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Abstract. In a Wireless Sensor Network, sensor nodes may fail for sev-
eral reasons and the network may split into two or more disconnected
partitions. This may deteriorate or even nullify the usefulness and effec-
tiveness of the network. Therefore, repairing partitions is a priority. In
this paper we present a method to repair network partitions by using
mobile nodes. By reasoning upon the degree of connectivity with neigh-
bours, a mobile node finds the proper position where to stop in order
to re-establish connectivity. Factors influencing the method performance
are singled out and criteria for their selection are discussed. Simulations
show that the proposed method is effective and efficient notwithstanding
packet loss.

1 Introduction

Networked Embedded Systems play an increasingly important role and affect
many aspects of our lives. New applications are being developed in areas such
as health-care, industrial automation, smart building and rescue operations.
The European Integrated Project “Reconfigurable Ubiquitous Networked Em-
bedded Systems” (RUNES) [1] brought together 21 industrial and academic
partners with the aim of enabling the creation of large scale, distributed, het-
erogeneous networked embedded systems that inter-operate and adapt to their
environments.

To illustrate the potential of the networked embedded systems, the project
selected a disaster relief scenario, in which a fire occurs within a tunnel, much
as happened in the Mont Blanc tunnel in 1999 [5]. The RUNES work in general
and the disaster relief scenario in particular offer a number of interesting and
challenging problems. In the rest of the paper we focus on the following.

A set of nodes with wireless communication capabilities are deployed inside
the tunnel for monitoring purposes. As soon as an emergency situation occurs,
for example an accident involving many cars, the nodes need to transmit data
regarding the tunnel conditions to a base station responsible for tunnel control.
In such a scenario, accurate and comprehensive information must be provided
to the base station so that correct counter measures can be taken. It is of fun-
damental importance that the network would maintain connectivity, so that the
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flow of critical data to the base station is guaranteed. However, the network
could be partitioned because of a malfunction of the nodes, caused by a fire, or
because the presence of obstacles that deteriorate or even nullifies metrics of the
Quality of Service. In such a critical situation, restoring network connectivity is
a priority.

The problem of network partitioning in WSN is not entirely new even though
so far has received limited attention [16]. Chong and Kumar raise the problem
of partitions with a security focus [7]. So do Wood and Stankovic with respect to
denial of service [17]. In [6], Cerpa and Estrin propose methods to self-configuring
WSNs topologies. Although they mention the problem of network partitions as
an important one, however, they leave such methods to future work. Finally,
Shrivastava et al. propose a low overhead scheme to detect network partitioning,
“cuts” in their parlance, but they do not propose any method to repair them [16].

With respect to Shrivastava et al.’s work, in this paper we focus on the com-
plementary problem of restoring network connectivity. With reference to the
tunnel scenario, we propose a method that uses autonomous mobile nodes. Once
the base station determines the network partitioning, one or more mobile nodes
are sent inside the tunnel. A mobile node is equipped with a radio transmitter-
receiver so that it can communicate with the sensor nodes. Furthermore, it main-
tains connectivity with the base station through the wireless sensor network.
By reasoning upon the degree of connectivity with neighbours, a mobile node
navigates inside the tunnel until it reaches the optimal position to re-establish
connectivity.

The paper is organized as follows. In Section 2 we state the system model.
In Section 3 we define the problem. In Section 4 we present the algorithm the
mobile nodes locally perform to restore the connectivity and we single out the
main factors affecting the algorithm. In Section 5 we present a performance
analysis based on simulations. Finally, in Section 6 we draw final conclusions.

2 System Model

According to the tunnel-disaster-scenario, the wireless sensor network is com-
posed of a powerful base station and a set of low-end sensor nodes. Base station
and sensor nodes have wireless capabilities and communicate through a wire-
less, multi-hop, ad-hoc network. We assume the resulting wireless network runs
a routing algorithm that is able to cope with the failure of a “small” number of
nodes by finding alternative routes [10,14,15]. However, in the case of a disaster,
the number of failed nodes is “too large” and the network breaks into two or
more disconnected partitions.

