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Abstract—WirelessHART is a wireless extension to the HART
protocol. Even though WirelessHART is designed to be a secure
protocol, the loopholes in the key management system makes it
vulnerable to security threats. The broadcast approach for key
renewal mechanisms in WirelessHART is not secure enough to
be used in sensitive industrial automation environments where
breach of security may result in catastrophic results. Also, key
distribution with unicast communication with each device re-
quires O(n) rekeying messages, where n is the size of the network.
In this paper we provide a secure and scalable key renewal
protocol for WirelessHART that reduces the communication
overhead to O(logn). Our protocol requires far less messages
than the conventional unicast approach.

I. INTRODUCTION

WirelessHARTTM [1] is an open standard for Wireless
Sensor Networks (WSN) designed primarily for wireless com-
munication in industrial process automation environments.
Security is built into the WirelessHART standard. It uses
symmetric cryptographic mechanisms to secure messages be-
tween the WirelessHART devices, both the wired (Gateway
and Network Manager) and the wireless ones.

The security of the data, however, lies in the security of
cryptographic keys. WirelessHART uses seven security keys
to secure communication among different devices [2]. The
security focus of WirelessHART is primarily communication
security and related security aspects. WirelessHART does not
address other types of security, such as physical device security
or security of data at rest. Hence a WirelessHART enabled
sensor device can be captured, cloned, and the security keys
can be revealed.

A wise threat model cannot exclude that one or more
sensor nodes can be compromised and this way an insider
becomes present in the system. If this happens, the intruder
holds all the keys of the compromised node and can thus
inject modified and faked packets. It follows that removing the
adversary presence from the system is a crucial reactive action.
Physically removing the compromised node could be a radical
but not always an efficient solution. Actually, physical removal
requires to send a human operator into the field. This may be
expensive especially if the field is remote and/or presents a
harsh or even hostile conditions for a human. It follows that
logically removing the compromised node from the network
would be a more efficient solution that, anyway, would not

exclude a later physical removal. A compromised node can be
logically removed by revoking all its keys, preventing it from
accessing future traffic. This requirement is also called forward
security [3]. It is worthwhile to notice that key revocation
would be necessary anyway even in the case of physical
removal because the keys of the compromised node are in
the adversary’s hands.

Revoking WirelessHART unicast keys simply requires the
Network Manager and the Gateway to delete it. In contrast,
revoking the broadcast keys or network key is much more
complicated task because all the remaining nodes in the
system have to delete it and receive a new one. Unfortunately,
WirelessHART provides no efficient support to this revocation
operation. Actually, the Network Manager should build the
new broadcast key bk and network key nk, and transmit them
to every remaining node by using the Join key uk of that
node. This would require O(n) rekeying messages, where n
is the size of the network. In the case of a WSN composed of
many nodes, a rekeying communication complexity of O(n)
could be too large. A crucial challenge is thus to devise a
more efficient group rekeying scheme for the WirelessHART
protocol.

In this paper we present an efficient rekeying system for
the WirelessHART network. Our protocol make use of one-
way function trees and a key graph [4], [5] to delimit the
network overhead. For the authenticity of messages we use
one-way hash function we suggested earlier [6]. We could
use digital signature but the WirelessHART standard does not
support asymmetric cryptography [7]. The key chain based
mechanism does not enforce backward security [3]. Therefore,
to ensure confidentiality of previous messages we recommend
the rekeying of the Network key at each join operation.

II. BACKGROUND

Cyber-attacks to process control systems are getting more
and more frequent and this trend is deemed to increase for
several reasons. First, process control networks are getting
wireless so attacking them from ”outside” the plant premises
is simpler and simpler. Second, ready-made or so called
Commercial off-the-shelf (COTS) protocols and components
are more and more used, so systems may inherit their vul-
nerabilities. WirelessHART is a clean example of this: Wire-



lessHART inherits a poor key management from the protocols
it derives. Third, process control networks are not closed
systems anymore as they are integrated with the corporate
network. Fourth, the presence of insiders cannot be excluded.
See the case of the Maroochy Shire, Queensland computerized
waste management system [8]. Last but not the least, poor
management is always an issue. Consider a case of a plant
having an IP-based CC-TV system. On the outside perimeter
of the plant, one of the cameras is missing but the Ethernet
socket is available to every one. By simply plugging in,
one can get access to plant internal network. The Stuxnet
worm (http://en.wikipedia.org/wiki/Stuxnet) is another clean
example of cyber-attack to process control system.

