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We present a thorough analysis of the memory behaviour of page caching and prefetching algorithms.
The analysis is restricted to programs whose execution consists of iteration of a sequence of page
accesses. Program activity is characterized in terms of utilization of system resources. A graphical
model of program execution is used to describe both page placement in the primary memory and
the actions of page fetch and replacement. The algorithms are compared from the point of view
of a number of performance indexes that include program response time and utilization of the
secondary memory system. Special attention is paid to transient program behaviour and the effects
of the time necessary for the processor to control the disk activities of page fetch. The results of a
large set of measurement experiments are used to validate the analytical model and acquire significant
indications concerning the extent of the simplifying assumptions made in the theoretical analysis.
The discussion of the relation to previous work makes special reference to two classes of algorithms

that received much attention in the past, aggressive prefetching and informed prefetching.

Received 22 October 2004; revised 14 July 2005

1. INTRODUCTION

In a demand-paged virtual memory system, when the running
program references a page that is not available in the primary
memory, a page fault exception is generated. The program
enters the stall state and control is transferred to the memory
management system, which fetches the missing page from
disk to primary memory. Actual transfer of the page contents
is performed by a complex of hardware/software resources
that is, typically, several orders of magnitute slower than the
processor and that we shall call the secondary memory system
(or sms, for short). We shall use the term block to indicate
the logical unit of secondary memory space and the term
frame to indicate the logical unit of primary memory space.
Blocks and frames have the same size, equal to the size of
a page.

In a global strategy of storage allocation, all programs
share a single pool of frames, whereas in a local strategy
each program is associated with a specific primary memory
area that we shall call the program buffer. We shall restrict our
analysis to local strategies whereby the free frame necessary
on the occurrence of a page fault to load the missing page is
taken from the buffer of the program generating the fault.
If no free frame is available in the buffer, a victim page
is selected for replacement, by using a page replacement
algorithm that is part of the memory management system.
The victim page is evicted from the buffer and the buffer

frame made free in this way is used for the missing page.
Finally, execution of the stalling process is resumed.

A ubiquitous example of a page replacement algorithm
is the least-recently-used (LRU) algorithm, which replaces
the page whose previous reference is farthest in the past.
LRU produces good performance in a variety of contexts.
Approximations of this algorithm are largely used in
time-sharing operating systems, and variants have been
proposed to improve performance, in specific application
environments, for instance [1, 2, 3, 4, 5, 6]. On the other hand,
consider a program whose execution consists of iteration
of a sequence of accesses to the pages of a memory area
larger than the buffer. Looping reference patterns [7, 8, 9,
10, 11] of this type are very common in practice. They are
representative of the memory behaviour of large classes of
application programs. Examples are scientific applications
and libraries [12], applications involving simulation based
modelling [13], image processing, graph generation, integer
intensive programs [14] and run-time supports (e.g. a garbage
collector that reuses memory [4]). In the presence of a
looping reference pattern, the page that will be referenced
next in a given iteration is one whose previous reference is
farthest in the past. This means that LRU evicts pages just
before they are referenced again, thereby causing the fetch
of all pages at each iteration. As a result, LRU produces the
worst possible performance. A better strategy is to evict a
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page that has been referenced recently, as the next reference
to this page is furthest in the future. An example is the most-
recently-used (MRU) page replacement strategy, which evicts
the page whose previous reference is nearest in the past.

Memory caching techniques keeping recently used pages
in the buffer are effective in saving a page fetch when one
of these pages is referenced again. However, a program
referencing a page that is missing in the buffer has to stall in
wait for completion of the page fetch from secondary memory
into the buffer. This page latency negatively affects program
response time. A possible solution is to anticipate the fetch
of the pages the program is going to use, so that each of
these pages is available in the buffer before being accessed
by the program. Prefetch techniques of this type have been
recognised as the best method beyond caching to reduce
storage access times [15]. In sequential file management,
a widely used prefetch approach is the read-ahead of the
file pages [16]. The main motivation for page read-ahead
is the practical consideration that most application programs
access files in strict page sequence. On the other hand, the
read-ahead strategy has no knowledge of the actual program
pattern of memory reference. Being based on spatial locality,
this strategy is prone to unsatisfactory performance for
programs exhibiting locality on a temporal basis. Consider
a program that iteratively accesses the elements of a circular
list, for instance. If the elements are not contiguous in
memory, data locality is temporal rather than spatial. The
read-ahead mechanism will prefetch pages that will not be
used, thereby causing useless sms activity while producing
no advantage in terms of program response time.

A central issue in any prefetching strategy is the interaction
with the activities of page replacement [17, 18]. If the buffer
is full, the prefetch of a given page causes selection of a
victim page and de-allocation of the corresponding buffer
frame. Allocation of a frame for prefetch may reduce disk
latency, whereas de-allocation of a frame may cause a new
page fetch, if the evicted page is referenced again later. A
prefetch started too early may cause replacement of a page
that will be used soon, thereby increasing the number of
page movements between primary memory and secondary
memory. A prefetch initiated too late may cause the program
to stall in wait for termination of the load of the missing page.
In these situations, prefetch may lead to little advantage or
even decrease overall performance.

This paper presents a thorough analysis of the memory
behaviour of a number of caching and prefetching algorithms.
We shall restrict our study to application programs with
looping reference patterns, whose execution consists of the
iteration of a sequence of accesses to a set of memory pages.
This sequence is called the base stream. We shall consider
read-once base streams where all pages are accessed for read
only. An example is a query in a large database. An action
of this type causes the read of a possibly large number of
pages, and does not modify the page contents. In our analysis,
this hypothesis allows us to concentrate our attention on the
program pattern of page reference, whereas in the presence
of write accesses further factors should be considered. Let
us refer to a situation in which a new page must be loaded

into the buffer and no free frame is available, for instance. If
we select a page for replacement that was accessed for write,
the page contents must be copied back to secondary memory
before reusing the corresponding buffer frame. This action
of page copy alters the normal sequence of page accesses as
implied by the base stream. Movements of the disk arm
may follow, which modify the time required to fetch the
missing page, for instance. Of course, no action of page
copy is ever required if all pages are accessed for read only.
From the point of view of program performance, we can find
large classes of application programs that stall in wait for
completion of read operations from disk to primary memory
for a significant fraction of their total execution time. Text
searches and relational database queries are examples of
these read-intensive application programs. Write operations
are less critical [19]. An application accessing the disk for
write is seldom forced to stall in wait for completion of the
write [20].

We shall take two page replacement algorithms into
consideration, LRU and MRU. For a program with a
looping reference pattern, LRU always produces the worst
replacement and the worst program response time, whereas
MRU is provably optimal [9]. Together, LRU and MRU
limit the range of the possible response times in the absence
of page prefetch. Furthermore, we shall consider two page
prefetching algorithms, which we call early prefetch (EP)
and late prefetch (LP). Both these algorithms implement a
combination of page caching and prefetching, by replacing
the page whose next reference is furthest in the future while
prefetching the non-buffered page whose next reference is
nearest in the future. They differ on the time instant when a
new prefetch is started up, and consequently, on the duration
of the time interval between completion of the prefetch of a
given page and occurrence of the next program reference to
this page. This factor is prone to important effects on program
performance [18]. Essentially, EP begins a new prefetch as
soon as the sms becomes idle. Therefore, EP implements
a form of aggressive prefetch that generates a heavy sms
activity. The software overhead related to this activity can
have a negative impact on the program execution time. LP
produces lighter sms utilization by delaying the prefetch of a
missing page until the latest time instant allowing the prefetch
to be completed before occurrence of the reference to this
page, so that the program does not stall. However, this may
cause the prefetch to complete at a time that is too late to
start the prefetch of the next missing page, thus causing the
program to stall at a later time.

In the rest of this paper:

• We characterize the activities of programs with looping
reference patterns in terms of utilization of system
resources (Section 2). A graphical model of program
execution is introduced to describe both the page
placement in the buffer and the dynamic behaviour of
the page caching and prefetching algorithm, as far as the
activities of page fetch and replacement are concerned.

• We perform an analytical evaluation of the memory
behaviour of the two page replacement algorithms,
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LRU and MRU (Section 3), as well as of the two
prefetching algorithms, EP and LP (Section 4). A
comparative analysis of these four algorithms is carried
out from the point of view of a number of performance
indexes that include program response time and sms
utilization (Section 5). Special attention is paid to
transient program behaviour and the time necessary for
the processor to control the activities of the sms.

• We present the results of a large set of measurement
experiments that have been carried out to validate
the analytical model (Section 6). These experiments
give us significant indications concerning the extent
of the simplifying assumptions made in the theoretical
analysis.

• Finally, we discuss the relation of our work with
previous work (Section 7). We make special reference
to two classes of algorithms that received much attention
in the recent past, aggressive prefetching [21] and
informed prefetching [19]. The results of research
concerning these algorithms are closely related with our
results. Furthermore, with reference to the analytical
evaluation of the latter class of algorithms, we argue
that the analysis results provide a support to forms
of application-controlled memory management where
the application program specifies both the names of
the pages that form the base reference stream and the
caching and prefetching algorithm that is best suited to
support program execution.