We assume the existence of a Partition Detection System (PDS), running
on the base station and able to both detect the presence of network partitions
and provide a rough estimation of their positions. More precisely, we assume
the Shrivastava et al.’s partition detection system [16] that works as follows.
The base station knows the position of a small subset of sensor nodes that are
called the sentinels . Each sentinel communicates with the base station at regular
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Fig. 1. The tunnel disaster-relief scenario. Double-circled nodes represent sentinels.

time intervals. Intuitively, the failure of the base station to communicate with a
given sentinel is the proof that a partition containing that sentinel has formed
(Figure 1). Furthermore, the sentinel position provides a rough estimation of the
partition position.

Notice that even in structured environments such as a tunnel, the base station
could not be able to define where exactly the failure occurs. Let us suppose that
the base station knows the location of each node. So, the base station could
broadcast a discovery message and then define the partition border on the basis
of the not-responding nodes. Nevertheless, this solution is not suitable because
too expensive in terms of time and communication overhead.

Our system includes mobile nodes (robots), that are used for repairing the
network partitions. Upon detecting the presence of a partition and roughly es-
timating its position, the base station sends a mobile node to that position.
The mobile node navigates inside the tunnel until it reaches the target position.
Each mobile node is equipped with the same communication capabilities as sen-
sor nodes so that it can communicate with sensor nodes in its neighbourhood
and with the base station through the wireless sensor network. In this way, mo-
bile nodes can reach positions that are far from the base station despite their
limited radio range. We assume that the speed of a mobile node is such that its
neighbourhood remains practically constant during a network round-trip time.

3 Problem Definition

Let us assume that the WSN splits in two partitions: a safe partition, containing
the base station, and an isolated partition. The two partitions are separated by a
gap of failed nodes (Figure 1). For brevity, we call safe nodes the nodes belonging
to the safe partition and isolated nodes those belonging to the isolated one.

The PDS detects the network partitioning and knows that the inter-partition
gap intersects the path leading to the not-responding sentinel, but the PDS is
not able to exactly determine where the intersection actually occurs and how
wide the inter-partition gap is. Hence, the mobile node has to determine itself the
proper place where to stop according to the following conditions: 1) the mobile
node is in contact with both the safe and the isolated partition; or, 2) the mobile
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node is in contact with the safe partition and any further movement makes the
mobile node lose connectivity with that partition.

Condition 1 occurs when the safe and the isolated partition are so close to
each other that a single mobile node is sufficient to reconnect them despite its
limited communication range.

Condition 2 occurs when the inter-partition gap is too wide and a single mobile
node is not sufficient to reconnect them. In this case the mobile node has to get
as close as possible to the isolated partition while remaining always connected
to the safe partition. This means the mobile node has to realise when it is about
to lose connectivity with the safe partition and, consequently, stop before this
event takes place.

4 Algorithm for Repairing Network Partitioning

As soon as the PDS has detected the network partitioning, the base station
broadcasts a fresh number, called epoch, to identify the partitions. Safe nodes,
that are connected with the base station, can receive the new epoch. In contrast,
isolated nodes keep holding the old epoch. Notice that in real environments
communication channels are not stable because of several factors including the
distance between nodes, environment conditions, noise, and interference. So, a
safe node could not be able to receive the new epoch.

As soon as the base station has distinguished the safe partition from the
isolated one by broadcasting the epoch, it sends the mobile nodes towards the iso-
lated partition. While navigating, each mobile node detects the partition bound-
ary by monitoring its connectivity degree with the safe partition, i.e., the number
of safe nodes it can communicate with. In fact, when the number of neighbours
is below a certain threshold, it is likely that the mobile node is close to the par-
tition boundary (Figure 2). However, a simple threshold-based approach may
not be sufficient because of communication instability. In our model, we have a
good communication link between a mobile node and a fixed node only if the
probability for the former to receive a message is greater than a certain threshold

Fig. 2. Number of neighbour nodes vs. mobile node position
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Pg. So, the mobile node considers a fixed node as its neighbour if they have a
good communication link.

