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Abstract

We present a secure and available electronic voting service suitable for a large-scale distributed system such as the Internet.
The proposed service is based on replication and tolerates both benign and fully arbitrary failures. If enough servers are
correct, service availability and security are ensured despite the presence of faulty servers and malicious voters. A voter that
is affected by a crash failure can vote after recovery. The proposed service satisfies common voting requirements including
voter eligibility and privacy, and tally accuracy. In addition, the service satisfies a further important requirement, namely tally
verifiability without any intervention of voters. Anyone, including an external observer, can easily be convinced that the voting
outcome is fairly computed from the ballots that were correctly cast. It follows that the proposed voting scheme strengthens
the security properties of the electronic voting procedure, and simplifies the interaction of voters with the electronic voting
system.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Electronic voting (e-voting) refers to a process
whereby people can cast their votes through a large-
scale communication system, such as the Internet,
from any place where they can get network access
[41]. The problem of deploying an e-voting service
over a large-scale distributed system is not new, and
has been extensively investigated[1–4,7,8,11,14,
15,20,23,25,30,34]. However, over the last year there
has been a reinforced interest in e-voting as a way to
make voting more convenient and, hopefully, increase
participation in elections. E-voting is seen as a logical
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extension of electronic applications in commerce,
education and government[19].

An e-voting service is commonly expected to sat-
isfy a number of security criteria. However, in an open,
large-scale distributed system no individual server can
be permanently and completely trusted because it may
be compromised by an external attacker or a corrupted
insider. If the server is compromised, no security cri-
teria can be satisfied.

A traditional approach to build a secure e-voting
service consists in distributing trust to a set of servers,
and assigning each of them the responsibility of a
specific voting operation, e.g. validation of voters,
collection of votes, their counting, or their verifica-
tion. If enough servers are uncompromised, security
requirements can be ensured. Several voting schemes
have been conceived according to this approach
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[4,11,14,15,20,23,25,30,34]. Although these systems
meet basic requirements for an effective deploy-
ment in a large-scale system, the traditional approach
presents intrinsic limitations in the level of service
availability that can be provided. If any of the servers
suffers of a crash failure, the voting operations as-
sociated with that server, and thus the whole voting
service, become unavailable. During the voting pro-
cess, even benign failures occurring rarely as well as
very short periods of unavailability are unacceptable
because they may affect the vote of thousands of
voters and alter the overall elections outcome[27].

In an open, large-scale distributed system, voters
cannot be trusted either. Voting systems are commonly
designed to tolerate malicious voters: unauthorised
voters are prevented from voting, and eligible voters
can vote at most once. However, the possibility that the
behaviour of a voter may deviate from specifications
due to benign failures such as crashes should also be
taken into account. Consider Sensus[11], for exam-
ple. If the voting platform from which the voter casts
crashes after contacting the validator but before hav-
ing received the validation certificate, then the voter
will be never able to vote, even after recovery. In fact,
another execution of validation would be interpreted
as an attempt of the voter to vote more than once and
thus not allowed.

In this paper, we present an e-voting service that
is both available and secure, and that tolerates be-
nign failures of voters. We achieve security and avail-
ability by following a replication-based approach. We
distribute trust to a set of servers and let them share
the responsibility of implementing the voting opera-
tions. If enough servers are correct, service availabil-
ity and security can be ensured despite the presence
of faulty servers acting against the voting process,
both individually and in collusion with one another or
with malicious voters. Furthermore, we achieve toler-
ance to crashes of voters by allowing the voter valida-
tion and vote casting operations to be repeated across
crashes and recoveries without violating security re-
quirements.

The proposed e-voting service supports common
security requirements: only eligible voters should be
able to vote; an eligible voter should not vote more
than once; no one should be able to determine how
any individual voted. Furthermore, in contrast to
e-voting schemes such as[4,11,25,34], the proposed

e-voting service guarantees voting accuracy and veri-
fiability without requiring any intervention of voters
[9,10,16,33,43]. That is, any given observer can inde-
pendently verify that no invalid vote has been added
to the final tally and no valid vote has been altered
or deleted. This has several advantages. The resulting
service is more convenient for voters. Furthermore,
the task of counting votes is simplified since no co-
operation of voters is required. Finally, the overall
service security increases since no security control is
delegated to voters.