2. THE REFERENCE STREAM

We shall hypothesize that the sms includes the hardware
resources necessary to move a single page at a time, from
secondary memory to primary memory. This means that
a new fetch starts after termination of the previous fetch.
The processor executes a single sequential program, the
target program, which is entirely resident in primary memory.
When the processor is not idle, it either executes the target
program or is involved in an activity of sms control, as is
required to start up a page fetch operation, for instance. We
abstract the behaviour of the target program to the following
model:

• The target program produces a reference stream
consisting of m iterations of a base stream. The base
stream takes the form of a sequence of n page references.
A reference to a given page consists of one or more read
accesses to the storage cells that form this page. All
accesses are for read only. The name (virtual address)
of the page involved in the i-th page reference of the
base stream is denoted by pi . The base stream contains
at most one reference to any given page, so we have

pi �= pj ∀i,j ∈ {0, . . . , n − 1}, i �= j. (1)

• The pages of the base stream are contained in secondary
memory and must be loaded into primary memory
before being accessed by the processor. A primary
memory buffer of size c frames is reserved for the target
program. When program execution is started up, the

buffer is empty. At each reference to a page that is not
in the buffer, the program stalls in wait for completion
of the fetch of this page from secondary memory into
a free buffer frame. If no free frame is available in the
buffer, the page fetch is preceded by the selection of a
victim page for replacement. This page is evicted from
the buffer and the frame made free in this way is used
for storage of the new page. All page references are
for read, and consequently, there is no need to copy the
victim page back to secondary memory.

The following factors quantify the activity of the target
program in terms of utilization of system resources:

• Page reference time tpr: period of time (number of time
units) necessary for the processor to accomplish a page
reference, by carrying out all the memory accesses that
form this reference.

• Sms control time tsms: period of time necessary for
the processor to accomplish the activity of sms control
relevant to an operation of page fetch. tsms includes the
computational overhead of allocating a buffer frame,
sending the fetch request to the sms and servicing the
interrupt request from the sms on completion of the
fetch.

• Page fetch time tf : period of time elapsed between the
beginning of the processor activity of sms control for
the fetch of a given page and the actual accessibility of
this page to the target program in the primary memory.
Note that tsms is a component of tf .

• Normalized page fetch time φ = tf/tpr: number of
page references (for tf ≥ tpr) or fraction of a page
reference (for tf < tpr) that the program can accomplish
in the period of time necessary to fetch a page in the
hypothesis of tsms = 0.

• Normalized sms control time σ = tsms/tf : fraction of
page fetch time necessary for the processor to control an
sms activity of page fetch. In other words, σ represents
the fraction page fetch time that cannot be overlapped
with the execution of the target program.

• Normalized buffer capacity β = c/n: fraction of the
pages of the base stream that the buffer can contain.

We shall hypothesize that quantities tpr, tsms and tf are all
independent of the specific page.

Let us define the minimum execution time Tmin of the
target program as the period of time that elapses between the
beginning of the earliest page reference in the first iteration
of the base stream and the completion of the latest page
reference in the last iteration in the hypothesis that the pages
of the base stream are all contained in the buffer. In a situation
of this type, the program never stalls, and we have

Tmin = nmtpr. (2)

Let x denote the generic caching/prefetching algorithm. In
our analysis, we shall pay special attention to the following
program performance indexes:

• Response time Tx : total number of time units necessary
to execute the target program when algorithm x is used
for page caching/prefetching.
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• Normalized response time Rx = Tx/Tmin.
• Sms busy time Sx : total number of time units necessary

for the sms to accomplish all the activities of page fetch
requested by the target program. Let fx denote the
average number of pages fetched in a single iteration
of the base stream when algorithm x is used for page
caching/prefetching. By definition we have Sx = mfxtf

• Sms utilization Ux = Sx/Tx . We have

Ux = mfxtf
Tx

= fxφ

Rxn
. (3)

2.1. A graphical representation

We shall model the processor activities in the buffer and the
actions of page fetch and replacement by taking advantage
of a graphical representation having the form of a clock. The
clock dial is partitioned into n sectors, one sector for each
page reference that forms the base stream. Figure 1 shows
an example of this graphical representation. The example
is relevant to the memory behaviour of the LRU algorithm,
which we shall consider in detail shortly.

At any given time, a clock hand, the reference hand R,
points to the page being referenced by the processor at this
time. If the target program is stalling and R points to a given
page, then the program terminate the reference to this page
just before entering the stall state. The other clock hand,
called the fetch hand F , points to the page being fetched
from secondary memory into the buffer. If the sms is idling,
F points to the page to be fetched next. The lengths of the two
hands indicate the relative speed. Just like in a real clock, the
longer hand moves faster. If tf > tpr, i.e. φ > 1, R is longer
than F , for instance. Two hands of the same length indicate
that the relationship between their speeds is inessential. We
shall use notations pR and pF to indicate the pages pointed
by R and F , respectively. The page preceding pR is denoted
by pR−1.

A box surrounding a given page indicates that at present a
buffer frame is reserved for storage of this page. We shall use
the term buffered page to denote a page of this type. A box
surrounding a sequence of several pages indicates a zone of
the base stream whose corresponding pages are all contained
in the buffer. We shall use the term buffered zone to denote
a zone of this type. As long as the reference hand moves
within the boundaries of a buffered zone, the program does
not stall. In a situation of this type, the processor alternates
activities of page reference with activities of sms control.

A sequence of one or more pages with no surrounding
box indicates a zone of the base stream whose correspond-
ing pages are only contained in secondary memory. Before
starting up a reference to one of these pages, the program
enters the stall state in wait for the completion of the loading
of this page into the buffer. We shall use the term stall zone
to denote a zone of this type.

As pointed out previously, when a page should be loaded
into the buffer and no free frame is available, a page is selected
for replacement. Graphically, an action of this type causes
the movement of a box of size one page. This movement is
indicated by an arrow. A white dot denotes the page being

evicted from the buffer, and a black dot denotes the page
being fetched from secondary memory into the buffer frame
made free in this way.

2.2. Assumptions and limitations

For the sake of clarity, we briefly list the assumptions and
limitations we introduced in the previous sections:

• the computer system executes a single program;
• the program is entirely resident in primary memory;
• the program execution consists of the iteration of a fixed

sequence of accesses to a set of memory pages;
• all page accesses are for read, and, consequently, there

is no need to copy a page back to secondary memory;
• the page reference time (tpr), the sms control time (tsms)

and the page fetch time (tf) are constant and independent
of the specific page;

• the sms moves a single page at a time, from secondary
memory to primary memory.

A discussion of these assumptions and limitations will
follow during the paper with particular reference to their
impact of the analysis results.

3. NON-PREFETCHING ALGORITHMS

The two non-prefetching algorithms considered in this
paper, LRU and MRU, differ on the page that is selected
for replacement when a new page must be fetched from sec-
ondary memory into the buffer and no free frame is available
in the buffer. LRU is defined by the following rule:

• Least recently used: every page replacement evicts the
buffered page whose previous reference is farthest in the
past.

MRU is defined by the following rule:
• Most recently used: every page replacement evicts the

buffered page whose previous reference is nearest in the
past.

In the graphical representation introduced in Section2.1,
LRU implies that we evict the farthest page we encounter
moving counterclockwise in the buffered zone from the
present position of the reference hand. MRU implies that we
evict the nearest page we encounter moving counterclockwise
in the buffered zone from the present position of the
reference hand.

3.1. The LRU algorithm

We shall now take advantage of our graphical representation
to model the memory behaviour of the target program in
the hypothesis that LRU is used for page replacement.
At the beginning of program execution, the first c pages of
the base stream are loaded into the buffer. In this initial
phase, the reference hand points to page pF−1 (Figure 1a).
When the buffer becomes full, execution enters a steady state.
The fetch of page pc+i causes replacement of page pi , as
this is the buffered page that was referenced least recently.
Figure 1b shows the memory configuration when the first
page replacement takes place, i.e. i = 0.
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FIGURE 1. Memory behaviour of LRU: (a) transient configuration: (b) steady-state configuration.

Thus, in steady state, a buffered zone of size c pages moves
clockwise at the speed of the fetch hand. The program stalls
on completion of every page reference, and we have

fLRU = n. (4)

Each fetch operation adds tf time units to program response
time; thus we have

TLRU = Tmin + mfLRUtf = Tmin + mntf . (5)

Dividing by Tmin and manipulating, we obtain

RLRU = 1 + φ. (6)

3.2. The MRU algorithm

The transient behaviour of MRU is similar to that of LRU
(see Figure 1a). A steady state is reached when the buffer
becomes full, on completion of the reference to page pc−1.
In the stall zone, the fetch of page pi causes replacement of
page pi−1, as this is the buffered page that was referenced
most recently (Figure 2). At each iteration of the base stream,
the buffered zone moves one position counterclockwise. This
is a consequence of the fact that the crossing of the stall zone
begins by replacing the buffered page involved in the latest
reference and terminates by fetching the page involved in the
reference preceding the earliest reference.