A. WirelessHART

WirelessHART is an IEC [9] approved standard for in-
dustrial process automation and control systems. The Wire-
lessHART standard complements the Highway Addressable
Remote Transducer (HART) with wireless connectivity. Wire-
lessHART is a combination of wired and wireless devices.
Network Manager (NM), Gateway, and Security Manager
(SM) constitute wired devices. Wireless devices include field
devices (FD), routers, access points (AP), handheld devices,
and adapters. The wireless devices are connected through
a mesh network where each device can act as a routing
device. Figure 1 shows a sample WirelessHART network.
The WirelessHART standard is based on the OSI seven layer
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Fig. 1. A complete WirelessHART network with wireless and wired parts

architecture where session and presentation layers are not
explicitly defined. The standard specifies completely new

transport and network layers. The application layer is adapted
from the HART protocol, and the data-link and physical
layers are borrowed from the IEEE 802.15.4 standard. To
provide frequency diversity and time diversity WirelessHART
uses per message channel hopping using Frequency Hopping
Spread Spectrum (FHSS)1 and Time Devision Multiple Access
(TDMA) in the MAC sub-layer at the data-link layer [10].

B. WirelessHART Security

WirelessHART is a secure and reliable protocol. Advanced
Encryption Standard (AES-128) block cipher in Counter with
CBC-MAC Mode (CCM*) [11] is used for encryption of
messages and calculation of the Message Integrity Code
(MIC). The WirelessHART standard provides end-to-end, per-
hop, and peer-to-peer security. End-to-end security is enforced
to secure the communication between the source and desti-
nation devices from malevolent insiders. The network layer
provides end-to-end security. The data-link layer provides per-
hop security between two neighboring wireless devices. Per-
hop security is a defense against outsiders, i.e. devices that
are not part of WirelessHART network. All traffic in the
WirelessHART network flows through the Gateway; however,
a Handheld device can create a secure and direct peer-to-peer
session with a field device. We have earlier analyzed security
in WirelessHART [2].

C. Key Management in WirelessHART

The WirelessHART standard specifies a security manager
that is responsible for key management. The standard neither
specifies the architecture of the security manager nor the
functionalities for key management. However, the standard
specifies some security related commands that can help to
provide key distribution and key renewal. In WirelessHART
networks all messages flow in the form of commands that
are predefined in the standard. We have earlier designed
and implemented a security manager for WirelessHART net-
works [12].

WirelessHART uses three group keys namely the Network,
Broadcast Network Manager (BNM), Broadcast Gateway
(BG), and four unicast keys namely the Join, Handheld, Uni-
cast Network Manager (UNM), and Unicast Gateway (UG).
Before joining the WirelessHART network each device must
be provisioned with the Join key. A device uses the Device ID
and the Join key to authenticate itself to the Network Manager.
The Network Manager sends the verification request to the
Security Manager that in turn authenticates the device with
provided credentials. On successful authentication the Security
Manager creates a Network key and four session keys (UNM,
BNM, UG, and BG) and sends them to the wireless devices
through the Network Manager. Now each device has session
keys to establish end-to-end sessions with the destination
devices and the Network key to secure links with the one-hop
neighboring devices. The WirelessHART standard does not,
however, provide a complete key management system hence

1DSSS is used for each message transmission and FHSS is applied on
sequence of time slots.



an intelligent attacker can reveal a security key and launch an
attack against the network; we have earlier identified security
threats against WirelessHART [2].

The obvious counter measure against the compromise of
keys is to change them regularly. However, the WirelessHART
key renewal mechanisms do not provide strong protection
mechanism against the known attacks. The lack of Public Key
Infrastructure (PKI) in WirelessHART makes the key renewal
process insecure. In the current WirelessHART standard, keys
are interdependently used during the key renewal process
and if one of the key is revealed the other is compromised
as well. For example, the Join key is used to change the
UNM key and the UNM key is used to change the Join key.
The same is true for the Network key and the BNM. The
problem is more severe in case of the Network key because the
Network key is shared among all the devices and if revealed
the attacker can send messages to all neighboring devices.
A compromised node may also send messages carrying fake
source addresses, in particular the Network Manager or the
Gateway addresses. WirelessHART, secure key renewal is a
challenge but necessary as the WirelessHART standard does
not address physical device security and the security of data
at rest.