The implementation of the e-voting service is
founded ondissemination quorums, a quorum con-
struction technique that tolerates server failures rang-
ing from benign to fully arbitrary, and that can be
used when a replicated service is a repository of
self-verifying information[28]. The implementation
of any given voting operation involves a quorum of
servers. As a quorum may be small—e.g. composed of
O(

√
n) out of n servers—and neither server-to-server

nor voter-to-voter interaction is required, the e-voting
service may be efficiently deployed in a large-scale
system. Forms of replication have been employed also
by other e-voting systems[1,23]. However, they limit
the use of replication to implement just one voting
operation, namely, vote casting. Furthermore, in[23],
the proposed degree of replication is insufficient to
cope with compromised servers.

The paper is organised as follows. InSection 2we
list the requirements the proposed e-voting service
meets. InSection 3, we describe the model of dis-
tributed system for which the service is conceived. In
Section 4we briefly introduce dissemination quorums.
In Sections 5–7we describe the e-voting service in
two steps. InSection 5we present the basic version of
the service and inSection 6we argue that the proposed
e-voting service satisfies the requirements inSection
2. Then, inSection 7we present an extension to the
e-voting service aimed at tolerating crashes of voters.
Finally, in Section 8we present an early, fully oper-
ational prototype of the e-voting service and discuss
its performance.

2. Electronic voting requirements

In this section, we introduce the security require-
ments of the e-voting service. Prior to the beginning
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of the voting process, elections organisers specify the
list of theeligible voters.

• Eligibility—Only eligible voters are allowed to vote.
• Uniqueness—Every eligible voter can vote only

once.
• Privacy—No one can know the voting strategy of

any given voter.
• Availability—A voter eventually succeeds in casting

a vote.

In any moment, a voter may decide to abstain and
thus cast no ballot. However, no one must be able to
exploit that abstention and vote in the place of the
voter.

• Abstention—If any given voter abstains no one can
vote in the place of that voter.

When the casting period is over, the final election
tally is worked out. To be counted in the final tally,
a vote must bevalid, i.e., it must be unaltered and
come from an eligible voter.

• Accuracy—It is impossible either for an invalid vote
to be counted in the final tally, or for a valid vote
to be either altered or eliminated.

If the final tally contains any mistake, any given
observer is able to detect it and give any third party,
an arbiter, enough evidence for correction of the
mistake.

• Verifiability—Anyone can independently verify that
votes have been correctly counted.

This set of requirements is an obvious desiderata
that, no matter which other plausible properties an
e-voting service may have, cannot be dispensed
with. Most contemporary e-voting services strive
for satisfying these requirements[11,25,30,36].
However, it should be noted that, there are further
reasonable requirements that could be desirable for
an e-voting service. For instance, several systems
support theRecastingrequirement that allows a
voter to change his idea and recast before the dead-
line for casting ballots expires[4,14,25,34]. The
requirement that servers cannot learn intermedi-
ate results is a further example. A comprehensive
discussion of requirements for an e-voting service
can be found in[19]. However, we would like to
emphasise that the central issue of this paper, the
replication-based implementation of an e-voting
service, is largely orthogonal to this aspect.

3. System model

We consider a distributed asynchronous system
composed of a set of computingprocesses, n of which
areserversand the remainder of which areclients. A
process iscorrect if it always follows the specified
protocols. A faulty process, however, may deviate
from its specification in any fashion whatsoever, i.e.,
“Byzantine” failures are allowed. Faulty processes
may act maliciously and deliberately against the ser-
vice, possibly teaming up and acting in collusion.

All processes communicate throughreliable point-
to-point channels. This means that a correct process re-
ceives a message from another correct process if, and
only if, the other process sent it. However, asynchrony
implies that there is no bound on message transmis-
sion times, and on process relative speeds. Therefore,
the sender of a message can learn whether the in-
tended receiver has indeed received the message when
the sender receives the receiver’s acknowledgement of
that message.

When processes desire anonymity and untraceabil-
ity, they communicate throughanonymouschannels
[5]. Anonymity means that it is impossible to deter-
mine the sender from which a given message comes
from. Untraceability means that any two messages
from the same sender cannot be linked to each other.
Practical solutions to anonymous communication have
recently been proposed[17,24,37]as well as solutions
to robust anonymous channels[13,21,22].