Each iteration causes the fetch of n − c pages from
secondary memory into the buffer,1 that is

fMRU = n − c. (7)

Each fetch operation adds tf time units to program response
time; thus we have

TMRU = Tmin + mfMRUtf = Tmin + m(n − c)tf (8)

and
RMRU = 1 + (1 − β)φ. (9)

1In fact, some iterations produce the fetch of n−c+1 pages. The results
of our evaluation, as expressed by forthcoming Relation 9, are still valid if
n � 1.

FIGURE 2. Memory behaviour of MRU in the stall zone.

4. PREFETCHING ALGORITHMS

The two prefetching algorithms considered in this paper, EP
and LP, differ on the time when a new prefetch begins in a
situation of idle sms. EP is defined by the following rules:

• Next reference: every page fetch loads the non-buffered
page whose next reference is nearest in the future.

• Fair replacement: every page replacement evicts the
buffered page whose next reference is furthest in the
future, provided this page has been referenced since its
most recent load from secondary memory into the buffer.

• Early prefetch: let t1 be the time instant when the sms
becomes idle. The next page fetch begins at the earliest
time instant t ≥ t1 that satisfies the fair replacement rule
(Figure 3a)

In our graphical representation, the next reference rule
implies that, when a fetch operation is being carried out,
the fetch hand points to the first non-buffered page we
encounter moving clockwise from the present position of
the reference hand. The fair replacement rule implies that
every page replacement involves the first buffered page
we encounter moving counterclockwise from the present
position of the reference hand, provided this page has
already been referenced. If no such page exists, the sms
stalls.
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FIGURE 3. Timings of the prefetching algorithms.

LP is defined by the next reference and fair replacement
rules and by the following rule:

• Late prefetch: let t1 be the time instant when the sms
becomes idle and t2 be the earliest subsequent time
instant at which a page is referenced that is missing in
the buffer. The fetch of this page begins at the earliest
time instant t ≥ max(t1, t2 − tf) that satisfies the fair
replacement rule (Figure 3b and c).

In the situation of Figure 3b, t2 − tf is the latest time instant
making it possible to complete the fetch of a missing page
before occurrence of the next reference to this page.

4.1. The EP algorithm

In our analysis of the memory behaviour of the EP algorithm,
we shall first consider the case of tsms = 0 and σ = 0. In
this ideal situation of no sms overhead, full parallelism is
possible between the processor activities of page reference
and the sms activities of page fetch.

4.1.1. Fast fetch
We must distinguish between fast fetch and slow fetch
situations. We are in the presence of a fast fetch when tf ≤ tpr,
i.e. φ ≤ 1. Graphically, this means that the movement
of the fetch hand around the dial is faster than that of the
reference hand. To simplify the presentation without any
loss of generality, we shall hypothesize that tpr is a multiple
of tf , i.e. quantity 1/φ is an integer.

At the beginning of the execution of the target program,
pagep0 is loaded into the buffer. Whenp0 becomes available,
the processor begins to reference this page and the sms begins
to fetch page p1. Owing to the difference between the speeds
of the two hands, in the period of time necessary to complete
the reference to p0, the sms fetches 1/φ pages into the buffer,
that is, pages p1 to p1/φ . Thus, on the beginning of the
reference to page p1, this page is already available in the
buffer.

Figure 4a shows an action of page fetch and replacement
taking place in this early phase of program execution. The
distance between the two hands, F and R, increases until
it becomes equal to c buffer frames. At this point, the
program enters a steady state. No further action of page
fetch is possible that does not violate the fair replacement
rule. Consequently, the sms stops in wait for completion
of the reference to page pF−c, when this page can be
selected for replacement (Figure 4b). Behaviour of this
type characterises every subsequent page reference. Thus,

FIGURE 4. Memory behaviour of EP when φ ≤ 1: (a) transient
configuration; (b) steady-state configuration.

in steady state, we have a single buffered zone of size c pages
that rotates clockwise around the dial at the speed of the
reference hand. The program never stalls, and consequently
TEP = Tmin = mntpr and REP = 1. In each iteration of the
base stream, n pages are fetched from secondary memory
into the buffer; thus we have fEP = n.

If quantity 1/φ is not an integer, minor alterations follow
in the movement of the buffered zone around the dial. We
shall not consider this issue at any further length.

4.1.2. Slow fetch, small buffer
We are in the presence of a slow fetch when tf > tpr, i.e.
φ > 1. Graphically, this means that the movement of the
reference hand around the dial is faster than that of the fetch
hand. We shall hypothesize that tf is a multiple of tpr, i.e.
quantity φ is an integer.

In the first iteration of the base stream, the difference
between the speeds of the two hands causes the program
to stall on termination of each page reference. When the
buffer becomes full, the fetch hand points to page pc and
the reference hand points to page pc−1. According to
the fair replacement rule, page pc−2 is evicted from the
buffer. Behaviour of this type characterizes every subsequent
reference to a page in the stall zone. In this zone, the reference
hand points to page pF−1, and page pR−1 is selected for
replacement (Figure 5a).

On termination of the first iteration, we have a sin-
gle buffered zone of size c pages that covers pages
pn−2, pn−1, p0, p1, . . . , pc−3. In steady state, the config-
uration of this zone is characterized by holes placed at a
distance of φ pages from each other (Figure 5b). At each
iteration of the base stream, the buffered zone moves one
position counterclockwise. The motivations of this complex
buffer configuration can be summarized as follows. When the
sms starts a new page fetch, it replaces page pR−1, thereby
generating a hole in pR−1. In the period of time required to
accomplish the fetch, the reference hand moves φ pages for-
ward. Consequently, when the next fetch is started up, a new
hole is generated at a distance of φ pages from the previous
hole. In the buffered zone the program never stalls. This is
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FIGURE 5. Memory behaviour of EP when φ > 1 and β ≤ β ′
σ=0:

(a) transient configuration; (b) steady-state configuration.

a consequence of the fact that in the period of time in which
the processor accomplishes the page references between two
holes, the sms fetches the page corresponding to the first
subsequent hole.

Quantitatively, let nh be the number of holes in the buffered
zone, given by relation

nh = c

φ − 1
. (10)

The size of the buffered zone (including the holes) is c + nh
pages. EP produces nh fetch operations in the buffered
zone and n − (c + nh) fetch operations in the stall zone;
thus we have fEP = n − c. The fair replacement rule is
always satisfied. The sms never idles, and consequently
TEP = mfEPtf = m(n − c)tf , REP = (1 − β)φ.

4.1.3. Slow fetch, large buffer
The memory behaviour described above characterizes slow
fetch situations in which the size of the buffered zone,
including the holes, is smaller than or equal to the size of
the base stream. Let us now consider the opposite, large
buffer situation where

c + nh > n. (11)

Let us define quantity β ′
σ=0 = 1−φ−1 for φ > 1 and σ = 0.

Substituting Equation (10) into (11) and manipulating, we
obtain the large buffer condition β > β ′

σ=0. In a situation of
this type, the buffered zone extends throughout the dial and
n − c holes are placed at a distance of φ pages from each
other (Figure 6). Each movement of the fetch hand produces
an apparent movement of all the holes, and the extent of this
movement is φ positions clockwise. The motivations are as
follows. As a consequence of the fair replacement rule, every
new page fetch replaces page pR−1, thereby producing a
hole. In the period of time necessary to accomplish the fetch,
the reference hand moves φ pages forward. Thus, the new
hole is generated at a distance of φ pages from the previous
hole. As a consequence of the next reference rule, the fetch

FIGURE 6. Memory behaviour of EP when φ > 1 and β ≤ β ′
σ=0:

steady-state configuration.

FIGURE 7. Relations existing between quantities tpr, tsms and tf
when (a) σ = 0, and (b) σ > 0.

hand always points to the first hole after the reference hand.
The program never stalls and we have TEP = Tmin = mntpr
and REP = 1.

4.2. Effects of sms overhead in EP

Up to now, we have hypothesized that page fetch operations
have no cost in terms of processor time, i.e. tsms = 0 and
σ = 0. In this hypothesis, up to φ page references can be
accomplished in the period of time of a single page fetch
(Figure 7a). Of course, it may well be the case that less page
references are accomplished, if the page to be referenced
next is not available in the buffer and must be fetched from
secondary memory, for instance.

