
A Security Architecture for Reconfigurable Networked Embedded
Systems

Gianluca Dini • Ida Maria Savino

Received: 31 July 2008 / Accepted: 11 June 2010 / Published online: 1 July 2010

� Springer Science+Business Media, LLC 2010

Abstract Nowadays, networked embedded systems

(NESs) are required to be reconfigurable in order to be

customizable to different operating environments and/or

adaptable to changes in operating environment. However,

reconfigurability acts against security as it introduces new

sources of vulnerability. In this paper, we propose a security

architecture that integrates, enriches and extends a compo-

nent-based middleware layer with abstractions and mecha-

nisms for secure reconfiguration and secure communication.

The architecture provides a secure communication service

that enforces application-specific fine-grained security pol-

icy. Furthermore, in order to support secure reconfiguration

at the middleware level, the architecture provides a basic

mechanism for authenticated downloading from a remote

source. Finally, the architecture provides a rekeying service

that performs key distribution and revocation. The archi-

tecture provides the services as a collection of middleware

components that an application developer can instantiate

according to the application requirements and constraints.

The security architecture extends the middleware by

exploiting the decoupling and encapsulation capabilities

provided by components. It follows that the architecture

results itself reconfigurable and can span heterogeneous

devices. The security architecture has been implemented for

different platforms including low-end, resource-poor ones

such as Tmote Sky sensor devices.

Keywords Security � Reconfigurability � Middleware �
Networked embedded systems � Sensor networks

1 Introduction

The convergence of communication, computing and con-

trol and recent technological advances in low-power, low-

cost communication miniature computing devices and

sensors make it possible to build NESs that can be deeply

embedded in the physical world including home appli-

ances, cars, buildings, and people [4, 17, 44]. These large-

scale, widely distributed, heterogeneous, pervasive systems

include autonomous and interconnected units, which not

only have capabilities of sensing, but also those of acting in

and on the environment [2]. Networked Embedded Sys-

tems are traditionally designed and built to perform a fixed

set of predefined functionalities in a well-known operating

environment, and, after deployment, in the vast majority of

applications, their functionality is not expected to change

during their lifetime. However, nowadays this design

approach can no longer be pursued. In order to be cost-

effective and operational over time, NES are required to be

reconfigurable in order to be customizable to different

operating environments and/or adaptable to changes in the

operating environment. Unfortunately, reconfigurability

acts against security as it introduces new sources of

vulnerability. Given the interactive and pervasive nature

of NES, a security breach can result in severe privacy

G. Dini (&)

Dipartimento di Ingegneria dell’Informazione: Elettronica,

Informatica, Telecomunicazioni, University of Pisa,

Via Diotisalvi 2, 56100 Pisa, Italy

e-mail: g.dini@iet.unipi.it; gianluca.dini@ing.unipi.it

I. M. Savino

Divisione Difesa, Spazio e Ambiente, Elsag Datamat S.p.A.,

Via Laurentina 760, 00143 Rome, Italy

e-mail: ida.savino@elsagdatamat.com

123

Int J Wireless Inf Networks (2010) 17:11–25

DOI 10.1007/s10776-010-0116-y

violations and physical side effects, including property

damage, injury and even death.

Security in NES tends to be a more difficult long-term

problem than it is today in desktop and enterprise com-

puting [21]. In fact, the drive to provide richer functionality,

increased customizability and flexible reconfigurability of

NES requires the ability to remotely download software

after they have been deployed [39, 40]. However, down-

loading malicious software (including viruses, worms, and

Trojan horses) is by far the instrument of choice in

launching security logical attacks. The magnitude of this

problem will only worsen with the rapid increase in the

software content of embedded systems. Furthermore, NES

often use wireless communication to simplify deployment

and increase reconfigurability. So, unlike a traditional net-

work, an adversary with a simple radio receiver/transmitter

can easily eavesdrop as well as inject/modify packets in a

wireless network. Finally, cost reasons often cause

embedded devices to have limited energy, computation,

storage, and communication capabilities. This leads to

constraints on the types of security solutions that can be

applied. To further worsen this scenario, embedded systems

often lack adequate physical/hardware support to protection

and tamper-resistance. This, together with the fact that NES

can be deployed over a large, unattended, possibly hostile

area, implies that each embedded device is exposed to the

risk of being compromised. Compromised devices have to

be, at least, logically removed from the network commu-

nication. Usually, the ability to logically remove compro-

mised devices from the network translates into the ability to

revoke keys [5]. In fact, cryptographic algorithms do not

expose keys so that secret keys can only be compromised by

compromising the device. It follows that by revoking all

keys of a compromised device, it is possible to remove the

logical presence of that device from the system.

In this paper we present a security architecture that

supports secure communication and secure reconfiguration

in NES. The architecture integrates, enriches, and extends a

component-based middleware by means of security

abstractions and services. The proposed architecture is

general and flexible. It is general because it has been

designed from the ground up to be implementable on a

wide range of devices, comprising low-end ones, and the

abstractions it provides can be used to build applications

and higher-level services. Finally, it is flexible as it

accommodates different implementations of the security

services according to the specific application requirements

and constraints. Several middleware systems for low-end,

resource constrained NES have been designed and imple-

mented [1, 9, 10, 16, 25, 28, 29, 41, 46–48] and a lot of

research on security has been done for this type of

embedded systems [6, 15, 20, 24, 27, 30, 36, 37, 40, 49,

50]. However, only a few middleware systems consider

security [32]. Our security architecture provides a stride

towards filling this gap.

The architecture comprises three basic services: Secure

Communication, Authenticated Downloading, and Rekey-

ing. Secure communication implements secure channels

according to the application-specific security policies and

requirements. The Secure Communication service allows

an application developer to define and implement fine-

grain, application-specific secure communication policies.

The service allows also dynamic negotiation of security

protocols so that a device can adapt to the changed oper-

ating conditions. Authenticated downloading guarantees

that software components are remotely downloaded from

trusted sources. It is a key service for secure reconfigura-

tion in NES because it prevents an attacker from modifying

or installing a rogue one. Authenticated downloading in

NES is particularly challenging because it must also be

efficient in terms of communication, storage and compu-

tation in order to be sustainable on low-end resource-poor

devices. Finally, Rekeying is explicitly devoted to key

distribution and revocation. Key distribution establishes

and refreshes secure channels, as dictated by good cryp-

tographic practices. However, the ability to revoke keys is

equally important as it translates into the ability to logically

remove a device from the communication system. There-

fore, although embedded devices may lack any preventive

physical measure against tampering, however the archi-

tecture provides at least a reactive mechanism to logically

remove compromised devices.

The architecture achieves its flexibility by providing the

above services in terms of component frameworks, i.e.,

collections of well-defined middleware components with

well-defined interfaces and well-defined mutual relation-

ships. One component framework is defined for each basic

service. The architecture does not commit to a specific

implementation of component frameworks. In contrast,

component frameworks constitute a flexible software fabric

that allows an application programmer to implement the

above security services in the most suitable way for the

specific application. In order to instantiate the architecture,

the application developer chooses the secure communica-

tion protocol, the authenticated downloading protocol, and

the rekeying distribution scheme that better fit the appli-

cation requirements and constraints, and encapsulate them

in the corresponding component frameworks.