Our protocols make use of cryptographic algo-
rithms. We denote byEk(m) the encryption of a given
messagem with key k. Whether the encryption al-
gorithm is symmetric or not will be clear from the
context. We assume that any given processP has a
public–private key pair, whereKp is the public key
and K−1

p is the corresponding private one. KeyKp
is assumed to be known to all processes, whereas
the corresponding private keyK−1

p is known only to
P. We denote byσ

K−1
p

(m) the digital signature of a
messagem with P’s private keyK−1

p . When there is
no danger of confusion, we writeσp(m).

Blinding is a cryptographic technique used when
we want processes to digitally sign messages with-
out seeing their contents[6]. Blind signatures are a
three-step process. In the first step, the originator of
a given messagem computes theblinded formof the
message using a properly randomly chosen numberf
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called theblinding factor. We denote bybf (m) the re-
sult of this computation. In the next step, the signer,
sayP, signs the blinded form of the message and pro-
ducesσp(bf (m)), the blindedsignatureof m. Finally,
the originator removes the blinding factorf and re-
trieves the original message signed by the signer, i.e.,
σp(m). Anyone can verify thatσp(m) has been pro-
duced byP. However, anyone who does not know the
secret blinding factorf, including the signer, cannot
associatebf (m) with either the messagem or with the
act of signing it, i.e.,σp(m).

For reasons of security and efficiency, it is often
preferable to sign amessage digestof a message rather
than the message itself. A message digest functionh
has the properties that the message digesth(m) for any
inputmcan be computed efficiently, but it is computa-
tionally infeasible to find any pairm andm′ such that
h(m) = h(m′), or to computem givenh(m) [29].

We allow for a very strong adversary that can co-
ordinate faulty processes. However, we assume that
the adversary (and the faulty processes it controls)
are computationally bound so that (with very high
probability) it is unable to subvert the cryptographic
techniques mentioned above. For example, the adver-
sary cannot produce a valid signature of a non-faulty
process, compute the information summarised by a
digest from the digest, or find two messages with the
same digest. Finally, we assume that cryptographic
keys, blinding factors, and other numbers that must
be unpredictable and unique are adequately chosen
randomly from an adequately large space to prevent
random collisions or the disclosure of secrets by
cryptanalytic attacks.

4. Dissemination quorum systems

Let us consider a service replicated over a setS of
n servers. Aquorum systemQ ⊆ 2S is a non-empty
set of subsets ofSevery pair of which intersects, i.e.,

Q-Intersection : ∀Q1, Q2 ∈ Q : Q1 ∩ Q2 �= ∅
EachQ ∈ Q is called aquorum.

Quorum systems have been traditionally used to
build replicated services where servers are subject
to benign failures such as crash failures. Informally,
quorum systems increase availability and performance
because a quorum can act on account of the whole

system. PropertyQ-Intersection guarantees that the
system remains consistent.

In a large-scale distributed system where fail-
ures may represent malicious acts of an adversary,
Property Q-Intersection alone is not sufficient to
guarantee consistency because it cannot prevent the
intersection of any two quorums from containing
only faulty servers. Recently, Malkhi and Reiter[28]
have proposed theByzantine quorum systems, which
extend the notion of quorum to replicated services
subject to arbitrary (Byzantine) failures.Dissemi-
nation quorumsare a variation of Byzantine quo-
rums that can be used when the replicated service
is a repository ofself-verifying information. In this
kind of service, compromised servers may fail to
propagate self-verifying information received from
a (correct) client but cannot alter it without being
detected.

In a large-scale distributed system in the presence
of malicious attacks, servers may not fail indepen-
dently and have correlated probabilities of being
captured. We use the notion offail-prone system to
capture this non-uniform failure scenario[28]. In-
formally, a fail-prone system describes the failure
scenario to which servers are subject by specifying
the subsets of servers that may be simultaneously
faulty. More formally, a fail-prone systemF ⊆ 2S is
a non-empty set of subsets ofS, none of which is con-
tained in another, such that someF ∈ F contains all
the faulty servers. Adissemination quorum(hence-
forth quorum) systemQ ⊆ 2S for a fail-prone system
F is a quorum system that satisfies the following
properties:

Q-Consistency :

∀Q1, Q2 ∈ Q⇔∀F ∈ F : Q1 ∩ Q2 � F

Q-Availability : ∀F ∈ F, ∃Q ∈ Q : F ∩ Q = ∅
PropertyQ-Consistency ensures that the intersection
of any two quorums contains at least one correct
server. This server guarantees that the self-verifying
information received from any given client can be
correctly disseminated. PropertyQ-Availability en-
sures that a quorum of correct servers always exists.
In an asynchronous distributed system subject to
failures, a client can learn whether an operation has
completed with the correct servers of some quorum
when the client has obtained responses from a full
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quorum. PropertyQ-Availability guarantees that such
a quorum always exists.