Let us now consider a situation of tsms > 0 and σ > 0. In
this case, for each page fetch, a fraction tsms = σ tf of total
processor time is spent to control the sms activity inherent to
this fetch. Consequently, less page references are processed
unless sms control activities take place when the processor
would be otherwise idle. With reference to the period of time
of a page fetch and Figure 7b, let us now introduce quantity
γ defined by relation tf = σ tf + γ tpr as a generalization of
normalized fetch time φ. Manipulating we obtain

γ = (1 − σ)φ. (12)

Memory behaviour of EP is determined by the value of γ .
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4.2.1. Fast fetch
When γ ≤ 1 we are in a situation of fast fetch. Memory
configuration is the same as in Section 4.1.1 for the case
σ = 0 and φ ≤ 1 (see Figure 4). In steady state, the program
never stalls and each page fetch addsσ tf time units to program
response time. We have fEP = n, and consequently

TEP = Tmin + mnσ tf (13)

and

REP = 1 + σφ. (14)

4.2.2. Slow fetch
When γ > 1 we are in a situation of slow fetch. Memory
behaviour is determined by the relation between normalized
buffer capacity β and quantity β ′ = 1 − γ −1, defined for
γ > 1 and σ > 0. When β ≤ β ′, we are in the presence
of a small buffer. Memory configuration is the same as in
Section 4.1.2 for the case σ = 0 and φ > 1 (see Figure 5).
Hence, REP = (1 − β)φ. With respect to the case σ = 0, in
the buffered zone the slowing down of the movement of the
reference hand, resulting from sms overhead, is taken into
account by the fact that β ′ < β ′

σ=0 for every given φ. In the
stall zone, the processor is always idle when the need arises
for an action of sms control, and, consequently, this action
does not increase program response time.

When β > β ′, we are in the presence of a large buffer.
Memory configuration is the same as in Section 4.1.3 for
the case σ = 0 and φ > 1 (see Figure 6). The program never
stalls when a new page fetch is started up, and consequently,
each page fetch adds σ tf time units to program response time.
A fetch operation occurs every time γ page references (see
Figure 7b); thus we have

TEP = Tmin + mnσ tf

γ
(15)

and

REP = 1

1 − σ
. (16)

4.3. The LP algorithm

Finally, let us consider the memory behaviour of LP. In this
case, too, we must distinguish between situations of fast
fetch and slow fetch.

4.3.1. Fast fetch
In a situation of fast fetch (γ ≤ 1), the buffer becomes full
in the first iteration of the base stream, on completion of
the loading of page pc−1, when the reference hand points to
page pc−1 and the fetch hand points to page pc. Page pc−2
is selected for replacement and the frame made free in this
way is used to load page pc (Figure 8a). Behaviour of this
type characterizes the crossing of the stall zone.

Each iteration of the base stream produces fLP = n − c

page fetches. The program never stalls, so each page fetch

FIGURE 8. Memory behaviour of LP: steady-state configuration
when (a) γ ≤ 1, and (b) γ > 1 and β > β ′.

adds σ tf time units to program response time. Hence

TLP = Tmin + m(n − c)σ tf (17)

and
RLP = 1 + (1 − β)σφ. (18)

4.3.2. Slow fetch
In a situation of slow fetch (γ > 1) and small buffer (β ≤ β ′),
steady-state memory configuration of LP is the same as in
Section 4.1.2 for EP in the case σ = 0 and φ > 1 (see
Figure 5). Thus, in steady state, RLP = (1 − β)φ.

An important difference exists between transient memory
behaviour of EP and LP. In EP, all the holes in the buffered
zone are generated in the first iteration of the base stream. In
LP, the first iteration generates a buffered zone of size c pages.
The holes are generated by the nh subsequent iterations, one
hole for each iteration. In transient state, the time necessary
to execute an iteration is higher than in steady state. This is a
consequence of the fact that fewer holes are available in the
buffered zone, with negative effects on parallelism between
processor activity and sms activity. If m � nh, the extent
of these effects can be evaluated easily. In a situation of
this type, P never reaches a steady state. By ignoring the
few fetch operations issued in the buffered zone, we have

TLP = mctpr + m(n − c)tf (19)

and
RLP = β + (1 − β)φ. (20)

Finally, in the presence of a large buffer (β > β ′), the
first iteration of the base stream produces a buffered zone of
size c pages. Each subsequent iteration generates a hole. In
steady state, the holes are equidistant. At each iteration, they
move φ positions counterclockwise (Figure 8b). Program
response time is the same as for γ ≤ 1, and is expressed by
Equation (18).

5. THEORETICAL RESULTS

Table 1 summarizes the results of our analytical evaluation of
performance indexes Rx and Ux for the caching/prefetching
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TABLE 1. Expressions for program response time and sms utilization.

RLRU = 1 + φ ULRU = φ

1 + φ

RMRU = 1 + (1 − β)φ UMRU = (1 − β)φ

1 + (1 − β)φ

REP =




1 + σφ for γ ≤ 1
1

1 − σ
for γ > 1, β ≥ β ′

(1 − β)φ otherwise

UEP =



φ

1 + σφ
for γ ≤ 1

1 otherwise

RLP =




1 + (1 − β)σφ for γ ≤ 1

γ > 1, β ≥ β ′
(1 − β)φ otherwise

ULP =




(1 − β)φ

1 + (1 − β)σφ
for γ ≤ 1

γ > 1, β ≥ β ′
1 otherwise

φ = tf/tpr, σ = tsms/tf , β = c/n, γ = (1 − σ)φ, β ′ = 1 − γ −1

FIGURE 9. Relative performance gain as a function of φ for different values of β: (a) gLRU,MRU; (b) gMRU,EP and gMRU,LP when σ = 0.3.

algorithms considered in this paper. All the indexes are
expressed in terms of quantities σ , φ and β. In this section,
we shall analyze the meaning of each of these quantities in
a comparative analysis of the memory behaviour of the four
algorithms.

5.1. Fetch time

Let x′ and x′′ denote two caching/prefetching algorithms.
The relative performance gain gx′,x′′ we obtain by using x′′
instead of x′ is given by relation

gx′,x′′ = Rx′ − Rx′′

Rx′
. (21)

We shall take advantage of relative performance gains to
analyse the effects of normalized fetch time φ on program
performance. First, let us consider performance gain
gLRU,MRU resulting the from utilization of MRU instead of
LRU. Substituting the expressions of RLRU and RMRU from
Table 1 into Equation (21) and manipulating we obtain

gLRU,MRU = β

1 + 1/φ
. (22)

Figure 9a shows the diagrams of gLRU,MRU as a function of φ

for β = 0.25 and β = 0.5. Response time of MRU is always
shorter than that of LRU; however, for small values of φ the
difference is small. In fact, the better behaviour of MRU is
due to less operations of page fetch. If the time costs of these
operations are low, the performance gain is marginal. The
maximum value of gLRU,MRU is β and is produced by high
values of φ.

Let us now consider the performance gain resulting from
the utilization of a prefetching algorithm instead of MRU.
Figure 9b shows the diagrams of gMRU,EP and gMRU,LP as
functions of φ for σ = 0.3 and two values of β, 0.25
and 0.5. Let φ′ denote quantity (1 − σ)−1 and φ′′ denote
quantity (1 − σ)−1 · (1 − β)−1. The diagrams of gMRU,EP
are characterized by two sharp variations, which occur at
φ = φ′ and φ = φ′′. The diagrams of gMRU,LP feature a
single variation, taking place at φ = φ′′.

Both gMRU,EP and gMRU,LP are small for small values of
φ. Indeed, if the time required to fetch a page is negligible,
we save little time by prefetching pages. Larger buffers,
corresponding to high values of β, reduce the number of page
fetches, thereby improving performance of non-prefetching
algorithms and lowering the two performance gains.
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FIGURE 10. Normalized response time as a function of β when σ = 0.3 and: (a) φ = 1 and γ = 0.7; (b) φ = 2, γ = 1.4 and β = 0.28.

FIGURE 11. Sms utilization as a function of β when σ = 0.3 and: (a) φ = 1 and γ = 0.7; (b) φ = 2, γ = 1.4 and β = 0.28.

When φ = φ′′, we have the maximum performance gain
gmax, equal to (1−σ)/(2−σ) for both EP and LP. This result
is independent of the buffer size. Thus, in an ideal system
featuring σ = 0, we obtain a 50% response time reduction
by using a prefetching algorithm instead of MRU. A non-
zero value of σ lowers gmax and raises the corresponding
value of φ′′.

Performance gains decrease for high values of φ. In
situations of this type, the time required to reference a page
is a fraction of the time required to accomplish a page fetch.
The ensuing situations of program stall reduce the advantages
of page prefetching.

5.2. Buffer capacity

For each given caching/prefetching algorithm x, Figures 10
and 11 show the diagrams of normalized response time Rx

and sms utilization Ux as a function of normalized buffer
capacity β for σ = 0.3 and two values of φ, 1 and 2. RLRU is
independent of the buffer size. In fact, LRU always makes the
worst replacement decision, evicting the buffered page whose
next reference is nearest in the future. LP always produces the
best response time. Essentially, better usage of buffer space
implies correct replacement decisions, which are more likely
to occur if they are delayed as much as possible. In both MRU

and LP, program response time decreases when the buffer size
increases. In terms of our graphical representation, a larger
buffer causes the stall zone to shrink, thereby reducing the
number of page fetches (see Figure 2).