The paper is organized as follows. Section 2 provides a

review of related works. Section 3 gives an overview of

the system model at the middleware layer. Section 4

describes the proposed security architecture in terms of

services and related component frameworks. Section 5

describes a possible implementation of the architecture

aimed at showing its generality and flexibility. As to

generality, we have implemented the architecture on the

12 Int J Wireless Inf Networks (2010) 17:11–25

123

RUNES middleware [9, 10] running on Contiki [13] on

Tmote Sky sensor nodes [33] to show the architecture

ability to scale down to low-end embedded devices. As to

flexibility, we have implemented two specific rekeying

and authenticated downloading protocols (and their related

secure communication protocols) mainly for exemplifying

purposes. Of course, an application developer can make

different choices according to the application requirements

and constraints. Finally in Sect. 6 we draw our final

remarks.

2 Related Work

During the past few years, researchers have devoted much

effort in designing and developing middleware for heter-

ogeneous, resource-constrained NES such as wireless

sensor networks. Relevant examples include [1, 9, 10, 16,

25, 28, 29, 46]. However, security has been largely ignored

in the current generation of this type of middleware [32, 41,

47, 48]. A few relevant exceptions include Matè [25],

Impala [28] and ZUMA [45]. The architecture we propose

in this paper fits in with this research strand, it has been

conceived for this type of middleware and, in particular, it

has been implemented within the RUNES middleware

[9, 10] on Contiki [13].

With reference to closer works, the ZUMA middleware

provides efficient end-to-end secure communication by

means of Kilavi [43], a security protocol for home-auto-

mation applications. ZUMA secure communication ser-

vices can be implemented within our architecture by

properly implementing the corresponding component

frameworks. In other words, ZUMA secure communication

architecture may be a possible instantiation of our archi-

tecture. Matè is a tiny virtual machine running on TinyOS

[18]. Matè helps programmers to develop expressive and

concise sensor network applications. It supports reconfig-

uration in terms of infection of small program capsules

through the network, and it is resilient to buggy or mali-

cious capsules so preventing applications to crash the

system. Impala is a middleware system and API for sensor

application adaptation and updates. Impala has some

resemblances to Matè although Impala’s security checks

are more oriented to unfortunate programming errors than

malicious attacks. Our architecture is complementary to

Matè and Impala from both the communication and

reconfiguration standpoint. Actually, our architecture

focuses on secure communication which is not an issue in

Matè and Impala. Furthermore, while Matè and Impala

control the run-time behaviour of components, our archi-

tecture includes an authenticated downloading service that

verifies the authenticity of components coming from

remote sources.

It is important to notice that security threats, vulnera-

bilities and related countermeasures in heterogeneous,

resource-constrained NES have been intensively investi-

gated [6, 36, 40]. Furthermore, theoretical models and

protocols addressing specific problems have been pro-

posed. For instance, secure communication and key man-

agement are the focus of an industrial consortium, IEEE

standard, and research community [15, 20, 24, 27, 30, 37,

49, 50]. Finally, specific security architectures encom-

passing both secure communication and key management

have been proposed [38, 42]. Notwithstanding, as stated

above, these models, protocols, and architectures are still

largely ignored in practice by most middleware systems of

the current generation [32]. Therefore, our architecture can

be considered a stride towards filling this gap. Furthermore,

several of these solutions can be implemented within the

component framework we provide. Section 5 provides a

few examples of that.

Finally, with reference to secure reconfiguration, we

can notice certain similarities between our architecture

and DeLuge [14], a scheme for authenticated down-

loading of software that has been conceived for TinyOS

[26]. However, DeLuge only allows large-grain down-

loading of the whole memory image of an embedded

device, so requiring device rebooting upon software

reconfiguration. In contrast, we support authenticated

downloading at a finer grain, namely at the level of

single software component, so removing the constraint of

device rebooting.

3 System Model

We consider an heterogeneous system composed of both

general-purpose mobile devices and embedded devices

capable of sensing and acting on the environment. Mobile

devices fulfill tasks, either in cooperation or isolation, and

interact with embedded devices to sense the environment

or act on it. In order to do that, devices communicate

through a wireless network. Possible applications are, for

example, monitoring the environment, detecting and pur-

suing a target, providing support to first rescue team and so

forth [8].

In these application scenarios, operational conditions

may change unpredictably. Therefore, devices must be able

to reconfigure themselves in order to comply with the

changed conditions. Reconfiguration may concern a device

functionality, e.g., conditions change from ‘‘normal’’ to

‘‘exceptional’’, or a different implementation of a given

service. For instance, a drastic change in light conditions

may require that the localization service implementation

changes from a vision-based one to an ultrasound-based

one [3].

Int J Wireless Inf Networks (2010) 17:11–25 13

123

In such a scenario, we assume that devices mount a

middleware layer that provides a set of reusable program-

ming abstractions that allow configuring, deploying, and

reconfiguring software [10]. The middleware hinges on

basic runtime units of encapsulation and deployment,

referred to as components. Components provide services to

other components through one or more well-defined

interfaces and can have dependencies on other compo-

nents. This enables the implementation and deployment of

different versions of the same component, each tailored to

a specific device type. Furthermore, inter-dependent com-

ponents are grouped into component frameworks to build

more complex services. More precisely, a component

framework is an encapsulated composition of components

that address some area of functionality, and which accepts

additional components, which modify and extend the

component framework behaviour. A component framework

is itself a component and can thus recursively contain other

component frameworks.

This component-based approach abstracts away from

the actual platform implementation and provides a general

design framework for NES. In fact, it supports and pro-

motes encapsulation and modularity of design and imple-

mentation and thus makes it possible to integrate devices

with hardware and software of completely different origin

and makes them safely and securely coexist and col-

laborate.

In addition, we assume that components can be

dynamically added and removed. This makes it possible

dynamically reconfigure applications according to the

changing operational conditions. Reconfiguration consists

in downloading a new component from a possibly remote

source, instantiating and/or removing components at run-

time, and also dynamically changing the components

interconnections.

4 Security Architecture for NES

The proposed security architecture enriches and extends

the middleware layer with abstractions and mechanisms for

secure reconfiguration and secure communication. The

security architecture is designed and implemented as a

collection of components frameworks encapsulating the

security aspects with well-defined interfaces as well. In this

way, the security architecture results itself reconfigurable

and can span heterogeneous devices. Furthermore, for the

heterogeneity requirement the architecture must be acces-

sible also to very simple devices with possibly low

computational and data storage capabilities. Hence, com-

ponents have been implemented taking into account pos-

sible technological limitations of the device involved in the

scenario.

As shown in Fig. 1, the security architecture hinges on

the following components frameworks: the SecCom com-

ponent framework that provides the secure communication

service, and the Rekeying component framework that per-

forms key revocation and distribution, and the ALoader

component framework that guarantees authenticated

download for secure reconfiguration.

Some scenarios could require the secrecy, integrity and/

or authenticity of communication among remote compo-

nents. So, SecCom provides the secure communication

service by enforcing application-specific, fine-grained

communication security policy. A security communication

policy defines the set of protocols that have to be applied in

order to protect the communication among components in

different physical devices. A protocol is a set of crypto-

graphic transformations that have to be performed on the

messages sent through the network. In order to support

reconfigurability, SecCom could negotiate the secure

communication protocol as well as the cryptographic

algorithms necessary to implement it.

The Rekeying component framework provides the re-

keying service by performing the key distribution and

revocation. Different instantiations of Rekeying can

implement different rekeying protocols according to the

security requirements. In order to support reconfigurability,

Rekeying could be loaded after deployment to adapt to a

change in security operating conditions.

Finally, in order to support reconfigurability, a device

could load a new component through the network. So, the

device has to receive proofs that the component comes

from a trusted source (component authenticity) and that the

component has not been modified (component integrity).

The ALoader component framework provides the authen-

ticated loading service by enforcing a security loading

policy. Different instantiations of ALoader can implement

different loading policies according to both the operating

environments and the required trade-off between security

and performance.