During this phase, referred to as Monitoring Phase, the mobile node broad-
casts an Hello message. If a fixed node replies with a Reply message containing
the current epoch, the mobile node assumes that the fixed node certainly belongs
to the safe partition. The mobile node counts how many Replys it receives from
safe neighbours. As long as the mobile node is in the safe partition, the number
of Replys it receives for each Hello does not suffer strong variations. So, if
the mobile node detects a decrease in the number of received Reply messages,
it could be about to lose connection with the safe partition.

It is worthwhile to notice that the mobile node may receive a Reply message
carrying an old epoch even from a safe node. In fact, a safe node could fail to
receive the new epoch because of packet loss. So, if the mobile node has not
detected any decrease in its neighbourhood during the Monitoring Phase, it can
ignore the message containing the old epoch.

If the mobile node detects a decrease in its neighbourhood during the Mon-
itoring Phase, it enters into the Verification Phase. In this phase, the mobile
node verifies whether it is about to lose connection with the safe partition by
broadcasting a burst of Hello messages. If this is not the case, the mobile node
returns into the Monitoring Phase. Otherwise, it verifies whether it has received
a Reply message containing the old epoch. If it is the case, the mobile node
assumes that it has reached an isolated node so that the partitions have been
bridged. Otherwise, the mobile node assumes that the gap is too wide and any
further movement makes him lose the connectivity with the safe partition.

When the mobile node reaches the position to bridge the partitions or, at least,
reduce the partition gap, it may stop and behave as an ordinary, fixed sensor
node, so participating to routing and sensing, if it has sensing capabilities, and
cooperating with other mobile nodes for network repairing. Alternatively, the
mobile node may carry fixed sensor nodes and deploy one of them in the final
position. These alternative choices influence the mobile node complexity from
an electro-mechanical standpoint.

The mobile nodes could be equipped with an hardware device for the self-
localization. In case of inter-partition gap too wide, the mobile node could
broadcast its own position to the other mobile nodes so that they can use this
information to adjust their final position. Nevertheless, each mobile node has to
perform the algorithm to verify its connectivity degree with the safe partition.

Furthermore, repairing the network is not the only form of cooperation re-
quired to mobile nodes. Mobile nodes have also to cooperate to avoid crashing
into one another or into obstacles. Of course, this influences the actual path
of the mobile node to reach the final position. It should be noted that the ac-
tual path the node takes is independent of the problem addressed in this paper,
namely finding the proper positions where to place nodes (mobile or not) to
repair network partitions. For this reason we shall not consider these issues any
further. Interested readers can refer to [2,4].



258 G. Dini, M. Pelagatti, and I.M. Savino

4.1 Algorithm for Finding the Proper Position

The Monitoring and the Verification Phase are implemented by the Monitor and
Verify functions, respectively.

1: function Monitor(epoch)
2: begin
3: ΔTH = 0; replySet = ∅; round=random number ;
4: repeat/* round */
5: wait(ΔTH);
6: broadcast(〈HELLO, epoch, round〉);
7: setTimeOut(ΔTR);
8: repeat
9: reply = receive();

10: if (getRound(reply) == round) then
11: replySet = replySet ∪ reply;
12: end if
13: until timeout strikes
14: nR = size(replySet);
15: round++;
16: ΔTH = newInterval(nR);
17: until nR > NPS

18: end

Fig. 3. The Monitor function

A conceptual implementation of the Monitor function is in Figure 3. The Moni-

tor function is organized as a sequence of rounds that starts every ΔTH seconds.
The sequence terminates when the mobile node is in the gap and about to lose
connection with the safe partition. In every round, the Monitor function broad-
casts an Hello packet (line 6) and receives the corresponding Reply packets
for ΔTR seconds from fixed nodes (lines 7-9,13). An Hello packet has two fields:
(i) an epoch field that specifies the epoch known to the mobile node; and (ii) a
round field that specifies the round (of that epoch) in which the mobile node
has transmitted the packet. A Reply packet has three fields: (i) an identifier
field that specify the fixed node identifier; (ii) an epoch field that specifies the
epoch known by the fixed node; (iii) a round field that specifies the round of the
Hello packet to which the Reply packet replies. We say that a Reply packet
is a valid reply for a given Hello packet if the former carries the same round
and the same epoch as the latter.