In a non-prefetching algorithm, no parallelism is possible
between the processor activities of page reference and the
sms activities of page fetch. Consequently, the problem
of reducing response time is equivalent to that of reducing
the number of page fetches and sms utilization. Prefetching
algorithms decrease program response times by causing the
sms to operate in parallel with the processor, and indeed, the
diagrams of Figure 11 show that sms utilization in EP and
LP is higher than in MRU for all buffer capacities. However,
a large number of page fetches increases processor overhead
for sms control in EP and LP. Observe that, by definition,
Tx ≥ Tmin + mfxtsms. Dividing by Tmin and manipulating
we obtain Rx ≥ (1 − σUx)

−1. This relation expresses
a lower bound on program response time. An increase of
sms utilization Ux raises this lower bound, and indeed when
σ > 0 the two prefetching algorithms are unable to produce
minimum execution time Tmin.

EP uses the sms intensively, and, consequently, for σ > 0
and large buffers, MRU produces better response times than
EP (see Figure 10). Manipulating the expressions of REP and
RMRU from Table 1 we find that the response time of EP is
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equal to that of MRU when β = β ′′, where quantity β ′′ is
defined as follows:

β ′′ =



1 − σ for γ ≤ 1

1 − σ

γ
otherwise.

(23)

Indications concerning worst-case behaviour of the four
algorithms can be obtained by considering a situation of
σ = 1, when RLRU = REP, ULRU = UEP, RMRU = RLP and
UMRU = ULP. In fact, quantity σ is an index of the degree of
potential parallelism between page referencing activities and
page fetch activities. When σ = 1, no parallelism is possible,
and we lose all advantages inherent in page prefetching.
Any performance difference between the two prefetching
algorithms derives from different replacements. The better
behaviour of LP is a consequence of deferred selections of
the victim pages.

5.3. Transient behaviour

LRU and MRU reach a steady-state buffer configuration after
a single iteration of the base stream, and EP reaches a steady-
state configuration after two iterations. For these algorithms,
transient behaviour is marginal, and the effects of the initial
situation of empty buffer can be largely ignored. This is
not the case for LP. As seen in Section 4.3.2, this algorithm
reaches a steady state after a number of iterations of the base
stream that is a function of quantity φ and can be a significant
fraction of the total. This fact must be taken into careful
consideration when comparing program response times.

As can be seen in Figure 10b, the steady-state response
time of LP is lower than that of EP for every value of β. This
is not the case if we consider transient behaviour. We derived
Relation 20 as an approximation of response time RLP in the
case m � nh. The diagram shows that, in a situation of
this type, LP is faster than MRU for every value of β (see
Figure 10). On the other hand, EP outperforms LP if the
buffer is small. Essentially, LP is unable to exploit the whole
sms bandwidth. While execution of the target program is
traversing the buffered zone, LP causes the sms to idle even
in the presence of a large stall zone. This is not the case for EP,
which produces better utilization of the sms by anticipating
the fetch operations needed in the stall zone.

6. EXPERIMENTAL RESULTS

We carried out a large set of measurement experiments aimed
at validating the analytical results illustrated in the previous
sections. These experiments allowed us to evaluate the
extent of the simplifying assumptions made in our theoretical
analysis. The testbed was a prototype of a distributed system
developed within the framework of a large research effort
in the field of single-address-space architectures [22, 23].
This prototype consists of a set of identical Intel Pentium-
based workstations (nodes) connected by a fast network. The
configuration of each node includes a 128-Mbyte primary
memory, a Samsung SV0844 hard disk, an Intel PIIX 4
ATA33 controller and a Digital 21140A fast Ethernet adapter.

While doing our measurements, the single-address-space
features were disabled, and each node hosted the FreeBSD
4.2 operating system running in single-user mode.

Our target program was a synthetic benchmark program
written in the C++ programming language. It was compiled
by using the gcc compiler version 2.95.3 and forcing
optimization level 2 (the -O2 compiler option, producing
optimization not involving forms of space–speed trade-offs).
The program iterates execution of a base stream consisting
of an ordered sequence of references to a set of data pages. A
reference to a given page consists of one or more read accesses
to each storage unit that forms this page. We accomplish
the allocation of the buffer frames in the primary memory by
taking advantage of themmap() and mlock() system calls.
So doing, we prevent the host operating system from selecting
these frames for replacement. A system component, called
the buffer manager, is deputed to implement the specific
page caching/prefetching strategy. In the experiments using
a prefetching algorithm, a process, called the prefetcher, runs
in parallel with the benchmark program. The prefetcher is
responsible for interactions with the sms. Process scheduling
is accomplished by using the SCHED_FIFO POSIX thread
scheduling policy (first-in/first-out scheduling). The priority
of the prefetcher is higher than that of the benchmark
program. Consequently, every request for a page fetch causes
execution of the prefetcher to be immediately resumed and
the request to be served as soon as the sms becomes idle. In
the LP algorithm, the buffer manager estimates the latest time
instant making it possible to complete the fetch of a missing
page before the occurrence of the next program reference to
this page. At this time instant, the buffer manager sends a
synchronization signal to the prefetcher, thereby causing the
page fetch to begin.

The parameters of a benchmark run include the page
reference time, the number of pages in the base stream,
the number of iterations of the base stream and the buffer
size. Measurements were made for each caching/prefetching
algorithm. To normalize program response times, we needed
a suitable approximation of quantity Tmin. To this aim, we
measured program response time in an experiment using a
buffer of the same size as the base stream. We found that the
algorithm has little impact on this measurement (<2%). The
approximation of Tmin utilized in the results presented here
was obtained by using MRU.

We implemented two secondary memory subsystems, a
local sms and a remote sms. In the experiments using the
local sms, the data pages referenced by the target program
were stored in a dedicated partition of the hard disk that was
accessed in raw mode. Intervention of the FreeBSD buffer
cache was inhibited, and every request for a block read was
served by the hard disk controller via direct memory access.
An intrinsic difference exists between secondary memory
behaviour of a system of this type and that hypothesized in
our analytical model. In the model, page fetch time tf is
considered constant and independent of both the time instant
when the request for a page fetch is issued, the specific page
to be prefetched, and the sequence of previous page fetches.
In fact, as a consequence of the physical attributes of disks,
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FIGURE 12. Normalized response time as a function of β in the measurement experiments using the remote sms when tf = 600 µs and:
(a) tpr = 500 µs; (b) tpr = 256 µs. The page size was 4 KBytes.

these factors are prone to affect sms behaviour deeply. Page
fetch time tf is the result of three components: (i) seek time
t seek, i.e. the time to move the disk arm to the track containing
the page p to be fetched; (ii) rotation latency t latency, i.e. the
time for the first sector containing p to rotate under the read-
write head; and (iii) page transfer time t transfer, i.e. the time
necessary to transfer a block of bits of size one page under the
read–write head. Both seek time and rotation latency depend
on the position of the head and the disk platters when a new
page fetch is started up.

In the experiments using the remote sms, we took
advantage of the distributed architecture of our testbed
system. A node, called the client node, was dedicated to run
the benchmark program, whereas the data pages accessed by
this program were stored in the primary memory of a different
node, the page server. A portion of the primary memory of
the client node was reserved for the program buffer. Thus, the
fetching of a page p into the buffer produced transmission
of the page contents across the network, from the primary
memory area reserved for p in the server node to the buffer
frame reserved for p in the client node. Transmission was
accomplished by using a simple protocol of page request,
delivery and acknowledgment of receipt, layered over the
User Datagram Protocol. In these experiments, the time
necessary to copy a page from the page server to the
program buffer in the client node was essentially constant.
This situation well matches our theoretical hypothesis of a
constant page fetch time. By eliminating the effects of hard
disk mechanics, these experiments allowed us to validate the
analytical model. Furthermore, the remote sms experiments
can be effectively used to characterize program behaviour in
a distributed environment featuring a page server equipped
with a large primary memory cache [24], [25], [26]. In a
situation of this type, all page fetches in steady state are
accomplished from the cache rather than from disk [27].

6.1. Remote sms

In the following, we shall present the results of two
experiments carried out in a system configuration using
the remote sms. These experiments are representative of

situations of fast fetch (γ ≤ 1) and slow fetch (γ > 1),
respectively. In both experiments the page size was 4 KBytes,
page fetch time tf was 600 µs, the base stream generated
100 page references and its execution was iterated 100 times.