In the rest of the section, we provide a detailed

description of components, interfaces, and services pro-

vided. We describe the component interfaces in the Inter-

face Description Language (IDL). For each operation

provided by an interface, IDL allows us to specify the

Fig. 1 The security architecture

14 Int J Wireless Inf Networks (2010) 17:11–25

123

name and the type of the arguments the operation takes as

input (in parameters), and the type of values the operation

returns as output (out parameters).

4.1 The Secure Communication Service

The SecCom component framework fulfills the communi-

cation security requirements in terms of confidentiality,

integrity and authenticity. Different instantiation of Sec-

Com can provide different security communication proto-

cols. The protocol can be pre-deployed in the device (Local

Protocol), or can be negotiated and retrieved from a remote

trusted part (Remote Protocol). In this case, SecCom is able

to dynamically negotiate security protocols so that the

device is able to adapt to the change of the operating

conditions. In order to protect communications of an

application, the SecCom component has to be inserted

between the application and the Network component. The

SecCom component framework provides the application

components with the same interface as the Network com-

ponent (Fig. 2). So doing, SecCom can be inserted without

affecting the application component from a functional

point of view. Furthermore, this allows us to remove Sec-

Com without affecting the application components and

reconfigure the software stack of a device by using SecCom

only when needed. Hence, SecCom can be inserted and

removed so that software can be transparently reconfigured

for security purposes.

Operationally, SecCom intercepts incoming/outgoing

messages and applies them the cryptographic transforma-

tions specified by the security communication protocol.

The actual specification and implementation of the protocol

depends on several factors including the kind of embedded

computing device and the hardware and software platform

on which SecCom is deployed. The component can be

implemented at software. However, if a hardware crypto-

graphic device is present, the component can encapsulate

and abstract the cryptographic services offered by that

device.

4.1.1 Secure Communication Protocol

A security communication protocol is defined as a set of

rules, each of which consists in a transformation, a cryp-

tographic suite, and a set of fine-grained selectors.

A transformation specifies the set of cryptographic

processing to be applied to messages in order to protect

communication and guarantee their confidentiality, integ-

rity, and authenticity. In other words, a transformation

specifies how to process a message before sending/

receiving it to/from the network. A transformation can be

either a cryptographic primitive or a combination of

primitives. Cryptographic primitives can use cryptographic

keys.

A cryptographic suite specifies the actual cryptographic

primitives, and the related keys, to be used in a transfor-

mation. Keys are specified by a key unique identifier. In the

simplest devices with limited capabilities, the crypto-

graphic suite only includes symmetric ciphers, one-way

hash functions, and HMACs. In more advanced devices, a

cryptographic suite may include digital signatures.

Finally, selectors are a fine-grained mechanism that

specifies which messages a transformation has to be

applied to. Selectors include at least the type of message

(e.g., the port), the destination address, the source address,

whether the message is incoming or outgoing and so forth.

For example, let us assume that for messages of type T

we have to guarantee both confidentiality and integrity. One

way to achieve these goals is to send a message m after it has

been processed according to the transformation t:

encrypt(m||hash(m)) where encrypt specifies the

symmetric encryption, hash specifies the hashing opera-

tion and || is the concatenation operation. If we would like to

use SHA-1 as hash function and RC5 as symmetric cipher

keyed by the K key, then we specify the cryptographic suite

c: (encryption=RC5, keyid=K; hash=SHA-1).

Finally, the selectors specifying the relevant messages are

s: (msgType=T, direction=outgoing). It fol-

lows that the secure communication protocol is specified by

the rule r=(s, t, c).

At this stage we do not specify the implementation of

protocol rules. Such an implementation depends on several

factors including the kind of device the implementation is

for.

4.1.2 The SecCom component framework

In case of a Local Protocol, SecCom includes the StaticSeC

component, that actually implements the secure commu-

nication protocol. More in detail, when Application sends a

message to Network, StaticSeC intercepts the message,

retrieves the matching security rules and processes the

message accordingly. If the performed algorithms need

cryptographic keys, StaticSeC retrieves them from the

KeyDB component (Fig. 3).

In case of a Remote Protocol, SecCom also includes a

Negotiator component, that negotiates the secure commu-

nication protocol. Before the Application component con-

nects to the Network component, the Negotiator negotiates

the secure communication protocol, instantiates theFig. 2 The SecCom component framework

Int J Wireless Inf Networks (2010) 17:11–25 15

123

StaticSeC that implements the negotiated protocol, and

inserts it between Application and Network.

At this stage we do not specify the implementation of

these components but we limit to specify their functional

behaviour and their interface in the rest of the section. Such

an implementation depends on several factors including the

kind of device the implementation is for. We will discuss

some examples of implementation in Sect. 5.

The StaticSeC Component

The StaticSeC component includes a RuleStore com-

ponent storing the protocol rules, a SecEnginecomponent

that is responsible for applying the transformations speci-

fied by the rules, and CryptoPrimitive components imple-

menting the specific cryptographic transformations. If the

performedalgorithms need cryptographic keys, StaticSeC

retrieves them from the KeyDB component.

The SecEngine component fulfills two tasks. First, it

provides Application with the same interfaceas Network.

Second, it implements the secure communication protocol

by processing theincoming and outgoing messages

according with the security rules. For each message,

SecEngineretrieves the security rule associated with the

message from the RuleStore component, and appliesthe

message transformation specified by that rule. In doing

that, SecEngine exploits theservices provided by the

CryptoPrimitive components as needed. If a transformation

requires acryptographic key, SecEngine retrieves the key

from the KeyDB component. Finally, SecEngineforwards

the resulting message to the next component, i.e., Network

or Application according towhether the message is outgo-

ing or incoming. The SecEngine component could be

implemented as a rule interpreter. However, this imple-

mentation choice could be pursued only for more capable

embedded devices. In contrast, in case of the simpler

devices, the SecEngine can be implemented ad-hoc for one

or more protocols.

The Rulestore component contains the security rules that

have to be applied to messages. Upon receiving a request

from SecEngine, rulestore searches and returns the

matching rules specifying the crypto transformations to be

applied to the message. A matching is found according to

the rule selector.

The CryptoPrimitive component implements a crypto-

graphic primitive, such as a cipher (i.e., SkipJack [35], RC5

[22]), a one-way hash function (i.e., SHA-1 [34]), or a

hMAC. The CryptoPrimitive components do not preclude

the use of the public key cryptography if it is available on

the device. These components can be implemented at

software, or if present they can embed cryptographic ser-

vices provided by hardware devices.

The KeyDB component stores the cryptographic keys

used to perform the cryptographic primitives. Every key is

associated with a key identifier that uniquely identifies the

key within the KeyDB component.

The Negotiator component

In case of Remote Protocol, SecCom includes the

Negotiator component that is responsible for negotiating

the secure communication protocol and instantiating the

staticsec component.

The Negotiator communicates with a trusted site

through the network following a secure communication

protocol implemented, in its turn, by another SecCom. The

SecCom component framework connecting Negotiator to

Network implements a local protocol and thus it includes

only a StaticSeC (Fig. 4).

Protocol negotiation occurs when an Application con-

nects to the Network component. In this case, Negotiator

creates a StaticSeC by performing the following operation:

1. remote downloading, if necessary, of the Rulestore,

SecEngine, and CryptoPrimitive components that

implement the required secure communication

protocol

2. instantiation of the Rulestore, SecEngine, and Crypto-

Primitive components,

3. connection between Rulestore and Negotiator, Rule-

store and SecEngine,SecEngine and CryptoPrimitives,

Fig. 3 Internal structure of SecCom

Fig. 4 Remote protocol

16 Int J Wireless Inf Networks (2010) 17:11–25

123

4. connection of both Application and SecEngine and

SecEngine and Network.