The Monitor function counts the number nR of valid Reply packets coming
from safe nodes (line 14). If nR is greater than a given threshold NPS , Monitor

assumes that the mobile node is still in the safe partition and calculates the new
value for the interval ΔTH on the basis of the nR itself (line 16). Notice that such
a computation does not take into account ΔTR, that is usually negligible with
respect to ΔTH . On the contrary, if nR < NPS , the Monitor function assumes
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that it is about to lose connectivity with the safe partition. So, the function ends
and the mobile node calls the Verify function to ascertain whether it is actually
in the gap between partitions.

1: function Verify(epoch) → [FalseAlarm, IsolatedNodeFound, InTheGap ]
2: begin
3: replySet = ∅; round = random number ; neighbours = 0
4: while ((round < B)) do
5: broadcast(〈HELLO, epoch, round〉))
6: setTimeOut(ΔTR);
7: repeat
8: reply = receive();
9: if ((getEpoch(reply)==epoch) and (getRound (reply)==round)) then

10: replySet = replySet ∪ reply;
11: end if
12: if (size(select(replySet,getId(reply)))==Bmin) then
13: neighbours++;
14: end if
15: until timeout strikes
16: if (neighbours ≥ NC) then
17: return FalseAlarm;
18: end if
19: round++;
20: end while
21: for reply in replySet do
22: if (getEpoch( reply ) �= epoch) then
23: return IsolatedNodeFound;
24: end if
25: end for
26: return InTheGap;
27: end

Fig. 4. The Verify function

The conceptual implementation of the Verify function is in Figure 4. The func-
tion estimates the connectivity degree of the mobile node with the safe partition,
i.e. how many good links the mobile node has with safe nodes. The Verify func-
tion evaluates the neighbourhood by broadcasting a burst of B Hello messages
(lines 4–20). If a fixed safe node replies with at least Bmin valid messages, it
is considered a neighbour (lines 9–14). If the number of neighbours exceeds a
given threshold NC , the mobile node has still enough neighbours. So, the func-
tion returns FalseAlarm (lines 16–17) and the mobile node returns to the Monitor

function.
If the number of neighbours is less than NC , the function verifies whether it has

received a Reply message from an isolated node. So, if it has received a Reply
packet containing the old epoch, the function returns the value IsolatedNodeFound
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(lines 21–25). Otherwise, the function assumes that the mobile node is about to
disconnect from the safe partition and returns the InTheGap value (lines 26).

4.2 Algorithm Parameters

In order the algorithm performs as expected, the following parameters should
be properly chosen: the Connectivity threshold NC , the Phase-Switch threshold
NPS , the Signalling interval ΔTH , the Response interval ΔTR, and the Burst
parameters B and Bmin.

Let us define Rg the maximum distance covered by good links. We assume
most of neighbouring nodes lie into a circle with radius Rg, whereas nodes placed
outside suffer link instability. Given the radio communication range R, the pa-
rameter Rg could be defined as Rg = Pg × R, or calculated via experiments.
Furthermore, let us define Nneigh the expected number of neighbours when the
mobile node is in the safe partition. Given the initial node distribution δ0, Nneigh

can be defined as Nneigh =
⌊
δ0πR2

g

⌋
or via experiments. Note that the nodes

are subjected to failure and the network density could get not uniform. More in
detail, in some areas the density could be less than the initial value δ0.

The Connectivity Threshold NC

The Connectivity threshold NC is the minimum number of neighbours in the
safe partition the mobile node has to be in contact with during the Verification
Phase.