As an example of dissemination quorum system,
let us consider the customary “threshold” assumption,
according to which up tof servers can fail, withn >

3f . The fail-prone systemF can be thus defined as
F = {F |F ⊆ S ∧ |F | = f } and a dissemination quo-
rum systemQ for F can be defined asQ = {Q|Q ⊆
S ∧ |Q| = �(n + f + 1)/2�}. For n = 3f + 1, |Q| =
2f + 1. Note that the threshold assumption is based
upon the hypothesis that servers fail independently.
Quorum systems appropriate to situations where fail-
ures cannot be considered independent have been pro-
posed by Malkhi and Reiter[28].

5. The e-voting service

The e-voting service supports a voting process that
is structured in two phases:Voting and Tallying. In
the voting phase, voters cast their votes. This opera-
tion consists of two steps. First of all, any given voter
must be validated. This action consists in ascertaining
whether a given voter is eligible, and, if this is indeed
the case, issuing the voter with voting credentials. By
means of these credentials and the chosen voting strat-
egy the voter can later build a valid ballot and send it
to the e-voting service.

When the voting phase is over, the tallying phase
begins. In this phase, a principal calledtallier retrieves
ballots from the e-voting service and works out thefi-
nal tally. Any given principal, anobserver, can verify
the accuracy of the final tally. This activity includes
the observer building its own version of the tally and
comparing it with the final tally. If the final tally con-
tains any mistake, the observer is able to detect it and
give any third party, anarbiter, enough evidence for
correction of the mistake.

5.1. Votes, voting certificates, and ballots

To be counted in the final tally, a vote must bevalid,
i.e., it must be unaltered and come from an eligible
voter. Checking whether a vote is valid is complicated
by the fact that the identity of the voter must not be
disclosed. The goal of the validation operation is just to
issue credentials asserting that a given vote is unaltered
and comes from an eligible voter without disclosing

the identity of the voter. These credentials take the
form of a “blinded”voting certificate. In the following
we shall denote byCν the voting certificate for voteν.
The certificate structure will be discussed in the next
sections.

A ballot β = 〈α, ν, Cν〉 is a triple composed of a
voter’s voting strategyν, the voting certificateCν, and
a random numberα used to tag the vote. The ballot is
a self-verifiablestructure that allows anyone to verify
that the voting strategyν is valid without knowing the
identity of the voter.

Ballots are sent to e-voting service anonymously.
Therefore, as a ballot contains no information linking
a voter to the chosen voting strategy, voter privacy
is ensured. To fulfil the uniqueness requirement, the
e-voting service ensures that a voter can obtain at most
one voting certificate. This implies that a voter cannot
change his vote after he got the voting certificate. In
fact, to do that, the voter should obtain another cer-
tificate, but this is not allowed. Finally, the e-voting
service ensures that, if a valid vote has been collected,
then it will be counted in the final tally. Such a ballot
cannot be altered or eliminated without being detected
by any given observer. How the e-voting service
fulfils these guarantees is the argument of the next
sections.

5.2. The replicated service

With reference toFig. 1, the e-voting serviceis
implemented as a replicated service over a setS =
{S1, . . . , Sn} of n voting servers. We denote byKsi

andK−1
si

the public and private key, respectively, of
serverSi. We assume that a given fail-prone systemF
specifies the possible failure scenario to which servers
are subject and thatQ specifies a dissemination quo-
rum system forF. Voting clientsrepresent the voting
platforms from which voters interact with the service.
Clients perform the protocols implementing the voting
phase on behalf of voters.

In the voting phase, the interactions with the
e-voting service take place according to theValidation
and Casting Protocols. The former protocol allows
an eligible voter to obtain a voting certificate for the
chosen voting strategy, whereas the latter protocol
allows the voter to actually cast a vote. These pro-
tocols will be described inSections 5.3.1 and 5.3.2.
Intuitively, they work as follows. In the validation
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Fig. 1. The figure shows the replicated structure of the e-voting service.

protocol, a voter sends both identification information
and the blinded form of the chosen voting strategy to
every server inSuntil every server in a quorum signs
it. It follows that the voting certificateCν for vote ν

consists of the set of (digital) blind signatures ofν

by every server in a quorum. In the casting protocol,
the voter anonymously sends the ballot to all servers
in S until every server in a quorum collects it. We
say that a ballot isproperly collectedby the e-voting
service if it has been collected by every server in a
quorum.