If, as a consequence of changed operational condi-

tions, Application needs no secure communication,

Negotiator removes the instantiated staticsec and directly

connects Application and Network components. Protocol

negotiation can also occur in any other moment so that

Negotiator has to modify StaticSeC in order to perform a

different security communication protocol. Usually,

negotiation consists in selecting a protocol and inserting

the rules of that protocol into the Rulestore. The insertion

of new rules may cause the instantiation of new SecEn-

gine and CryptoPrimitives components. For instance, if

the SecEngine is implemented as a sort of rule inter-

preter, negotiation of a protocol only involves the

insertion of the protocol rules into the Rulestore and,

possibly, the instantiation of some CryptoPrimitive

components. In case of ad-hoc SecEngine, negotiation of

a new protocol would cause the instantiation of a new

SecEngine.

4.1.3 Interfaces and Dependencies

In this section, we define the interfaces and the depen-

dencies of components that implement the SecCom.

The SecEngine component

The SecEngine component implements the interface

INetwork providing the Application component with the

same interface as Network.

Interface INetwork{

int send (in Message msg, in Address add);

int receive(out Message msg, out Address
add);

}

The field Message includes at least the data MsgData

and the message type MsgType. The field Address

usually contains the IP address and port of the source and

destination application so that it can identify the commu-

nication connection.

SecEngine uses the INetwork interface, the IRule-

Store interface, the IKeyDB interface and one or more

interfaces of CryptoPrimitive components.

The Rulestore component

The Rulestore component provides the following inter-

face IRuleStore:

Interface IRuleStore{

int getRule (in MsgSelector ms, out
Transformation t,

out CryptoSuite c);

}

The method getRule returns the Transformation

and the CryptoSuite associated with the messages

described by the MsgSelector. In order to dynamically

change the rules, the rulestore provides the following

interface IRuleUpdate:

Interface IRuleUpdate{

int insertRule(in MsgSelector ms, in
Transformation t,

in CryptoSuite c);

int updateRule(in MsgSelector ms, in
Transformation t,

in CryptoSuite c);

int deleteRule(in MsgSelector ms);

}

The methods updateRule, insertRule and dele-

teRule respectively updates, inserts and deletes the rule

associated with the messages described by the MsgS-

elector.

The CryptoPrimitive component

The CryptoPrimitive component provides a crypto-

graphic primitive, such as a cipher, a one-way hash func-

tion or a hMAC. For example, the CryptoPrimitive

component implementing a cipher provides the other

components with the following interface:

Interface ICipher {

int Encrypt (in Byte[] dataIn, in int
lengthIn, out Byte[] dataOut,

in int lengthIn, in Key k);

int Decrypt (in Byte[] dataIn, in int
lengthIn, out Byte[] dataOut,

in int lengthIn, in Key k);

}

The method Encrypt encrypts the message dataIn

of size lengthIn by using the key k, and returns the

processed message dataOut of size lenghtOut. The

method Decrypt decrypts the message dataIn of size

Int J Wireless Inf Networks (2010) 17:11–25 17

123

lenghtIn by using the key k, and returns the plain

message dataOut of size lenghtOut.

Whether the CryptoPrimitive component implements a

hash function, it provides the following interface:

Interface IHash{

int getHash(in Byte[] dataIn, in int
lengthIn, out Byte[] hashOut,

out Byte[] lenghtOut);

}

The method getHash returns the hash value hashOut

of size lenghtOut applied to the input dataIn of size

LengthIn.

The KeyDB component

The KeyDB component provides the following interface

IKeyDB:

Interface IKeyDB{

int getKey(in IndexKey ik, out Key k);

}

The method getKey returns the key value k with

index ik.

The Negotiator component

The Negotiator component depends on the IRuleUp-

date interface in order to dynamically change the rules

associated with messages. Furthermore, the Negotiator

component uses the INetwork interface to receive the

secure communication protocol through the network.

Usually, this interface is provided by a StaticSeC compo-

nent. This component performs the algorithms and stores

the security rules that are applied to the messages trans-

mitted by Negotiator.

4.2 The Rekeying Service

The Rekeying component framework performs key distri-

bution and revocation and updates the key repository on the

device. Usually the keys are distributed through the net-

work in such a way that both confidentiality and authen-

ticity are guaranteed.

In order to provide the rekeying service, a device,

referred to as the Key Sender (KS), performs key distri-

bution and revocation. The other devices, referred to as Key

Receiver (KR), verify the key authenticity and upload their

local key database. Operationally Rekeying on KS side

generates a new key and performs the cryptographic

transformations according to the rekeying protocol in order

to guarantee key authenticity and confidentiality. The

Rekeying component on KR side performs the comple-

mentary transformation and verifies that the key comes

from a trusted part, i.e., KS.

Usually, the keys are transmitted through the network so

that Rekeying is connected to the Network component as

depicted in Fig. 5.

4.2.1 The Rekeying Component Framework

As shown in Fig. 6, the Rekeying component framework on

KS side includes a SecCom and a GenerateKey component,

whereas Rekeying on KR side includes a SecCom and a

AuthKey component.

The SecCom component framework performs the secure

communication protocol guaranteeing confidentiality and

integrity of rekeying messages. The secure communication

protocol enforced by SecCom depends on the chosen

rekeying protocol. On KR side The GenerateKey component

is responsible for generating a new key according to the

rekeying protocol. The renewed key is passed to SecCom

component framework that guarantees key confidentiality.

On KR side the AuthKey component receives the key from

SecCom and verifies its authenticity according to the rekeying

protocol. In case, AuthKey updates the KeyDB component.

The internal structure of AuthKey and GenerateKey compo-

nents strictly depends on the chosen rekeying protocol.

It is worthwhile to notice that the Rekeying component

does not preclude the use of public key encryption. It is

Fig. 5 The Rekeying component framework

Fig. 6 Internal structure of rekeying

18 Int J Wireless Inf Networks (2010) 17:11–25

123

only necessary that CryptoPrimitive components imple-

menting this form of cryptography are available.

4.2.2 Interfaces and Dependencies

In this section, we define the interfaces and the depen-

dencies of components that are included in Rekeying.

The KeyDB component

The KeyDB component provides the following interface

IKeyUpdate:

Interface IKeyUpdate{

int getKey(in IndexKey ik, out Key k);

int insertKey(in IndexKey ik, in Key
newKey);

int updateKey(in IndexKey ik, in Key
newKey);

int deleteKey(in IndexKey ik);

}

where the method getKey returns the value of the key

associated with index ik. The method updateKey

updates the key identified by the index ik with the value

newKey. The methods insertKey and deleteKey

respectively inserts a new key with index ik and key

value newKey, and deletes the key identified by the index

ik.

The AuthKey and GenerateKey component

The AuthKey and GenerateKey components depend on

the IKeyUpdate interface in order to refresh the key.

Furthermore, they use the INetwork interface to receive

and send the new key respectively.

4.3 The Authenticated Loading Service

In order to support reconfigurability, components can be

remotely uploaded into an embedded device after it has

been deployed. We consider a scenario in which a device,

referred to as the Component Sender (CS), provides com-

ponents for remote uploading. As remote component

uploading takes place through the wireless medium, an

attacker has an easy game to modify a component or inject

a fake one altogether. Therefore, upon remote loading,

components need to be authenticated. This means that a

component must be accompanied by a proof that the

component originates from the trusted CS. Then, the other

devices, referred to as Component Sender (CR), load only

authenticated components.