(a) (b)

Fig. 5. A small NC may result in disconnections

The Connectivity threshold NC influences the algorithm performance because
a too small value may cause disconnections from the safe partition. Let us con-
sider the scenario depicted in Figure 5 where the mobile node is in contact with
two neighbours. If NC = 1 the mobile node keeps moving and loses the connec-
tivity with the safe partition. Actually, the next time it checks for connections,
it has already left the partition. For this reason, NC ≥ 2 is in general preferable.
Nevertheless, a high NC value could cause a premature stopping of the mobile
node in the safe partition. So, NC has to be below Nneigh/2 that is the expected
number of neighbours when the mobile node is crossing the border.
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The Phase-Switch Threshold NPS

The Phase-Switch threshold NPS is the expected number of Replys the mo-
bile node receives as it enters the gap between partitions. So, if the number of
replies is lower than NPS , the mobile node switches from the Monitoring Phase
to the Verification phase. A high value of NPS implies frequent switchings to
the Verification Phase: many bursts are sent in order to verify the mobile node’s
connectivity, thus causing an excessive amount of messages. On the contrary,
choosing a too low threshold reduces phase switchings and may cause discon-
nections from the safe partition if the Verification Phase is executed when the
node has already crossed the border of the safe partition.

The mobile node uses this parameter to perform a first, rough detection of
the partition boundary. When the mobile node crosses the border, half of the
communication range lies outside the safe partition. Hence a reasonable value is
NPS = Nneigh/2. Furthermore, during the Monitoring Phase, the mobile node
could receive messages from poor link nodes. In order to avoid disconnections
from the safe partition, the Phase-Switch threshold has to be greater than the
Connectivity one. That is, NPS > NC .

The Signalling Interval ΔTH

The Signalling interval ΔTH is the time between two consecutive Hello mes-
sages broadcast during the Monitoring Phase. It affects both the probability
of disconnecting from the safe partition and the total number of messages ex-
changed during the repairing process. In order to stop in time, a mobile node
needs to sample the number of its neighbours with a high frequency. Hence,
a short ΔTH is required. However, using a small interval implies an excessive
amount of messages. For this reason, we opted for an adaptive calculation of
ΔTH in order to use shorter intervals only in the most critical region (i.e., when
the mobile node is entering the gap between partitions).

As the mobile node gets near the safe partition boundary, the number of fixed
nodes around it decreases because only a portion of its communication range lies
within the safe partition. The signalling interval is calculated taking into account
the worst case, when the partition border is perpendicular to the direction v̂ of
the mobile node (Figure 6).

Fig. 6. Area containing neighbours
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ncur(d) =

����
���

�
Nneigh

π

�
arccos d

Rg
− d

Rg

�
R2

g−d2

R2
g

�	
|d| ≤ Rg

Nneigh d ≤ −Rg

(1)

Let ncur(d) be the number of nodes within the Rg range when the mobile
node is at a distance d from the safe partition border. A negative distance from
the border means that the mobile node is still in the safe partition and has not
crossed the border. With reference to Figure 6, ncur(d) is given by the Equation 1.

Since the number of neighbours assumes only discrete values in the range
[0, Nneigh], the mobile node can construct a translation table containing the
pairs 〈n, d̃(n)〉, where n is the number of neighbours and d̃(n) is the maximum
value so that ncur(d̃(n)) = n. By using the translation table, the mobile node can
estimate the maximum distance that can be covered without losing connectivity
with the safe partition. More in detail, given the number of Replys nR, the
mobile node estimates its current distance from the border, d̃(nR). Note that
the mobile node could receive more Reply messages than Nneigh because the
communication radius R is greater than Rg. In this case, the distance from the
partition border is approximated with d̃(Nneigh) = −Rg.

The next position is defined on the basis of how many nodes it has to be
connected with. The mobile node has to be connected with almost NC nodes,
thus it has to stop at distance d̃(NC) from the border. Hence, the mobile node
has to cover a distance D̃ so that D̃ ≤ |d̃(nR) − d̃(NC)|.