6.1.1. Fast fetch
In the first experiment, a page reference consisted of ∼160
thousand instructions, corresponding to a page reference
time tpr of 500 µs. The instructions were equally partitioned
between register loads, register increments, arithmetic adds,
comparisons and jumps. The value of normalized page fetch
time resulting from ratio tf/tpr is φ′ = 1.2. According to
Relation 12, the fast fetch condition γ ≤ 1 is satisfied when
normalized sms control time σ is >0.17. We shall validate
this assumption shortly.

Figure 12a shows the experimental diagrams of normalized
response time as a function of normalized buffer capacity.
A close correspondence exists between these diagrams
and those resulting from our analytical evaluation (see
Figure 10a). The value φ′′ of normalized page fetch time
that best approximates the measurement results can be
interpolated by applying the minimum square method to the
analytical expressions of RLRU and RMRU (see Table 1). The
result is φ′′ = 1.12. The small difference (<7%) between
this value and value φ′ computed above is due to the fact that
the analytical expressions of RLRU and RMRU do not take
into account the cold-start situation that takes place at the
beginning of the execution of the target program when the
buffer is empty.

We shall hypothesize that value φ′′ also applies to the two
prefetch algorithms, EP and LP. Indeed, normalized page
fetch time is defined in terms of two quantities, tf and tpr,
which are independent of the algorithm. In this hypothesis,
the value of normalized sms control time can be derived from
the measurement results. We obtain σ = 0.4 for both EP and
LP, thereby validating our initial hypothesis of γ ≤ 1.

6.1.2. Slow fetch
In the second experiment, the page reference time tpr was
256 µs. The value of normalized page fetch time resulting
from ratio tf/tpr is φ′ = 2.34. If we hypothesize a value of σ
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close to that found in the fast fetch situation (a hypothesis that
we shall validate shortly), then we have γ > 1 corresponding
to a slow fetch situation. Figure 12b shows the experimental
diagrams of normalized response time as a function of
normalized buffer capacity. In this case, too, a close
correspondence exists between these diagrams and those
resulting from our analytical study (see Figure 10b). The
valueφ′′ of normalized page fetch time that best approximates
the measurement results is 2.18. In this case, too, the
difference between φ′ and φ′′ is quite small (<7%).

The analytical results for σ = 0.3, φ = 1 and β ≤ β ′
indicate a difference of 1 between normalized response
times REP and RLP and normalized response time RMRU (see
Figure 10b). In our measurements, the average difference is
0.7. This discrepancy is a consequence of a delay existing
in our experiments between the end of a page prefetch and
the beginning of the next prefetch. This delay is mainly
due to the context switches between the target program and
the prefetcher, and to the activities of the prefetcher. We
quantified this delay in 50µs. By adding this delay to page
fetch time tf , we obtain a close correspondence between the
measurement results and the analytical results.

For high values of β, both the analytical model and the
experimental measurements indicate that REP is independent
of β (see Figures 10b and 12b). An estimate of normalized
sms control time can be obtained by using Relation 16 and
the experimental value of REP. The result is σ = 0.34.

6.2. Local sms

In the experiments using local sms, we clustered the pages
of the base stream according to criteria of temporal locality.
We placed page pi+1 involved in the (i + 1)-th reference in
the disk sectors contiguous to those reserved for page pi . So
doing, we pursued stabilization of page fetch time. In detail,
in the stall zone the missing pages are fetched in sequence.
Let tf,stall denote the time required to fetch a page in this zone.
If tf > tpr we have

tf,stall = t transfer. (24)

In the buffered zone, page fetch activities take place only
if we are in the presence of holes (see Section 4.1.2 and
Figure 5b, for instance). Let tf,buffered denote the time
required to fetch a page in this zone. If the holes are placed
at a distance of φ pages from each other and the latest fetch
involved page pi , the next fetch will involve page pi+φ . If
page pi+φ is stored in the same disk track as page pi , we
have t seek = 0. A rotation latency t latency = (φ − 1)t transfer

is necessary for the disk arm to move across the disk sectors
storing pages pi+1, pi+2, . . . , pi+φ−1. Thus,

tf,buffered = φt transfer. (25)

At the beginning of a new iteration of the base stream, if the
size of the base stream exceeds the track size a movement of
the disk arm takes place from the disk position of the last page
referenced in the previous iteration to the position of the first
page referenced in the new iteration. If the base stream has

sufficient length, this situation is comparatively rare, and we
can safely ignore the resulting seek time and rotation latency.

Now consider the memory behaviour of LRU. As pointed
out in Section 3.1, in each iteration this algorithm causes
the fetch of all the pages that form the base stream. As a
consequence of page clustering in contiguous disk sectors,
if tf > tpr we have no rotation latency. Furthermore, a seek
time is paid only once for each track and can be ignored. We
may conclude that a suitable approximation of page transfer
time t transfer can be obtained by measuring the page fetch time
in the absence of page prefetching, by using LRU.

We shall now present the results of two experiments carried
out in a system configuration using the local sms. These
experiments are representative of situations of fast fetch
(γ ≤ 1) and slow fetch (γ > 1), respectively. In both
experiments, the page size was 8 KBytes, the base stream
was composed of 2000 page references and its execution
was iterated 50 times.

6.2.1. Fast fetch
In the first experiment, the page reference time tpr was 518 µs.
By using LRU, we measured an average page fetch time tf
of 487 µs. Thus, normalized page fetch time φ′ was 0.94,
corresponding to a situation of fast fetch (γ ≤ 1). Figure 13a
shows the experimental diagrams of normalized response
time as a function of normalized buffer capacity. The value
φ′′ of normalized page fetch time that best approximates the
measurement results is 0.91. The difference between φ′ and
φ′′ is <4%.

As seen in Sections 4.2.1 and 4.3.1, when γ ≤ 1 the
steady state configurations of both EP and LP feature no
holes in the buffered zone. Consequently, disk access times
are essentially constant and the analytical model is accurate.
Indeed, the experimental diagrams of Figure 13a match
the theoretical diagrams of Figure 10a well. By using the
experimental diagrams, we obtain REP = 1.32, with a
standard deviation of 0.1%, and, from Relation 14, σ = 0.31.

6.2.2. Slow fetch
In the second experiment, the page reference time tpr was
145 µs. By using LRU, we measured an average page fetch
time tf of 450 µs. Thus, normalized page fetch time φ′ was
3. Condition γ > 1 corresponding to a slow fetch situation
is satisfied when σ < 0.67. In this hypothesis, the diagrams
resulting from the theoretical analysis are those of Figure 10b.
The number of iterations of the base stream is much smaller
than the number of pages in the sequence, resulting in m �
nh. As seen in Section 5.3, this consideration is important as
far as the LP algorithm is concerned.

Figure 13b shows the results of our measurements in
diagram form. The experimental behaviour of LRU and
MRU is very similar to the theoretical behaviour, whereas
this is not the case for EP and LP. As seen in Section 4.3.2,
our model indicates that, in the buffered zone, LP causes
a negligible number of page prefetches. In the stall zone,
every page fetch takes place in parallel with the processor
activity of page reference, and this is the main reason for the
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FIGURE 13. Normalized response time as a function of β in the measurement experiments using the local sms when: (a) tpr = 500 µs and
tf = 487 µs; (b) tpr = 145 and tf = 450 µs. The page size was 8 KBytes.

better performance of LP with respect to MRU. On the other
hand, our measurements indicate that MRU and LP produce
essentially the same response times. This is a consequence
of the form of data prefetch that the disk controller carries out
at the hardware level. On termination of the read of a given
sector, the controller autonomously accesses the subsequent
sectors and copies their contents into an internal buffer,
thereby reducing disk access times in the case of subsequent
read operations involving these sectors. The rationale is that
most of the file accesses are highly sequential.

The behaviour of EP deserves special attention. In
our experiments, the response time of this algorithm is
significantly worse than in the theoretical analysis. For
small buffer sizes, the response time is roughly independent
of buffer capacity, and the algorithm seems unable to take
advantage of a buffer size increase. The causes of this
anomaly are related to the significant number of holes that EP
produces in the buffered zone when the buffer is small. Our
analytical model indicates that the holes are at a distance of φ

pages from each other (see Section 4.2.2). Our experimental
measurements indicate that the distance φ̄ between the holes
is determined by the first iteration of the base stream, when
the pages are fetched sequentially into the buffer. In a
situation of this type, the page fetch time features a single
component, t transfer; thus we have φ̄ = t transfer/tpr. Let
nbuffered = c/(φ̄ − 1) denote the number of holes in the
buffered zone and nstall = n−c−nbuffered denote the number
of pages in the stall zone. The following relation expresses
the time t necessary to accomplish a single iteration of the
base stream:

t = nstall · tf,stall + nbuffered · tf,buffered. (26)

Substituting Equations (24) and (25) into (26) and
manipulating we obtain

t = nttransfer. (27)

This quantity is independent of the buffer capacity.