The authenticated loading service is provided by the

ALoader component framework both on CS and CR side.

More in detail, ALoader on CS is responsible for

broadcasting the new component and guaranteeing the

component authenticity. The ALoader component frame-

work on CR is responsible for downloading through the

network, verifying the component authenticity, and finally

loading the component from the memory buffer. In some

applications, ALoader has to guarantee the component

confidentiality. Usually, the components are broadcast

through the network so that ALoader is connected to the

Network component as depicted in Fig. 7.

4.3.1 The ALoader Component Framework

The ALoader component framework includes a AuthCS

component on CS side and a AuthCR component on CR

side. The AuthCS component is responsible for generating

the packets carrying the new component according to the

authentication protocol. The AuthCR component buffers

the component in memory and guarantees the component

authenticity. Upon verifying the component authenticity,

AuthCR calls the primitive of the operating system for

loading the component stored in the local memory. The

internal structure of both AuthCR and AuthCS strictly

depends on the chosen authentication protocol.

In some scenarios, ALoader has to guarantee the confi-

dentiality of packets carrying the component being loaded.

So, ALoader includes a SecCom component as shown in

Fig. 8. In order to guarantee the component confidentiality,

SecCom use the keys stored in KeyDB component. Usually,

SecCom is connected to the Network component to send/

receive the component being loaded.

It is worthwhile to notice that ALoader does not pre-

clude the use of public key encryption both in the SecCom

and in the AuthCR component. It is only necessary that

CryptoPrimitive components implementing this form of

cryptography are available on the devices.

4.3.2 Interfaces and Dependencies

In this section, we define the interfaces and the depen-

dencies of components that are included in the ALoader

component framework.

The AuthCR component

The AuthCR depends on the Network interface and

provides the IAuthLoad interface.

Fig. 7 The ALoader component framework

Int J Wireless Inf Networks (2010) 17:11–25 19

123

Interface IAuthLoad{

load(in String cname, out ComponentType
t);

}

The operation load downloads the component whose

name is specified by the string cname and returns the

component type.

The AuthCS component

The AuthCS depends on the INetwork interface and

provides the IAuthBrdcast interface.

Interface IAuthBrdcast{

send(in String cname, in ComponentType t,
in Address a);

}

The operation send broadcasts the component whose

name is specified by the string cname and the component

type t. The receivers are specified by the address a.

5 Architecture Implementation

In this section we briefly describe two possible protocols

for the Rekeying Service (Sect. 5.1) and the Authenticated

Loading Service (Sect. 5.2), respectively. Then, we discuss

a real implementation of the architecture for low-end,

resource-poor TMote Sky devices (Sect. 5.3) [33].

5.1 The Rekeying Protocol

In our implementation we chose S2RP, the Secure and

Scalable Rekeying Protocol for devices with low-compu-

tational capabilities [11]. S2RP guarantees the key

authenticity by using only one-way hash functions that are

computationally affordable even by the simplest devices. In

short, the key authentication mechanism levers on key-

chains, a technique based on the Lamport’s one-time

passwords [23]. A key-chain is an ordered set of symmetric

keys so that each key is the hash preimage of the previous

one. Hence, given a key in the key-chain, anybody can

compute all the previous keys, but nobody can compute

any of the next keys. Keys are revealed in the reverse order

with respect to creation. Given an authenticated key in the

key-chain, the devices can authenticate the next keys by

simply applying a hash function.

In order to reduce the communication overhead, the Key

Server (KS) maintains a tree structure of keys according to

S2RP (Fig. 9). Each leaf is associated with the symmetric

device-key that the corresponding device secretly shares

with KS. For each internal node, KS defines a key-chain

and the node is associated with the last-revealed key. Let us

refer to the last-revealed key associated with the node j as

Klj ; and to the next key that has to be revealed as Knj
:

Notice that after broadcasting Knj
; the key Knj

becomes the

last-revealed key.

In addition to its device-key, every device stores the

last-revealed key Klj associated with node j if the subtree

rooted at the node j contains the leaf associated with the

device-key. Hence, the key associated to the tree root is

shared by all group members and it acts as the group-key.

We call device-keyring the set of keys a devices stores.

When a device d leaves the group, KS has to revoke all

the keys stored by d in order to guarantee the forward

security. More in detail, KS defines the set of compromised

internal nodes whose subtree contains the leaving device.

Then, for each compromised node j and for each of its child

i, KS broadcasts the next key of node j encrypted by using

the last revealed key of node i. The keys are revealed in

bottom-up order so that KS broadcasts a message con-

taining the key Knj
only if it has already broadcast all the

messages containing the renewed keys of j’s children

Fig. 8 Internal structure of ALoader

Fig. 9 Hierarchical structure of key-chains in S2RP

20 Int J Wireless Inf Networks (2010) 17:11–25

123

nodes. The rekeying protocol is secure because the leaving

node does not hold any of the keys used for rekeying.

Furthermore it is scalable because KS has to broadcast

O log nð Þ messages where n is the number of devices. A

deeper discussion about protocol security and performance

can be found in the original paper [11].

The Rekeying Component Framework implements S2RP

as follows. With reference to Figs. 5 and 6, KS implements

the Key Sender component framework whereas every

device implements the Key Receiver component frame-

work. In Key Sender, the GenerateKey component encap-

sulates the key tree whereas the KeyDB stores all the

device-keys and the last-revealed keys of all internal nodes

of the tree. The SecCom component is responsible to

encrypt keying material as required by the S2RP protocol.

In the Key Receiver component framework, the KeyDB

component stores the device-keyring whereas the SecCom

is responsible to decrypt messages containing keying

material according to the S2RP protocol. Furthermore, the

AuthKey component is responsible to authenticate keys

according to the key chain mechanism.

5.2 The Component Authentication Protocol

A typical approach to authenticate a component upon

downloading consists in authenticating it as a whole.

However, this approach requires that a component receiver

(CR) receives the entire component before verifying and

this can be exploited by an adversary to mount a denial of

service attack. More in detail, an attacker can make the

device waste resources by making it buffer the whole

component that in the end fails the authenticity verification.

An alternative approach is based on the observation that a

component is typically transmitted in several packets [19].

If every packet is authenticated, a device stores only

authenticated material and reduces the risk of denial of

service at minimum. Nevertheless, this solution introduces

overhead as each packet needs to be authenticated.

A trade-off between security and performance can be

achieved by authenticating bursts of packets by means of a

technique based on Lamport’s one-time passwords. A burst

contains a fixed pre-defined number NB of packets. If N is

the total number of packets conveying the components, NB

is comprised between 1 and N. Bursts are transmitted

sequentially. With reference to Fig. 10, each burst is linked

to the next (transmitted) one by a one-way hash function.

In fact, CS computes the hash of each burst and transmits

the result with the previous burst. The hash value associ-

ated with the last transmitted burst is filled with the null

value. If the receiver can authenticate the first burst, then it

can sequentially authenticate all the subsequent bursts.

Upon receiving a burst, the receiver computes the hash and

compares it with the hash value conveyed by the previously

received burst. If the two values are equal, the received

burst is authentic.

The authenticity of the first burst must be proven in a

different way. In a scenario with many receivers equipped

with reduced computing capabilities, the digital signature

might be not efficient. Therefore, we prove the authenticity

of the first burst by means of a Message Authentication

Code (MAC) computed with the pairwise key that a device

secretly shares with CS, or with the group-key. Let us

consider the example in Fig. 10. Given N = 9 and NB = 3,

each burst contains two component-packets and the hash of

the next burst. The first burst also contains an authenticator

constituted by a MAC computed with the secret key of the

component receiver.