III. AN EFFICIENT GROUP REKEYING SERVICE FOR
WIRELESSHART

We provide an efficient Rekeying Service that runs on
top of WirelessHART and is composed of two components:
the Rekeying Server running on the Security Manager and
a Rekeying Agent running on each device of the network.
The Rekeying Server’s tasks consist in revoking the current
network key, generating a new one and efficiently distributing
it together with a proof of authenticity and freshness. In
contrast, the Rekeying Agent’s tasks only consist in verifying
the authenticity and the freshness of the received keys and, if
the verification succeeds, installing them.
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Fig. 2. A Logical Key Tree maintained by WirelessHART Security Manager
(Rekeying Server).

To reduce the communication overhead, the Rekeying
Server maintains a logical key tree (see Figure 2) where each
internal node contains a node key, and each leaf is associated
to a device and contains the unicast key uk of that device [4],
[5]. We denote by kν and k+ν respectively the current and next
key of node ν.

Each device maintains a key-ring that contains every node
key kν such that the sub-tree rooted at node ν contains the
leaf associated with the node-key. Hence, with reference to
Figure 2, the key-ring KR4 of device d5 is KeyRing5 =
{k1, k3, k6}. As it turns out, key k1, associated to the key
tree root, is shared by all devices and acts as the network key
nk.

Let us now suppose that node d5 leaves or is forced to
leave the system. All keys in its key ring are considered
compromised and the Rekeying Server has to distribute the
respective next keys k+1 , k

+
3 , k

+
6 by means of the following

rekeying messages
M1 SM → d6 : Euk6(k

+
6 )

M2 SM → d6 : Ek+
6
(k+3 )

M3 SM 9 {d7, d8} : Ek7(k
+
3 )

M4 SM 9 {d6, d7, d8} : Ek+
3
(k+1 )

M5 SM 9 {d1, d2, d3, d4} : Ek2(k
+
1 )

where → and 9 denote unicast and multicast communication
respectively.

As it turns out the rekeying protocol requires O(logn)
rekeying messages, where n is the number of devices. So
the network and broadcast key distribution result highly scal-
able [4], [5].

A. Authentication or Integrity Service

It is important that when a node receives a rekeying mes-
sage, after it has been properly decrypted, the authenticity of
the key therein contained has to be verified. One possibility
is to use conventional digital signatures. This means that the
payload of rekeying messages M1–M6 becomes (k, σsm(k)),
where σsm(k) is the digital signature of k made by the
Security Manager. While RSA signing is beyond the compu-
tation capabilities of simple devices, RSA verification has an
acceptable computing overhead, e.g., about 14.5s on resource-
constrained sensor nodes when it is implemented with small
exponent (e = 3) [13]. However RSA causes quite a large
message expansion as it requires to append a digital signature
that is nowadays 1024-bit. For a 128-bits key, the expansion
overhead is four times the key size. An alternative is to
use digital signatures based on Elliptic Curves Cryptography
(ECC) [13], [14]. In the case of ECC-160, the signature size
is 40 bytes and thus the expansion overhead is two times and
half the key size.

Another alternative is to use key chains as suggested in
S2RP [6]. Key chains provide an efficient key authenticity
mechanism that requires only the computation of a hash func-
tion for verifying the authenticity of a key. Such a computation
is 1 ÷ 2 orders of magnitude faster than digital signatures.
In addition, a proof of key authenticity does not require
any additional information that causes message expansion as
digital signatures.

In short, the key authentication mechanism levers on key-
chains, a technique based on the Lamport’s one-time pass-
words [15]. A key-chain is a set of symmetric keys such that
each key is the hash pre-image of the previous one. A key
chain of ` elements is built by initially assigning a random



value to k(`), k(`) ← random(), and then applying ` times the
hash function h such that ∀i ∈ [1, `], k(`−i) ← h(k(`−i+1)).
We call k(`) the chain tail and k(0) the chain head.

Given a key k(i) in the key-chain, anybody can compute
all the previous keys k(j), j ≤ i, but nobody, except for
the key-chain creator, can compute any of the next keys
k(j), j > i. Keys are revealed in the reversed order with
respect to the creation order. Given an authenticated key in
the key-chain, anybody can authenticate the next revealed keys
by simply applying a hash function. For example, if k(i) is
an authenticated key, then anyone can verify the authenticity
of k(i+1) by verifying that k(i) = h(k(i+1)). A node which
receives the chain head in an authenticated way can later
authenticate every key in the chain. When even the chain tail
is disclosed, then the key chain is over, a new one has to be
built and its chain head has to be distributed in an authenticated
way.