Intuitively, the addition of φ̄ buffer frames allows us to save
as many page fetches in the stall zone. However, the new hole
that is generated in the buffered zone increases time cost t

by a quantity roughly equal to φ̄ page fetch times, thereby
nullifying the advantages deriving from the larger buffer. In
contrast, our analytical model hypothesizes a constant page
fetch time. Consequently, a new hole in the buffered zone
increases t by the time cost of a single page fetch, and this
time cost is more than counterbalanced by the time savings
in the stall zone. The overall result is a decrease of t .

For large buffers, our measurements for the EP algorithm
indicate that program response time is no longer constant and
diminishes when the buffer size increases. Indeed, when the
buffered zone (including the holes) extends throughout the
base stream, the program never stalls (see Section 4.1.3). On
the other hand, page fetch activities are still necessary to load
the pages corresponding to the holes into the buffered zone.
The resulting sms overhead has a negative impact on overall
performance, causing response time of EP to be worse than
those of MRU and LP.

7. RELATION TO PREVIOUS WORK

In this section, we shall consider two classes of algorithms
that received much attention in the recent past, the aggressive
prefetching and the informed prefetching algorithms. As will
be made clear shortly, the results of research concerning these
algorithms are closely related with our results.

7.1. Aggressive prefetching

Cao et al. [21] identified a set of conditions that must be
obeyed by any optimal prefetching and caching strategy. The
optimal prefetching and optimal replacement conditions state
that every prefetch action must involve the non-buffered page
whose next reference is nearest in the future while evicting the
buffered page whose next reference is furthest in the future.
The do no harm condition forbids replacement of page pi
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with page pj if pi will be referenced before pj. Finally, the first
opportunity condition forbids a given activity of page fetch
and replacement if this activity could have been carried out
previously. The first two conditions univocally identify the
pages involved in any activity of page fetch and replacement,
while the other conditions provide some advice concerning
when to prefetch.

Investigation focused on the memory behaviour of an
integrated strategy for prefetching and caching, called
aggressive. The aggressive strategy performs the fetch of
the next page missing in the buffer at the earliest opportunity
that does not violate the four conditions. Trace-driven
simulation experiments were performed to compare the
memory behaviour of the aggressive prefetching strategy
with the behaviour of six non-prefetching strategies, which
were essentially variants of LRU and Belady’s optimal off-
line replacement strategy [28].

If applied to the context of programs with looping reference
patterns, our EP algorithm is equivalent to (i.e. it produces
the same sequence of page fetches and replacements as) Cao
et al.’s aggressive algorithm. As far as the LP algorithm is
concerned, in a fast fetch situation of γ ≤ 1 the fetch of a new
page is delayed until the latest time instant compatible with
completion of the fetch before beginning of the reference to
this page (Figure 8a). In this time interval, the two hands do
not move and the first opportunity condition is violated. On
the other hand, we demonstrated that LP may behave better
than EP, which complies with the four conditions. This is
essentially a consequence of the overhead of issuing prefetch
requests in terms of processor times for sms control.

In fact, Cao et al.’s analytical model ignores sms overhead.
Consequently, the costs connected with page prefetching
activities are underestimated. In our terminology, situations
of this type correspond to tsms = 0 and σ = 0.
The results of our theoretical analysis and experimental
measurements demonstrate that assumptions of this type are
undue simplifications. For instance, EP and LP produce the
same response times when σ = 0, whereas when σ > 0 LP is
faster than EP. This result is true even if γ > 1. Furthermore,
when σ = 0 EP is faster than MRU, whereas this is not the
case when σ > 0 and β > β ′′, and the value of β ′′ diminishes
when σ increases.

Cao et al.’s simulation experiments assume a constant
disk access time, equal to the average of the disk access
times resulting from the program traces. We considered a
situation of this type in our remote sms experiments. On
the other hand, the electromechanical nature of hard disks
leads to variations in page fetch times, and our experience
with the local sms evidences the significant effects of these
variations on the behaviour of the EP algorithm, for instance.
Considerations of this type suggest that a hypothesis of a
constant disk access time can be effectively used to model
specific system configurations, e.g. a remote file server, but
is unable to produce correct results for an application program
accessing a large amount of data partially kept in the local
secondary storage devices.

In a subsequent paper [29], Cao et al. extended
their analysis to interactions between the three aspects,

application-controlled caching, prefetching and disk schedul-
ing. Both single-process and multi-process environments
were taken into consideration. As pointed out by the authors,
page prefetching provides new opportunities to improve disk
performance, if several prefetch requests are generated at
the same time instead of just one request, for instance. In
a situation of this type, the disk driver has an opportu-
nity to reduce both disk seek time and rotation latency by
ordering the prefetch requests according to increasing block
numbers [30].

Our analysis approaches the disk-scheduling problem from
a different point of view. Rather than letting the sms
dynamically reorder disk access requests to improve disk
access times, we hypothesize that the pages are placed on the
disk surface by taking the program patterns of page reference
into consideration. In particular, if two pages are contiguous
in the base stream, they are placed in contiguous disk areas.
As far as disk latency is concerned, we evaluated the negative
effects produced by the holes in the buffered zone in situations
of slow fetch. It is worth noticing that the addition of dynamic
disk scheduling will not alleviate this problem. Moreover, the
holes move one position counterclockwise at each iteration
of the base stream, and, consequently, we cannot devise a
different placement of pages on the disk surface capable of
reducing latency.

Cao et al.’s study formulates no hypothesis concerning
program access patterns to the memory pages. Consequently,
the authors were not in a position to extend the results of their
analysis beyond general indications concerning algorithm
behaviour in memory, e.g. lower and upper bounds on pro-
gram response times. In their simulation experiments, they
selected application programs characterized by substantially
different memory reference patterns. The results of these
experiments were used to validate the theoretical results
and evaluate the impact on program performance ensuing
from the integration of various combinations of application-
controlled caching, prefetching and disk scheduling.

Rather than considering a collection of different programs,
our experimental evaluation took advantage of a synthetic
benchmark program to investigate the behaviour of a specific
class of application programs, i.e. programs exhibiting a
looping pattern of memory reference. So doing, we were in a
position to vary both the caching/prefetching algorithm and
a number of parameters characterizing program utilization
of system resources. As a result, we obtained a thorough
knowledge of program and system reactions to these
variations.

Glass and Cao [14] analysed the memory traces of a set
of benchmark programs exhibiting very different execution
characteristics. As a result of this analysis, they propose a
classification of programs into three categories, according to
program behaviour in memory. The first category includes
memory-intensive programs whose memory access patterns
are on a large scale. In each execution interval, a program
in this category references a large number of memory pages.
The second category includes memory-intensive programs
whose memory access patterns are on a small scale. The
third category includes programs whose memory references
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span a large memory area in highly regular, sequential
access patterns. The application programs considered in our
analysis belong to this third category. It should be pointed
out that a program of this type not necessarily accesses the
memory pages in address order. An example is a program
that repeatedly references the elements of a circular list.
A program of this type may well exhibit a strong looping
behaviour that complies well with our model, even if the list
elements occupy non-contiguous memory positions.

7.2. Informed prefetching and caching

7.2.1. Application-controlled memory management
Traditional systems implement reactive forms of memory
management whereby a disk access is started up in response
to an application demand for a missing page. In these
systems, the algorithm for page replacement is fixed and
independent of the program generating the page fault.
This approach produces satisfactory results only if a close
correspondence exists between the memory access pattern
of the running program and the memory access paradigm
hypothesized by the page replacement algorithm. If
this correspondence is lacking, significant performance
degradations may follow [31].

In an alternative, application-controlled approach [32,
33, 34, 35], the application program supplies the memory
management system with indications concerning future
behaviour in terms of requests of memory resources.
Patterson et al. call these indications disclosing hints [19,
20]. A disclosing hint takes the form of the name of a
file and an access pattern for this file, for instance. The
program transmits the hints to the memory management
system via system calls. The programmer inserts these
calls explicitly at appropriate points of the program code.
Alternatively, automatic compiling techniques can be used
for the generation of the hints in the object code [36, 37].
The application can be modified to predict future memory
accesses and generate the hints. To this aim, the application
will use the processor cycles that would otherwise be wasted
as a consequence of stalls [38]. Disclosing hints support
a proactive vision of memory management in which the
system improves overall utilization of memory resources by
prefetching pages aggressively.

In a different view of application-controlled memory
management, hints contain indications concerning the
memory management strategy that is more suitable for the
given application program. In Patterson et al.’s terminology,
these are called hints that give advice. They are especially
effective when the memory reference pattern of the program
is known and predictable.

The analysis of caching and prefetching algorithms
presented in this paper is intended to support a form
of application-controlled memory management in which
the application program supplies the memory management
system with both disclosing hints and hints that give advice.
The disclosing hints concern the names of the pages that
form the base stream. The advice specifies the caching and
prefetching algorithm that is best suited to support program

execution. The algorithm will be chosen by characterizing
program activity and system configuration in terms of
quantities tpr, tsms and tf . These quantities will be used to
evaluate and compare the resulting program performance
indexes. In this phase, we shall take advantage of the relations
of Table 1 as well as the diagrams of Figures 9–11.