Ballots disseminated by voters to the e-voting ser-
vice during the voting phase are gathered by atallier
and one or moreobserversduring the tallying phase.
These principals are responsible for working out the
final tally (Section 5.4.1) and verifying its accuracy
(Section 5.4.2), respectively. They interact with the
e-voting service according to thetallying protocol.
Intuitively, this protocol gathers ballots from every
server in a quorum. Every properly collected ballot is
thus received from at least one correct server. Invalid
ballots are discarded, whereas the remaining valid
ones are inserted in the final tally. The tallier carries
out the tallying protocol to work out the final tally.
Any given observer carries out the protocol to work
out its own version of the tally, compare it with the
version produced by the tallier, and ascertain that no
valid ballot has been eliminated.

5.2.1. Data structures of servers
In order to support the voting phases, any given

serverSi ∈ S is equipped with stable storage[26]
where it maintains the following data structures:

• The Electoral Roll, a trusted read-only data struc-
ture received from the elections organisers which
specifies the set of eligible voters. Conceptually, the
electoral roll can be considered as a table with one
entry for every eligible voter which specifies the
public key of that voter.

• The Validation Table, VTi, which specifies the set
of voters whose votes have been signed by serverSi.
Conceptually, VTi has one entry for each eligible
voter, with VTi[U] denoting the one reserved for
voterU. Table entry VTi[U] contains the valuetrue
if Si has (blindly) signed the vote ofU, and false
otherwise. Initially, every table entry contains the
falsevalue.

• TheCollection Set, CSi, which contains the ballots
collected bySi. Initially, CSi is empty.

5.3. The voting phase

Let U be an eligible voter (K−1
u , Ku) be his key

pair, andν his chosen voting strategy. The voter per-
forms the voting phase from any given client. In the
remainder of this section, and throughoutSections 5.4
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and 6, we assume that voting clients behave correctly.
We shall relax this assumption inSection 7, where
we consider the possibility that clients are subject to
crash failures. Furthermore, we use the terms client
and voter interchangeably. When the difference is rel-
evant, we shall highlight it.

5.3.1. The validation protocol
Initially, the voter randomly chooses an identifica-

tion tagα and calculates the blinded form ofh(α||ν),
where || denotes the concatenation operator. As, in
general, the blinding factor is required to satisfy cer-
tain properties with respect to the signature function,1

thenn blinding factors are chosen, one for each server,
n blinded forms are calculated, one for each blind-
ing factor. We denote byf the array ofn blinding
factors such thatf[i] contains the blinding factor for
serverSi. Furthermore, we denote byb the array of
n blinded forms such thatb[i] contains the blinded
form of h(α||ν) by means of the blinding factorf[i],
i.e., b[i] = bf [i](h(α||ν)).

Then, the voter performs the validation protocol,
that consists of the following actions:

1. The voter signsb[i] and sendsSi a validation re-
questmessage〈U, b[i], σu(b[i])〉, ∀i, 1 ≤ i ≤ n.

2. Upon receiving the validation request message, any
given serverSi accesses the electoral roll to ascer-
tain whetherU is eligible and verifyσu(b[i]). If any
of these checks fails,Si drops the request message.
Otherwise,Si accesses VTi[U] and takes alterna-
tive actions according to the contents of this entry:
(a) If VTi[U] = false, then Si signs b[i], sets

VTi[U] to true, and returns avalidation re-
sponsemessage〈Si, σsi (b[i])〉 to U.

(b) If VT i[U] = true, thenSi returns a validation
response message〈Si,⊥〉 to U, where⊥ de-
notes the null value.

3. Upon receiving a response message from a server
Si, the voter retrieves the signatureσsi(h(α||ν)),
by removing f[i] from σsi(b[i]) (the message is
dropped if it contains⊥), and verifies the obtained
signature (the message is dropped, if the verifica-
tion fails). Finally, the voter inserts the signature in
the voting certificateCν andSi in the set of respond-
ing servers. If this set forms a quorum, the voter

1 For instance, in a blinded signature scheme based on RSA
[40], the blinding factor must be prime to the modulus.

terminates the registration protocol, and deletesf
andb.