The proposed authentication scheme is secure because,

in order to modify or inject a component, an adversary has

to forge a MAC or one or more hashes. Under the

assumption that the hash function is one-way, and that the

MAC function is computationally secure, such a forgery is

practically infeasible [31]. Furthermore, the scheme is also

efficient in that it only stores authenticated bursts. Finally,

It is also flexible because the number NB, 1 B NB B N, of

hash function computations as well as the authentication

method for the first burst (MAC o digital signature) are

design parameters.

This authenticated downloading protocol can be imple-

mented in terms of the ALoader component framework as

follows. With reference to Figs. 7 and 8, the AuthCS com-

ponent is responsible for splitting a component into bursts

and compute the related digests. The AuthCR component is

responsible for verifying bursts authenticity and reconstruct

the component from them. The SecCom component

framework is responsible for the component confidentiality.

The KeyDB stores the key for the MAC computation.

5.3 The Prototype

In this section we first describe the middleware layer on

which we have implemented the security architecture

Fig. 10 A chain of bursts. The order of transmission of bursts is from

top to bottom

Int J Wireless Inf Networks (2010) 17:11–25 21

123

(Sect. 5.3.1). Then, we provide a performance evaluation of

the prototype implementation (Sect. 5.3.2).

5.3.1 CTRK

The Component Run-Time Kernel (CTRK) hinges on the

components, that are the basic runtime units of encapsulation

and deployment. Components are instantiated at runtime

from component types and can be deleted as well. Each

component type can itself be dynamically loaded and

unloaded at runtime and can be used to create multiple

component instances. CRTK provides the basic operations

for instantiating and removing a component instance, by

invoking the instantiate() and destroy() opera-

tion. CRTK also provides the load() and unload()

operations to load and unload a component type respectively.

Components offer their services through one or more

interfaces and can have dependencies on other components.

Dependencies are expressed in terms of one or more

receptacles. Each component must have each receptacle of

its connected to the interface of the corresponding com-

ponent before it can be executed. Hence, when a compo-

nents is deployed, all the components that provide the

required interfaces are recursively deployed as well. The

CRTK provides the connect() operation that creates a

component, referred to as connector, implementing the

connection between a receptacle and an interface. All the

components reside inside a capsule which serves as a

runtime component container, providing name space

functionality. A capsule is typically implemented as an

operating system address space.

CRTK has been instantiated on different types of hw/sw

platforms. We have implemented our security architecture

on two of them. One instantiation is in the Java Program-

ming Language for devices of the laptop class. The other

instantiation is on the operating systems Contiki [9, 10, 12]

for low-cost, resource-poor devices of the TMote Sky class

[33]. In fact, Contiki–CRTK is a lightweight and flexible

operating system for tiny networked sensors and has a

dynamic structure that allows to replace programs and

drivers during runtime.

5.3.2 Implementation on TMote Sky Sensor Nodes

In this section we discuss the implementation of the

security architecture on Contiki–CRTK for TMote Sky

sensor nodes [33]. These sensor nodes are powered with

two AA batteries and equipped with a 16-bit 8MHz

MSP430 microcontroller, 48 KB of ROM, 10 KB of RAM,

and IEEE 802.15.4 radio interface. We believe that such an

implementation is more meaningful than the Java one on

powerful devices, such as laptops and PDAs, as it proves

that the architecture can scale down to even very low-end

devices.

In our prototype, each sensor node implements an early

prototype of SecCom, Rekeying and ALoader components

on the receiver side. These security components exploit the

services offered by the CryptoPrimitive components to

perform cryptographic primitives, such as a symmetric

cipher, a one-way hash function, or a hMAC. Our Cryp-

toPrimitive components implement via software SkipJack

as symmetric cipher [35], and SHA-1 as hash function [34].

However, another instance of CryptoPrimitive embeds and

abstracts the cryptographic services offered by the radio

chip CC2420 [7]. In fact, CC2420 features hardware IEEE

802.15.4 MAC security operations based on AES encryp-

tion using 128 bit keys. It implements CTR encryption and

decryption, and Davies-Mayer hash function. In order to

implement a cipher, the CryptoPrimitive component

abstracts the CC2420 operating in the in-line mode by

properly configuring it to provide the cryptographic trans-

formations on the incoming/outgoing packets. Further-

more, the CryptoPrimitive uses the CC2420 in standalone

mode as a cryptographic coprocessor to realize the hash

function.

Table 1 reports the total amount of time (in millisec-

onds) employed by a CryptoPrimitive for encrypting a

message or performing a hash function. More in detail, in

the software implementation the CryptoPrimitive compo-

nent requires 9.92 ms for encrypting a packet of 48 bytes

by using SkipJack as symmetric cipher, whereas it requires

0.203 ms by using the CC2420 inline encryption. Fur-

thermore, the CryptoPrimitive component requires 14.3 ms

for applying the hash function SHA-1 on a packet of

28 bytes, whereas it requires 4.25 ms by using the CC2420

in standalone mode.

Table 2 reports the total amount of time employed by

the security components in order to perform an operation.

The second column contains the computational overhead

with the software implementation of the CryptoPrimitives,

whereas in the third column the CryptoPrimitives are

implemented by using the CC2420 security operations. The

table shows the computational overhead introduced by

SecCom to guarantee the communication integrity and

confidentiality. More in detail, SecCom performs the fol-

lowing transformation on the message m:encrypt

Table 1 Computational overhead of CryptoPrimitive

CryptoPrimitive Time (ms)

SkipJack 9.92

SHA-1 14.3

AES 0.203

Davies-Mayer 4.25

22 Int J Wireless Inf Networks (2010) 17:11–25

123

(m||hash(m)), where encrypt specifies the sym-

metric encryption, hash specifies the hashing operation

and || is the concatenation operation. The SecCom com-

ponent requires 24.22 ms for a 28 bytes message by using

software CryptoPrimitives, and 4.45 ms by using the

CC2420. Furthermore, the table shows the time required by

Rekeying in order to guarantee the key confidentiality and

authenticity in accordance to the S2RP protocol. It requires

32.2 ms by using SkipJack as symmetric cipher and SHA-1

as hash function. This component uses only the software

CryptoPrimitives because in our implementation the

CC2420 cannot use different cryptographic keys on the

basis of the received messages. Finally, the ALoader

component framework requires 1.84 s in order to authen-

ticate a component of 1,264 bytes by using SHA-1

implemented via software as hash function. On the con-

trary, it requires 0.755 ms by using the CC2420 in stand-

alone mode to perform the hash function.

6 Conclusions

In our research, we focus on security and reconfigurability

in large-scale, heterogeneous NES that strictly inter-oper-

ate with the physical world. In order to be cost-effective

and operational over time, NES are required to be recon-

figurable in order to be adaptable to changing operating

conditions. However, reconfigurability of NES introduces

new security vulnerability.

With reference to such scenario, we have proposed a

security architecture for reconfigurable NES applications.

The proposed security architecture integrates and extends a

reconfigurable, component-based middleware by means of

abstractions and services for secure communication and

reconfiguration. The proposed architecture has the fol-

lowing merits. First of all, it identifies a basic set of

security abstractions and services, namely secure commu-

nication, authenticated downloading, and rekeying, that are

fundamental for secure communication and reconfiguration

in NES applications. Furthermore, it provides a component

framework for each basic service so that every component

has a well-defined interface and relationship with the other

components. An application developer can instantiate the

architecture by properly implementing each component

framework according to the application needs. Finally, it

can scale down even to very low-end devices such as

Tmote Sky sensor nodes.