Key chains can be integrated in the key tree by associating
a different key chain to each tree node. The current key kν
of node ν is the last revealed key in the chain whereas the
next key k+ν of that same node if the next key to be revealed
in the chain. It follows that kν = h(k+ν ). At system set-up,
every device is initialized with the heads of the chains related
to its key ring. Later, when a new device joins the system, it
is associated with a leaf and receives the current keys of the
key chains related to its key ring.

Upon receiving a rekeying message, after it has been
properly decrypted, the authenticity of the next key therein
contained is verified by computing its hash and comparing
the result to the corresponding current key. For instance, upon
receiving rekeying message M5, d4 decrypts the message by
means of k2 and verifies the authenticity of by ascertaining
that k1 = h(k+1 ). If the test succeeds, the Agent installs key
k+1 as the current (group) key, otherwise it drops the key.

B. Confidentiality Service

The rekeying service described above makes it possible
to rekey the group and logically remove a compromised
device, or supposed so, from the group. This is a reactive
service that contributes to protect integrity because a suspect
node is evicted from the group as soon as detected and thus
cannot continue injecting modified or fake packets anymore.
However, sometimes, industrial applications pose also some
confidentiality requirements which have an impact on the
rekeying strategy.

First of all, notice that in this case key authentication based
on key chains may not be adequate. Let us assume that the
adversary manages to compromise a given device d and steal
the current (group) key k̂1 that corresponds to the t-th key
in the chain associated to that node. Given the way the key
chain is built, the adversary can re-compute all the previous
keys k

(i)
1 , i ≤ t, as k

(i)
1 = h(t−i)(k̂1), where h(r) denotes the

application of h for r times and h(0) is the identity function.
It follows that the adversary can disclose all the past traffic
encrypted by means of those keys. This attack is not possible
in the case of digital signatures because the next key has no

relationship with the current one. In the key chain, such a
relationship, that is embodied by a hash preimage, is necessary
to make key authentication more efficient. Such an increase in
performance is paid in terms of reduced confidentiality.

Notice that merely using digital signatures is not sufficient.
In the scheme described above, rekeying only occurs on
leaving events. This means that if a node is captured, an
adversary obtains a network key that dates back to the last
leaving event. In order to reduce to the minimum the segment
of traffic that can be disclosed after capturing a device it is
necessary to rekey the system even at every joining event too.
So doing a joining node is not able to access the traffic prior its
joining. This requirement is also called backward security [3].
With reference to key tree in Figure 2, when device d2 joins the
group, for example, keys k1, k2, and k4 have to be redistributed
as follows

M1 SM → d1 : Euk1(k
+
4 , σsm(k+4 ))

M2 SM → d1 : Ek+
4
(k+2 , σsm(k+2 ))

M3 SM 9 {d3, d4} : Ek5(k
+
2 , σsm(k+2 ))

M4 SM 9 {d1, d3, d4} : Ek+
2
(k+1 , σsm(k+1 ))

M5 SM 9 {d5, d6, d7, d8} : Ek3(k
+
1 , σsm(k+1 )).

IV. RELATED WORK

In this paper we discuss two mechanisms for key authen-
tication, the one based on digital signatures the other one on
key chains. Choosing the one or the other largely depends on
the current deployment at hand. Notoriously, digital signatures
are considered too computationally demanding for low-end
embedded devices. However, things are changing on this
front. ECC-based digital signatures have been proven viable
even for this class of devices [13], [14], and ECC-based key
establishment is part of the ZigBee security specification [16],
[17]. On the other hand, key chains have been proposed for
efficient authenticated key management in [6], [18]. Given
their computing efficiency, key chains have been used as a
building block for authenticated broadcast in WSNs such as
µTesla and multi-level µTesla [19], [20]. We believe that for
the sole purpose of authenticated key distribution, authen-
ticated broadcast such as µTesla and its derivatives is not
adequate because they require time synchronization and twice
as many messages. However, certain solutions for mitigating
DoS attacks conceived for authenticated broadcast could be
integrated in key chains [21].

V. CONCLUSIONS AND FUTURE WORK

We have shown that the WirelessHART standard has limi-
tations regarding rekeying. To overcome these limitations we
have presented a key renewal protocol. This protocol signifi-
cantly reduces the communication overhead. It guarantees the
integrity and confidentiality of data and preserves backward
and forward security.

We are currently working on the design and implemen-
tation of a more complete WirelessHART network to more
thoroughly evaluate the rekeying approach presented in this
paper.
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