Table 1. Translation table (Nneigh = 7)

n 2 3 4 5 6 7

d̃(n)
Rg

0.42 0.14 −0.11 −0.34 −0.56 −1

For example, with reference to Table 1, if the mobile node receives nR = 4
replies and NC = 2, the estimated distance that has to be covered is D̃ ≤
|d̃(4) − d̃(2)| = | − 0.11 − 0.42|Rg = 0.53Rg.

Given the current position xcur and the direction v̂, the mobile node can cal-
culate the next position xnxt = xcur + v̂D̃. So, the Signalling interval ΔTH is the
time that the mobile node needs to reach the next position xnxt starting from
xcur. It depends on the motion algorithm, i.e., obstacle advoidance algorithm,
collision advoidance algorithm and so on. Let us suppose that the mobile node
moves in a straight line at constant speed V . In this case, the Signalling interval
is ΔTH = ‖xnxt−xcur‖

V = D̃
V .

The Response Interval ΔTR

The Response time ΔTR is the time the mobile node waits for the Reply mes-
sages. Since Nneigh is the expected number of replies when the node is in the
safe partition, ΔTR has to include at least Nneigh packet transmission intervals.
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Furthermore, ΔTR has to take into account the probability of collisions resulting
from concurrent broadcasting. Usually, the MAC protocols use Random Backoff
Scheme in order to reduce collisions. Each broadcast is delayed by a time pe-
riod, called backoff time period. The protocols define how to select appropriately
this backoff time. We define ΔTBO(Nneigh) the expected backoff time period in
presence of Nneigh nodes. So, the Response interval ΔTR is defined as follows:

ΔTR = NneighΔT1 + ΔTBO(Nneigh)

where ΔT1 is the time for transmitting a packet. Usually the Response interval
ΔTR is negligible with respect to the Signalling interval ΔTH . In fact, the in-
terval ΔTR is a communication time, whereas ΔTH is the time the mobile node
needs to cover a given distance.

The Burst Parameters B and Bmin

The parameter B is the number of Hello messages the mobile node broadcasts
during the Verification Phase. This burst of messages is used to find how many
neighbours in the safe partition the mobile node is in contact with. The param-
eter Bmin is the minimum number of Reply messages the mobile node has to
receive from a specific node in order to consider it as a neighbour.

As already specified, two nodes are neighbours if the probability of receiving
a Reply in response of a Hello message is greater than or equal to a given Pg.
In order to evaluate this probability, a mobile node sends B Hello messages
and records how many Replys it receives from each fixed node. Let us suppose
that rj is the number of replies broadcast by the node j. This counter gives us
a rough estimation of the reception probability: if the rj/B ratio is greater than
Pg, we assume to have a good link.

The parameter B could be defined via experiments on the basis of Nneigh.
That is, B is the minimum burst size so that the expected number of replying
nodes is Nneigh. Furthermore, given B and Pg, the parameter Bmin is chosen so
that Bmin ≥ PgB.

5 Simulation Results

We implemented our algorithm over TinyOS [13] using the nesC programming
language [9] and carried out performance analysis through simulation using
TOSSIM simulator [11,12]. The simulated environment is a wireless sensor net-
work where nodes are uniformly distributed to form a grid. Grid spacing is 8
feet and the radio communication range is 12 feet. Furthermore, we suppose that
every safe node holds the current epoch. The mobile node moves in a straight
line with a constant speed V =2 feet/s.

We used TOSSIM’s empirical radio model, which defines packet loss rates
based on measurements made by Woo et al. on RFM radio [8]. For our experi-
ments, we defined the reception probability for discriminating between good and
poor links to Pg = 0.8. Before testing the algorithm, we performed the prelimi-
nary calibration of parameters Nneigh, Rg, and B. The mobile nodes broadcasts
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Fig. 7. Pdsc and Ocom vs. static and dynamic ΔTH (sec)

a burst of Hello messages when it is within the safe partition. On the basis of
the replying nodes and their position, the mobile node sets the parameters as
follows: Nneigh = 10, Rg = 10 feet, and B=10. Thus, given Pg =0.8 we have
Bmin=8.