As a first example, let us consider a database query
application. Database management systems usually include
a software component, called the buffer manager, which is
responsible for selection of the page to be evicted from the
buffer when a free frame is lacking [9]. The buffer manager
uses its own page replacement algorithm, and the common
choice is LRU [35]. Let us now consider two tables, t1 and
t2, and let t3 = t1 �� t2 be the result of their natural join.
Memory behaviour of the natural join application complies
with our model of a looping reference pattern. For this
program, our analysis demonstrates that, in the absence of
prefetch, MRU produces both a fast response time and low
sms utilization (see Figures 10 and 11). In an application-
controlled approach, we shall modify the code implementing
the query by adding instructions to transmit a hint to the buffer
manager. In this case, the advice is to replace the ubiquitous
LRU with MRU.

As a further example, let us refer to a program with a
looping reference pattern, and suppose that the page reference
time of the program is shorter than the page fetch time, so
that γ > 1. Suppose that the program produces a number m

of iterations of the base stream that is much smaller than the
number nh of iterations necessary to reach a steady state. As
shown in Section 5.3, in a situation of this type LP produces
unsatisfactory response times, and the hint will be to use
EP (see Figure 10b). On the other hand, if the buffer is
small, prefetch algorithms utilize the sms intensively (see
Figure 11). In a multiprogrammed environment featuring a
high level of contention for secondary memory resources,
sms utilization may be an important factor, and a non-
prefetching algorithm may have a more appropriate result,
at least for low-priority programs. In this case, the hint will
be to use MRU.

7.2.2. The fixed-horizon algorithm
Patterson et al. [19] propose a form of cost-benefit analysis
supporting integration of proactive memory management
with LRU caching.

Page prefetching takes advantage of an algorithm of
informed prefetching, which in a subsequent paper [39] is
called the fixed horizon algorithm. The horizon is the time
instant when to prefetch a given page before the occurrence
of the next reference to this page. The algorithm determines
the horizon by considering the time necessary to carry out the
preceding references. Prefetching a page at any time instant
before the horizon leads to no advantage in terms of program
response time.

Of course, a close relationship exists between the concept
of a prefetch horizon and the LP estimate of the earliest time
instant suitable for prefetch (see Figure 3b and c). However,
in both [19] and [39], unlimited availability of disk arms
is supposed to provide enough disk parallelism so that the
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need for disk queuing never arises. On the contrary, we
hypothesize that the sms can honour no more than a single
page fetch request at a time. Consequently, every request for
a page prefetch must be delayed unless the sms is idling. A
delayed prefetch will be able to mask program perception of
page fetch time only partially. The program will stall, albeit
for a time interval shorter that the entire duration of a page
fetch.

7.2.3. An example of implementation
Huizinga and Desai [16] report the results of an
implementation effort concerning integration of informed
prefetching and caching techniques within the framework
of the Linux operating system, as a replacement of the
traditional read-ahead mechanism of the Linux kernel. They
introduce a new system primitive, called prefetch(), having
the same format as the read() primitive. An application
program will take advantage of prefetch() to transmit a
hint to the memory management system before issuing the
corresponding read().

The authors carried out a wide set of measurement
experiments on a Linux system compiled to include informed
prefetching features. With respect to read-ahead, the
results of these experiments evidence noticeable performance
improvements for all programs whose file accesses are not
strictly sequential and no performance penalty for programs
exhibiting highly sequential access patterns. These results
confirm the suitability of application-controlled memory
management strategies for integration in a widely used, off-
the-shelf system.

7.2.4. Predictive prefetch
Vellanki and Chervenak [40] distinguish between determin-
istic prefetching systems and probabilistic systems. A deter-
ministic system decides which secondary memory blocks to
prefetch next by taking advantage of application-provided
hints taking the form of an ordered list of blocks that
will be accessed in the future. An example of such a
system is the Patterson et al.’s [19, 20] informed prefetch-
ing implementation. In contrast, a probabilistic system tries
to derive a list of future memory accesses from an analysis
the past accesses.

Vellanki and Chervenak propose a form of predictive
prefetching as a variant of the informed prefetching
scheme that takes advantage of a cost-benefit analysis
in a probabilistic framework. In contrast with informed
prefetching, predictive prefetching does not require that
application programs be modified to insert system calls for
transmission of the hints to the memory management system.
Instead, the system takes the decision of which block to
prefetch autonomously, by using a probability prefetch tree
based on past accesses.

The analysis of the predictive prefetching algorithm differs
from our analysis from a number of important viewpoints,
while presenting a few interesting analogies. In both cases,
much attention is paid to the costs of the actions of page
prefetch in terms of the time necessary for the processor
to start up the disk activity. This important factor was

often neglected in similar studies. On the other hand, the
predictive prefetch analysis assumes unlimited availability
of disk units, no disk congestion and a constant disk access
time. Conversely, we allow a single page fetch at a time while
using disk access time as a parameter of our evaluation.

Vellanki and Chervenak [40] evidence that the advantages
resulting from block prefetch activities decrease for large
buffer sizes. This result is confirmed by our study.

The predictive prefetching study pays special attention
to the cache miss rate for different cache sizes and page
reference times. Of course, cache miss rates are especially
well suited to compare effectiveness of different probabilistic
algorithms to identify the future block references [41]. It is
worth noticing that in the presence of block prefetch, the miss
rate of the disk cache is only one of the factors that determine
overall program performance. In fact, the cost of a cache miss
in terms of program execution times decreases significantly
if the prefetch of the missing page was started up before the
generation of the miss.

8. CONCLUDING REMARKS

We have carried out a thorough analysis of the memory
behaviour of a number of page caching and prefetching
algorithms. The analysis was restricted to programs whose
paradigms of memory access are known in advance. More
specifically, we considered programs with looping reference
patterns, whose execution consists of the iteration of a
sequence of read accesses to a set of memory pages. We
considered two page replacement algorithms, LRU and
MRU, selected to limit the range of all possible program
response times in the absence of page prefetch, and two
prefetch algorithms, EP and LP, characterized by very
different degrees of sms activity.

The theoretical analysis was mainly aimed at expressing
program response time and sms utilization in terms of system
configuration and program activity. We paid special attention
to transient program behaviour and the effects of the time
necessary for the processor to control the disk activities
of page fetch. To this aim, we introduced a graphical
representation of program execution modelling both page
placement in the primary memory buffer and the actions of
page fetch and replacement. The results of a large set of
measurement experiments were used to validate the analytical
model while acquiring significant indications concerning the
extent of the simplifying assumptions made in the theoretical
analysis. In the discussion of the relation to previous work,
we paid special attention to two classes of algorithms that
received much attention in the past, aggressive prefetching
and informed prefetching.

A number of concluding observations follow:

• An analysis of page caching and prefetching algorithms
should always pay special attention to the effects of the
mechanical limitations of hard disks. In this respect,
a number of simplifying assumptions that are often
considered quite acceptable in theoretical studies should
always be validated carefully by using data resulting
from experimental measurements in real systems. An
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example is the hypothesis that the page fetch time be
independent of the specific page to be fetched as well as
the sequence of previous fetches. We have seen that a
hypothesis of this type, albeit quite acceptable to model
the behaviour of a page server, is prone to significant
underestimation of program response times in a system
configuration featuring a local sms, e.g. in the case of
the EP algorithm (see Section 6.2.2).

• The time necessary for the processor to control the sms
has a significant impact on program response times.
In the corresponding time interval, no parallelism is
possible between processor activity and sms activity.
Consequently, the effects of sms control time cannot be
simply assimilated to those of a longer page fetch time,
for instance. A comparative analysis of prefetching
algorithms should consider sms overhead carefully (see
Section 4.2, for instance).

• Steady state behaviour of programs in memory may
be significantly different from transient behaviour.
Transient analysis is especially important if the caching
and prefetching algorithm reaches its steady state after
a number of iterations spanning a large fraction of
program execution. As seen in Section 5.3, this is the
case for LP, whose transient behaviour in a situation
of small buffer is characterized by significantly worse
performance than steady state behaviour.

• Page placement in the buffer may result in configura-
tions of the buffered zone of the base stream that are
both odd and to some extent counterintuitive. Exam-
ples are the configurations produced by EP and LP if
the page fetch time is greater than the page reference
time. As seen in Sections 4.1.2, 4.1.3 and 4.3.2, in situ-
ations of this type the buffered zone features a number of
equidistant holes. The results of the experimental mea-
surements made in a local sms configuration indicate
that these holes are responsible for significant increases
in program response time (see Section 6.2.2).

In-depth understanding of program behaviour in memory
may give suggestions for significant enhancements of
program performance. Techniques of this type are of special
interest for time-critical applications that are worth the effort
of modifying the program code, to include hint for the
memory management system according to informed prefetch
techniques, for instance. We hope that our work will result
in a significant contribution in this direction.
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