According to step 3, the voting certificateCν re-
leased by the e-voting service for voteν turns out to be
the set of signaturesCν = {σsi(h(α||ν))}Si∈Q, where
Q ∈ Q. The validity of a voting certificate should be
limited to the current election only. There are several
ways to achieve this goal. One way is to insert an ex-
piration time in the voting certificate. An alternative
way is to insert an election identifier in the certificate.
The certificate will be valid only within the election
specified by that identifier. For the sake of simplicity,
but without loss of generality, we have chosen an al-
ternative solution. We limit the validity of a certificate
to one election by limiting the validity of the servers
keys(K−1

si
, Ksi , ∀i, 1 ≤ i ≤ n) to that election. Every

given server will be given a new pair of keys upon
every new election.

5.3.2. The casting protocol
After validation, the voter builds a ballotβ =

〈α, ν, Cν〉 and casts it according to the following
actions:

1. The voter anonymously sendsSi a ballot mes-
sage〈Ek(β), EKsi

(k)〉, ∀i, 1 ≤ i ≤ n, wherek is a
per-ballot key to be used in a symmetric encryption
algorithm.

2. Upon receiving the ballot message, any given
serverSi retrievesk and thusβ, insertsβ into CSi,
and returns aballot acknowledgementmessage
〈Si, σsi (h(k))〉.

3. Upon receiving a ballot acknowledgement mes-
sage, the voter verifiesσsi(h(k)) (if the check fails,
the message is dropped), and insertsSi in the set
of acknowledging servers. If this set forms a dis-
semination quorum, the voter terminates the cast-
ing protocol and deletes quantitiesν, α, β andCν.

According to step 2, any given server does not per-
form any check on the received ballot but stores it. The
server checks neither whether the vote is valid, nor
whether any vote tagged with the same identifier is al-
ready present in the local Collection Set. These checks
would require cryptographic operations and accesses
to secondary storage. Therefore, by avoiding them,
we aim at improving both protocol throughput and la-
tency. However, to enforce security requirements, the
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presence of invalid and repeated votes will be checked
later, off-line, in the tallying phase.

5.4. The tallying phase

5.4.1. Building the final tally
In the tallying phase, the tallier works out the final

tally according to thetallying protocol, which consists
of the following actions:

1. The tallier sends serverSi a tallying requestmes-
sage,∀i, 1 ≤ i ≤ n.

2. Upon receiving this request message, any given
serverSi sends the tallier atallying responsemes-
sage containing its Collection Set CSi.

3. Upon receiving Collection Sets from every server
in a quorum, the tallier works out the final tally as
follows:
(a) Initially, the tallier groups all the received bal-

lots by identification tag. We denote byBα the
set of ballots tagged withα.

(b) Then, for every set of ballotsBα, the tallier
picks any valid ballotβα contained therein, and
inserts it in the final tally.

5.4.2. Verifying the tally accuracy
Any given external observer can verify the accuracy

of the final tally and produce enough evidence of mis-
takes before the arbiter. The tally verification activity
consists of the following actions:

1. The observer checks whether invalid ballots are
present in the final tally. Invalid ballots are pro-
duced before the arbiter, which requires their re-
moval from the final tally.

2. The observer checks whether repeated ballots—
two or more ballots with the same identification
tag—are present the final tally. Repeated ballots are
produced before the arbiter, which requires that all
but one of them are removed from the final tally.

3. The observer checks whether any valid ballot has
been omitted. To this purpose, the observer works
out its ownversion of the tally by performing the
tallying protocol, compares it with the final tally
produced by the tallier, and ascertains that any
given ballot that is present in its own tally is also
present in the final one. Omitted ballots are pro-
duced before the arbiter, which requires their in-
sertion in the final tally.

6. Security analysis

In this section we argue that our protocols meet all
of the requirements mentioned inSection 2. First, we
discuss some of the functional properties of the pro-
tocols. Then, we argue that these properties guarantee
that the protocols satisfies the requirements. Our argu-
ments are informal, and are not intended to constitute
a rigorous proof of security.

6.1. Functional properties of the validation protocol

Proposition 1. Only eligible voters can obtain a vot-
ing certificate.