Acknowledgements This work has been partially supported by

CHAT, ‘‘Control of Heterogeneous Automation Systems: Technolo-

gies for scalability, reconfigurability and security,’’ funded by the

European Commission under FP7 with contract number INFSO-ICT-

224428; CONET, the Cooperating Objects Network of Excellence

funded by the European Commission under FP7 with contract number

FP7-2007-2-224053; and by Cassa di Risparmio di Pisa, Lucca e

Livorno.

References

1. Tarek F. Abdelzaher, Brian M. Blum, Q. Cao, Y. Chen, D. Evans,

J. George, S. George, L. Gu, Tian He, S. Krishnamurthy, L. Luo,

Sang Hyuk Son, Jack Stankovic, R. Stoleru, and Anthony D.

Wood, Envirotrack: Towards an environmental computing para-

digm for distributed sensor networks. In Proceedings of the 24th
International Conference on Distributed Computing Systems
(ICDCS’04), pp. 582–589, Tokyo, Japan, 23–26 March 2004.

2. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci.

Wireless sensor networks: a survey. Computer Networks, Vol. 38,

No. 4, pp. 293–422, 2002.

3. K. H. Årzén, A. Bicchi, G. Dini, S. Hailes, K. H. Johansson, J.

Lygeros, and A. Tzes, A component-based approach to the design

of networked control systems, European Journal of Control, Vol.

13, pp. 261–279, 2007.

4. G. Baliga and P. Kumar, A middleware for control over networks.

In Proceedings of the 44th IEEE Conference on Decision and
Control, 2005.

5. H. Chan and Adrian Perrig. Security and privacy in sensor net-

works, IEEE Computer, Vol. 36, No. 10, pp. 103–105, 2003.

6. Haowen Chan, V. D. Gligor, A. Perrig, and G. Muralidharan, On

the distribution and revocation of cryptographic keys in sensor

networks, IEEE Transactions on Dependable and Secure Com-
puting, Vol. 2, No. 3, pp. 233–247, 2005.

7. Chipcon AS, CC2420–2.4GHz IEEE 802.15.4/ZigBee-ready RF

Transceiver, http://www.chipcon.com

8. Paolo Costa, Geoff Coulson, Cecilia Mascolo, Luca Mottola,

Gian Pietro Picco, and Stefanos Zachariadis, Reconfigurable

component-based middleware for networked embedded systems,

International Journal on Wireless Information Systems, Vol. 14,

No. 2, pp. 149–162, 2007.

9. Paolo Costa, Geoff Coulson, Cecilia Mascolo, Gian Pietro Picco,

and Stefanos Zachariadis, The RUNES middleware: a reconfig-

urable component-based approach to networked embedded sys-

tems. In Proceedings of the 16th IEEE International Symposium
on Personal, Indoor and Mobile Radio Communications (PIM-
RC’05), Vol. 2, pp. 806–810, Berlin, Germany, 11–14 September,

2005.

10. G. Dini and I. M. Savino, S2rp: a secure and scalable rekeying

protocol for wireless sensor networks. Proceedings of the 3rd
IEEE International Conference on Mobile Ad-hoc and Sensor
Systems (MASS’06), pp. 457–466, 9–12 October 2006.

11. A. Dunkels, B. Gronvall, and T. Voigt, Contiki – a lightweight

and flexible operating system for tiny networked sensors. In

Proceedings of the 29th Annual IEEE International Conference
on Local Computer Networks (LCN’04), pp. 455–462, Wash-

ington, DC, USA, 16–18 November 2004.

12. Adams Dunkels, Björn Grönvall, and Thiemo Voigt, Contiki—a

lightweight and flexible operating system for tiny networked

sensors. In 29th Annual IEEE International Conference on Local

Table 2 Computational overhead of security components

Components SW CryptoPrimitive HW CryptoPrimitive

SecCom 24.22 (ms) 4.45 (ms)

Rekeying 32.20 (ms) –

ALoader 1.84 (s) 0.755 (ms)

Int J Wireless Inf Networks (2010) 17:11–25 23

123

http://www.chipcon.com

Computer Networks (LCN’04), pp. 455–462, Tampa, FL, USA,

16–18 November 2004.

13. P. K. Dutta, J. W. Hui, D. C. Chu, and D. E. Culler, Securing the

deluge network programming system. In Proceedings of the 5th
International Conference on Information Processing in Sensor
Networks, pp. 326–333. ACM, 2006.

14. Laurent Eschenauer and Virgil D. Gligor, A key-management

scheme for distributed sensor networks. In CCS ’02: Proceedings
of the 9th ACM conference on Computer and communications
security, pp. 41–47, New York, NY, USA. ACM, 2002.

15. Chien-Liang Fok, Gruia-Catalin Roman, and Chenyang Lu, Ag-

illa: a mobile agent middleware for self-adaptive wireless sensor

networks. ACM Transactions on Autonomous and Adaptive Sys-
tems, Vol. 4, No. 3, 2009.

16. S. Graham and P. Kumar, editors. In Proceedings of PWC 2003:
Personal Wireless Communication, Vol. 2775 of Lecture Notes in
Computer Science, pp. 458–475, Chapter Convergence of Con-

trol, Communication, and Computation. Springer, Berlin, 2003.

17. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K.

Pister, System Architecture Directions for Networked Sensors. In

Proceedings of the 9th Symposium on Architectural Support to
Programming Languages and Operating Systems (ASPLOS’00),
pp. 93–104, Cambridge, MA, USA, November, 2000.

18. J. W. Hui and D. Culler, The dynamic behavior of a data dis-

semination protocol for network programming at scale. In Pro-
ceedings of the 2nd ACM Conference on Embedded Networked
Sensor Systems (SenSys’04), pp. 81–94, Baltimore, MD, USA,

03–05 November 2004.

19. Chris Karlof, Naveen Sastry, and David Wagner. Tinysec: a link

layer security architecture for wireless sensor networks. In Pro-
ceedings of the 2nd ACM Conference on Embedded Networked
Sensor Systems (SenSys’04), pp. 162–175, Baltimore, MD, USA,

3–5 November 2004.

20. Philip Koopman, Embedded system security, IEEE Computer,

Vol. 37, No. 7, pp. 95–97, 2004.

21. Lamport, L., Password authentication with insecure communication,

Communications of the ACM, Vol. 24, No. 11, pp. 770–772, 1981.

22. LAN/MAN Standards Committee of the IEEE Computer Society,

IEEE Standard for Information technology – Telecommunications
and information exchange between systems – Local and metro-
politan area networks – Specific requirements – Part 15.4:
Wireless Medium Access Control (MAC) and Physical Layer
(PHY) Specifications for Low Rate Wireless Personal Area Net-
works (LR-WPANs), September 2006, revision of 2006.

23. P. Levis and D. E. Culler, Matè: a Tiny Virtual Machine for

Sensor Networks. In Proceedings of the 10th ACM Conference on
Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS-X), pp. 85–95, San Jose, CA, 5–9 October

2002.

24. P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk, A. Woo,

E. Brewer, and D. Culler, The emergence of networking

abstractions and techniques in Tiny OS. In Proceedings of the 1st
Symposium on Networked System Design and Implementation
(NSDI’04), pp. 1–14, San Francisco, CA, USA, 2004.

25. Donggang Liu and Peng Ning, Multilevel ltesla: broadcast authen-

tication for distributed sensor networks, ACM Transaction on
Embedded Computing Systems, Vol. 3, No. 4, pp. 800–836, 2004.