We evaluate the algorithm performance in terms of communication overhead
Ocom and disconnection probability Pdsc. More in detail, the communication
overhead Ocom is the average number of Hello messages that the mobile node
broadcasts. The average is computed over ten repetitions of the experiment.
For each repetition, the starting point of the mobile node is randomly selected.
The disconnection probability Pdsc is defined as the ratio between the number
of simulations resulted in a connection loss (no good links between the mobile
node and the safe partition) and the total number of runs.

First, we examined the algorithm behaviour both whether the signalling in-
terval ΔTH is statically chosen and is adaptively calculated. In the case of a
static predefined ΔTH , the disconnection probability increases as the signalling
interval exceeds a certain value. However, a short interval means a higher com-
munication overhead. In fact, as shown in Figure 7, a static ΔTH in the [0.5, 2]
range limits the disconnection probability in the [0, 0.3] range. Nevertheless, in
this case the communication overhead ranges from 9.9 to 25.2. On the other
hand, the adaptive calculation of ΔTH limits the disconnection probability to
0.1 and the communication overhead to 5.2. It is important to observe that an
adaptive selection of ΔTH is particularly effective when the safe partition is
much larger than the communication range because the mobile node strongly
reduces the amount of communication overhead it produces while traversing the
safe partition.

Furthermore, we evaluated how the Phase-Switch threshold NPS influences
both the disconnection probability and the communication overhead. Figure 8(b)
shows how small NPS values reduce the communication overhead. In particular,
they reduce the chance of false alarms, and thus unneeded bursts. Nevertheless,
small NPS values may cause an higher probability of disconnection from the safe
partition (Figure 8(a)).

Our third experiment concerns how the connectivity threshold NC affects the
final position reached by the mobile node. We ran simulations with different



An Algorithm for Reconnecting Wireless Sensor Network Partitions 265

 0

 0.2

 0.4

 0.6

 0.8

 1

 3  3.5  4  4.5  5  5.5  6

D
is

co
nn

ec
tio

n 
P

ro
ba

bi
lit

y 
P

ds
c

Phase-Switch Threshold NPS

(a)

 6

 7

 8

 9

 10

 11

 12

 3  3.5  4  4.5  5  5.5  6

C
om

m
un

ic
at

io
n 

O
ve

rh
ea

d 
O

co
m

Phase-Switch Threshold NPS

(b)

Fig. 8. Pdsc and Ocom vs. NPS

-2

 0

 2

 4

 6

 8

 10

 1  1.5  2  2.5  3

di
st

an
ce

 d
f (

ft)

Connectivity Threshold NC

Fig. 9. Final distance df vs. NC

values of NC and measured the average distance df from the mobile node to
the safe partition boundary. A negative value of df means that the mobile node
is still in the safe partition and has not crossed the border. Results are shown
in Figure 9. We notice that lower thresholds lead to higher distances (the node
advances into the gap between partitions). On the other hand, higher thresholds
make the mobile node stop early. For example, in case of NC = 3, the mobile
node does not cross the partition border (df = −0.8ft).

6 Conclusions

With reference to a WSN, we have presented a method for repairing network
partitions based on mobile nodes. The paper has the following merits. First of
all, it treats an important problem that, so far, has received limited attention.
Furthermore, the paper suggests a method that is based on a few mobile nodes
that move through the network reducing the communication overhead. The paper
presents the main factors influencing the algorithm behaviour and performance
and discusses their selection criteria. By simulation, the paper shows that the
proposed method is effective in terms of disconnection probability and efficient
in terms of communication overhead. Future steps consist in deploying an early
prototype on the multi-agent platform we have been developing [3].
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4. Alriksson, P., Nordh, J., Årzén, K.H., Bicchi, A., Danesi, A., Schiavi, R., Pallottino,
L.: Component-based approach to the design of networked control systems. In: ECC
2007. Proceedings of European Control Conference, Kos, Greece (July 2–5, 2007)
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