Proof. In order to obtain a voting certificate, a voter
needs signatures on the chosen vote from every server
in a quorum. As signatures cannot be forged, the voter
can obtain them through an execution of the validation
protocol. Therefore, the rest of the proof consists in
showing that only eligible voters can successfully per-
form that protocol. The proof is by contradiction. Sup-
pose a not eligible voterU has successfully performed
the validation protocol. This implies that every server
in some dissemination quorumQ has signed the vote
of U. However, this is impossible. LetC ⊆ Q be the
set of correct servers inQ. By PropertyQ-Consistency,
C �≡ ∅, ∀Q ∈ Q. As signatures cannot be forged,U
cannot impersonate an eligible voter. Therefore, any
correct serverSi ∈ C detectsU ineligibility at step 2
of the validation protocol and, consequently, does not
(blindly) sign the vote ofU. �

In practice,Proposition 1means that any (mali-
cious) principal that is not an eligible voter cannot val-
idate itself, even colluding with faulty (compromised)
servers. The principal fails to collect a voting certifi-
cate because it fails to collect signatures from correct
servers.

Proposition 2. An eligible voter can obtain at most
one voting certificate.

Proof. The proof is by contradiction. Suppose that an
eligible voter U has obtained two valid certificates,
namely Cν and Cν′ , for vote ν and ν′, respectively.
Also, suppose thatν has been signed by every server
in a quorumQ, whereasν′ has been signed by every
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server in a quorumQ′. In general,Q �= Q′. It follows
that both votes have been signed by every server in
Q ∩ Q′. However, this is impossible. LetC be the set
of correct servers inQ ∩ Q′. PropertyQ-Consistency
ensures thatC �= ∅, ∀Q, Q′ ∈ Q. According to steps
2(a) and (b) of the validation protocol, every server in
C signs eitherν or ν′, but not both. �

Proposition 2implies that an eligible but malicious
voter cannot obtain more than one voting certificate,
even colluding with corrupt servers. Upon attempt-
ing to obtain the second certificate, the voter fails to
receive signatures from enough correct servers. The
proposition also implies that an eligible voter cannot
change his vote after he got a voting certificate. In fact,
to do that, an additional certificate would be needed.

Proposition 3. It is not possible to link voters to their
voting certificates.

Proof. The proof descends directly from the proper-
ties of the blind signature scheme employed in the
validation protocol. �

Proposition 4. An eligible voter eventually completes
the validation protocol.

Proof. The voter can complete the validation proto-
col as soon as signatures on the chosen vote have been
received from every server in a quorum. As communi-
cation is reliable (and the client that performs the pro-
tocol on the voter’s behalf is correct), then the voter
receives signatures from every correct server. Property
Q-Availability ensures that these servers form a quo-
rum. �

6.2. Functional properties of the casting protocol

Proposition 5. It is not possible to link voters to their
ballots.

Proof. The proof descends from the following facts:
voters interact with servers through anonymous chan-
nels; and, according toProposition 3, ballots contain
no information linking voters to their votes. �

Proposition 6. A voter eventually completes the cast-
ing protocol.

Proof. A voter can complete the casting protocol as
soon as his ballot has been collected by every server
in a quorum. As communication is reliable (and the
client that performs the protocol on the voter’s behalf
is correct), then every correct server eventually col-
lects and acknowledges the ballot. As a quorum of cor-
rect servers always exists (PropertyQ-Availability),
then the ballot is eventually properly collected,
and thus the casting protocol eventually completes
successfully. �

6.3. Functional properties of the tallying protocol

Proposition 7. An invalid ballot is never inserted in
the final tally.

Proof. Invalid ballots are discarded at step 3(b) of the
tallying protocol. �

Proposition 8. No two ballots tagged with the same
identifier can be present in the final tally.

Proof. For any given identifier, only one ballot tagged
with that identifier is inserted in the final tally (step
3(b) of the tallying protocol). �

Proposition 9. Every properly collected valid ballot
is inserted in the tally.

Proof. If a ballot is properly collected, then there ex-
ists a quorumQ ∈ Q such that every server inQ
has collected the ballot. LetQ′ ∈ Q be a quorum,
in generalQ′ �= Q, from which ballots are received
at step 3 of the tallying protocol. Due to Property
Q-Consistency, the ballot is received from at least one
correct server inQ ∩ Q′. If the ballot is valid, it is
picked at step 3(b) and inserted in the final tally.�

6.4. Functional properties of tally verification

Proposition 10. It is impossible that an invalid ballot
is added to the final tally without being detected by
any given external observer.