26. Ting Liu and Margaret Martonosi, Impala: a middleware system

for managing autonomic, parallel sensor systems. In Proceedings
of the Ninth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP’03), San Diego, CA,

USA, 11–13 June 2003.

27. Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein,

and Wei Hong, TinyDB: an acquisitional query processing sys-

tem for sensor networks, ACM Transactions on Database Sys-
tems, Vol. 30, No. 1, pp. 122–173, 2005.

28. David J. Malan, Matt Welsh, and Michael D. Smith, Imple-

menting public-key infrastructure for sensor networks, ACM
Transactions on Sensor Networks, Vol. 4, No. 4, pp. 1–23, 2008.

29. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Hand-
book of Applied Cryptography. CRC Press, Boca Raton, 1996.

30. Mohammad M. Molla and Sheikh Iqbal Ahamed, A survey of

middleware for sensor network and challenges. In Proccedings of
2006 International Conference on Parallel Processing—Work-
shops, pp. 228–233, Columbus, OH, 14–18 August 2006.

31. Moteiv. Tmote Sky, http://www.moteiv.com.

32. National Institute of Standards and Technology, FIPS PUB
180-1: Secure Hash Standard. National Institute for Standards

and Technology, Gaithersburg, MD, USA, April 1995.

33. National Institute of Standards and Technology (NIST), SKIP-
JACK and KEA Algorithm Specifications, 1998.

34. Adrian Perrig, Robert Szewczyk, Victor Wen, David Culler, and

Doug J. Tygar, SPINS: security protocols for sensor networks. In

Proceedings of the Seventh Annual International Conference
on Mobile Computing and Networks, pp. 189–199, Rome, Italy,

16–21 July 2001.

35. Adrian Perrig, John Stankovic, and David Wagner, Security in

wireless sensor networks, Communications of the ACM, Vol. 47,

No. 6, pp. 53–57, 2004.

36. Neeli R. Prasad and Mahbubul Alam, Security framework for

wireless sensor networks, Wireless Personal Communications,

Vol. 37, No. 3–4, pp. 455—469, 2006.

37. S. Ravi, A. Raghunathan, and S. T. Chakradhar, Tamper resis-

tance mechanisms for secure, embedded systems. In VLSI Design,

605 pp. IEEE Computer Society, Washington, DC, USA, 2004.

38. S. Ravi, A. Raghunathan, P.C. Kocher, and Hattangady S. Security

in embedded systems: design challenges, ACM Transactions on
Embedded Computing Systems, Vol. 3, No. 3, pp. 461–491, 2004.

39. R. L. Rivest, The RC5 encryption algorithm. In B. Preenel, editor,

Proceedings of the 2nd International Workshop on Fast Software
Encryption, Vol. LNCS 1008, pp. 86–96, Leuven, Belgium.

Springer, Berlin, 14–16 December 1994.

40. Kay Römer, Oliver Kasten, and Friedemann Mattern, Middleware

challenges for wireless sensor networks. Mobile Computing and
Communications Review, Vol. 6, No. 4, pp. 59–61, 2002.

41. RUNES Consortium. Reconfigurable Ubiquitous Networked

Embedded Systems (RUNES), European Commission, 6th

Framework Programme, contract number IST-004536, http://

www.ist-runes.org

42. Stefan Schmidt, Holger Krahn, Stefan Fischer, and Dietmar

Watjen, A security architecture for mobile wireless sensor net-

works. In Proceedings of the European Workshop on Security in
Ad-hoc and Sensor Networks (ESAS’04), pp. 166–177, Lecture

Notes in Computer Science No. 3313, Heidelberg, Germany, 6

August 2004. Springer, Berlin, 2005.

43. Hannu Sikkilä, Mikael Soini, Petri Oksa, Lauri Sydänheimo, and

Markku Kivikoski, Kilavi wireless communication protocol for

the building environment-security issues. In Proceedings of the
IEEE Tenth International Symposium on Consumer Electronics
(ISCE’06), pp. 1–6, St. Petersburg, Russia, 28 June–01 July 2006.

44. B. Sinopoli, C. Sharp, Schenato L., S. Schaffert, and S. Sastry,

Distributed control applications within sensor networks, Pro-
ceedings of the IEEE, Vol. 91, No. 8, pp. 1235–1246, 2003.

45. Michael N. K. Soini, Jana Van Greunen, Jan M. Rabaey, and

Lauri T. Sydänheimo, Beyond sensor networks: Zuma middle-

ware. In Proceedings of the IEEE Wireless Communications and
Networking Conference (WCNC 2007), pp. 4318–4323, Hong

Kong, 2007.

46. Eduardo Souto, Germano Guimarães, Glauco Vasconcelos,

Mardoqueu Vieira, Nelson S. Rosa, Carlos André Guimarães

Ferraz, Eduardo Souto Judith Kelner, Germano Guimarães,

Glauco Vasconcelos, Mardoqueu Vieira, Nelson S. Rosa, Carlos

24 Int J Wireless Inf Networks (2010) 17:11–25

123

http://www.moteiv.com
http://www.ist-runes.org
http://www.ist-runes.org

André Guimarães Ferraz, and Judith Kelner, Mires: a publish/

subscribe middleware for sensor networks, Personal and Ubiq-
uitous Computing, Vol. 10, No. 1, pp. 37–44, 2006.

47. Miaomiao Wang, Jiannong Cao, Jing Li, and Sajal K. Das, Mid-

dleware for wireless sensor networks: a survey, Journal of Com-
puter Science and Technology, Vol. 23, No. 3, pp. 305–326, 2008.

48. Yang Yu, Bhaskar Krishnamachari, and Viktor K. Prasanna,

Issues in designing middleware for wireless sensor networks,

IEEE Network, Vol. 18, No. 1, pp. 15–21, 2004.

49. Sencun Zhu, Sanjeev Setia, and Sushil Jajodia, Leap?: efficient

security mechanisms for large-scale distributed sensor networks,

ACM Transactions on Sensor Networks, Vol. 2, No. 4, pp. 500–

528, 2006.

50. Zigbee alliance website, http://www.zigbee.org/en/index.asp.

Author Biographies

Gianluca Dini received the

Laurea degree in electronic

engineering from the University

of Pisa in 1990 and a Ph.D. in

computer engineering from

Scuola Superiore S. Anna, Pisa,

in 1995.Since 2000, he has been

an associate professor of com-

puter engineering at the Uni-

versity of Pisa.His main research

interests are in distributed com-

puting, with particular reference

to security andfault tolerance.

Dr. Ida Maria Savino received

the Laurea degree in computer

engineering in 2004 from the

Facultyof Engineering, Univer-

sity of Pisa. She received her

PhD in computer engineering in

2008 from the same University.

Currently, she is research fellow

the Department of Ingegneria

della Informazione, Pisa. Herre-

search interests are in security of

networked embedded systems.

Int J Wireless Inf Networks (2010) 17:11–25 25

123

http://www.zigbee.org/en/index.asp

	A Security Architecture for Reconfigurable Networked Embedded Systems
	Abstract
	Introduction
	Related Work
	System Model
	Security Architecture for NES
	The Secure Communication Service
	Secure Communication Protocol
	The SecCom component framework
	Interfaces and Dependencies

	The Rekeying Service
	The Rekeying Component Framework
	Interfaces and Dependencies

	The Authenticated Loading Service
	The ALoader Component Framework
	Interfaces and Dependencies

	Architecture Implementation
	The Rekeying Protocol
	The Component Authentication Protocol
	The Prototype
	CTRK
	Implementation on TMote Sky Sensor Nodes

	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

