls issued in a time interval. Being a global
anomaly detector, MADAM is able to detect an intrusion attempt but it is not
able to detect the malicious source. However, its response can be used to trigger
further components able to track and stop the source of the malicious behavior.

A question that may arise is how the user is able to distinguish between a
false positive and a real intrusion. After the learning phase, occasional false pos-
itives become a rare event, so occasionally detection can be related with them.
In fact, all the tested malware, show aggressive behaviors that cause periodical
and multiple detections in a limited period of time. The only exception concerns
SMS-based malware, which should be handled with an ad hoc strategy. A pos-
sible extension to this framework can automatically handle the occasional false
positives, or can guide the user through a smart learning phase, to learn as much
as possible from her behavior in a short period of time. The same framework
can be used to trigger a new learning phase when a new trustworthy application
is installed.

6 Conclusions and Future Works

In this paper, we have presented MADAM, a framework that allows early de-
tection of intrusion attempts and malicious actions performed by real malware
for Android devices. The framework exploits a multi-level approach, i.e. that
combines features at the kernel-level and at the application level, and is based
upon machine learning techniques. The first set of results is encouraging: the
first prototype of MADAM for Android smartphone has managed to detect all
the 10 monitored real malware, with a negligible impact on the user experience
due to the few false positives issued per day. To the best of our knowledge, these
results are a noticeable improvement to solutions presented in previous work,
both for detection rate of real malware on current Android-based smartphones,
and occurrences of false positives.

Since the tests provided promising results, we are working on an extension of
this framework that combines the global monitoring approach with more specific
monitors that consider additional features. With this extension we would like to
create a database of expected behaviors that are related to high level actions,
suck as starting a phone call. This should increase the system accuracy and
allow the detection of a larger number of malware. Finally, whenever an alarm
is triggered by this architecture, a further extension requires the tracing of the
running applications to detect and stop the source of the attack.



References

1. Juniper Networks: 2011 Mobile Threats Report (February 2012)
2. I. Burguera, U.Z., Nadijm-Tehrani, S.: Crowdroid: Behavior-Based Malware De-

tection System for Android. In: SPSM ’11, ACM (October 2011)
3. D. Mutz, F. Valeur, G. Vigna: Anomalous System Call Detection. ACM Transac-

tions on Information and System Security 9(1) (February 2006) 61–93
4. A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, Y. Weiss: Andromaly: a behavioral

malware detection framework for android devices. Journal of Intelligent Informa-
tion Systems 38(1) (January 2011) 161–190

5. D. Damopoulos, S.A. Menesidou, G. Kambourakis, M. Papadaki, N. Clarke, S.
Gritzalis: Evaluation of Anomaly-Based IDS for Mobile Devices Using Machine
Learning Classifiers. Security and Communications Networks 5(00) (2011) 1–9

6. A. Bose, K.G. Shin: Proactive Security For Mobile Messaging Networks. In: WiSe
’06. (September 2006)

7. G.A. Jacoby, R. Marchany, N.J.Davis, IV: How Mobile Host Batteries Can Improve
Network Security. IEEE Security and Privacy 4 (2006) 40–49

8. Schmidt, A.D., Peters, F., Lamour, F., Scheel, C., Çamtepe, S.A., Albayrak, S.:
Monitoring smartphones for anomaly detection. Mob. Netw. Appl. 14(1) (2009)
92–106

9. Xie, L., Zhang, X., Seifert, J.P., Zhu, S.: pBMDS: a behavior-based malware detec-
tion system for cellphone devices. In: Proceedings of the Third ACM Conference
on Wireless Network Security, WISEC 2010, Hoboken, New Jersey, USA, March
22-24, 2010, ACM (2010) 37–48

10. Bose, A., Shin, K.G.: Proactive security for mobile messaging networks. In: WiSe
’06: Proceedings of the 5th ACM workshop on Wireless security, New York, NY,
USA, ACM (2006) 95–104

11. Enck, W., Ongtang, M., McDaniel, P.: On lightweight mobile phone application
certification. In: CCS ’09: Proceedings of the 16th ACM conference on Computer
and communications security, New York, NY, USA, ACM (2009) 235–245

12. Ongtang, M., McLaughlin, S., Enck, W., McDaniel, P.: Semantically Rich
Application-Centric Security in Android. In: Computer Security Applications Con-
ference, 2009. ACSAC ’09. Annual. (dec. 2009) 340–349

13. Schmidt, A.D., Bye, R., Schmidt, H.G., Clausen, J.H., Kiraz, O., Yüksel, K.A.,
Çamtepe, S.A., Albayrak, S.: Static Analysis of Executables for Collaborative
Malware Detection on Android. In: Proceedings of IEEE International Conference
on Communications, ICC 2009, Dresden, Germany, 14-18 June 2009, IEEE (2009)
1–5

14. Damopoulos, D., Menesidou, S.A., Kambourakis, G., Papadaki, M., Clarke, N.,
Gritzalis, S.: Evaluation of anomaly-based IDS for mobile devices using machine
learning classifiers. Security and Communication Networks 5(1) (2012) 3–14

15. La Polla, M., Martinelli, F., Sgandurra, D.: A survey on security for mobile devices.
Communications Surveys Tutorials, IEEE PP(99) (2012) 1 –26

16. N. Kwak, C.H. Choi: Input Feature Selection for Classification Problems. IEEE
TRANSACTIONS ON NEURAL NETWORKS 13(1) (January 2002) 143–159

17. H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos, R. Govindan, D. Estrin:
Diversity in Smartphone Usage. In: MobiSys’10, ACM (June 2010)

18. T. M. Cover, P.E. Hart: Nearest Neighbor Pattern Classification. IEEE Transac-
tions on Information Theory IT-13(1) (January 1967) 21–27