Proof. An observer detects the presence of any invalid
ballot at step 1 of tally verification. �
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Proposition 11. It is impossible that two or more
valid ballots tagged with the same identification tag
are present in the final tally without being detected by
any given external observer.

Proof. An observer detects the presence of any two
ballots tagged with the same identification tag at step
2 of tally verification. �

Proposition 12. It is impossible that a valid ballot is
altered without being detected by any given external
observer.

Proof. If a valid vote is altered then it becomes in-
valid, and thus is detected by any given external ob-
server (Proposition 10). �

Proposition 13. It is impossible that a properly col-
lected valid ballot is eliminated without being detected
by any given external observer.

Proof. An observer detects that a properly collected
valid ballot has been removed at step 3 of tally verifi-
cation. �

6.5. Correctness proof of the voting protocol

Proposition 14. The voting protocol satisfies require-
ment eligibility.

Proof. By Propositions 7 and 10, only valid votes are
counted in the final tally. Therefore, the proof consists
in showing that only eligible voters can build valid
ballots. In order to build a valid ballot it is necessary
a voting certificate. ByProposition 1, only an eligible
voter can obtain a valid certificate. �

Proposition 15. The voting protocol satisfies require-
ment uniqueness.

Proof. The proof descends directly from the follow-
ing considerations. First,Proposition 2ensures that
any given eligible voter can obtain at most one voting
certificate. Thus the voter can cast only the vote re-
lated to it. Furthermore,Propositions 8 and 11ensure
that no duplicate of that ballot can appear in the final
tally. �

Proposition 16. The voting protocol satisfies require-
ment privacy.

Proof. The proof descends directly fromPropositions
3 and 5. �

Proposition 17. The voting protocol satisfies require-
ment availability.

Proof. The proof descends directly fromPropositions
4 and 6. �

Proposition 18. The voting protocol satisfies require-
ment abstention.

Proof. As keys are kept secret, no principal can imper-
sonate a given voter in the validation protocol. There-
fore, no one can obtain a voting certificate, and thus
vote, in the place of a voter that abstains. �

Proposition 19. The voting protocol satisfies require-
ment accuracy.

Proof. If the tallier is correct, then the proof descends
directly fromPropositions 7–9. In contrast, if the tal-
lier is faulty and produces a wrong tally,Propositions
10–13ensure that an external observer can detect the
mistakes and obtain their correction. �

Proposition 20. The voting protocol satisfies require-
ment verifiability.

Proof. The proof descends directly fromPropositions
10–13. �

6.6. Supporting non-coercibility

A voting service meets thenon-coercibilityrequire-
ment if voters cannot prove to any third party how
they voted. If this requirement is met, vote-buying is
impossible and a voter cannot be compelled to a cast
a particular vote[2,18,35,38,42].

We argue that if voters are physically sepa-
rated from outsiders, the proposed e-voting service
meets the non-coercibility requirement too. The re-
quired separation can be achieved by placing voting
clients into voting booths, for example. The proof
descends from the following considerations. With
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reference to a given voterU, a correct client dis-
closes neither the voter’s secrets (e.g.,K−1

u , ν, f ),
nor the link between the voter and the identifica-
tion tag α. Under these hypotheses,Propositions 3
and 5 ensure that it is not possible to link voters
to their votes. As voters are physically separated
from outsiders, they cannot see how voters actually
vote.

7. On faulty clients

Our e-voting service meets all the requirements
mentioned in Section 2 provided that clients are
correct. In this section, we extend our treatment to
address faulty clients in addition to faulty servers. To
do that we classify faulty clients in eithercompro-
mised, those that suffer a “truly Byzantine failure”, or
honest, those that suffer a crash failure.

In general, security requirements cannot be ensured
in the presence of compromised clients. For instance,
a compromised client can disclose, as well as mod-
ify, a voter’s voting strategy, and even vote in the
voter’s place[41]. However, the proposed protocols
limit damages that a compromised client can do to the
overall voting process. A compromised client cannot
cause any damage to properly collected votes. Intu-
itively, this is guaranteed byPropositions 9, 12 and
13, which ensure that, once a vote has been properly
collected, it cannot be modified or eliminated, even
colluding with faulty servers.

In the remainder of this section, we assume honest
clients. It is worthwhile to note that uncompromised
clients can be assumed under the realistic constraint
that they are precinct voting platforms[19]. This
means that voting clients are placed in public sites,
and the election officials exert control on the hard-
ware and the software of the voting platform as well
as on the physical voting environment.

In its present form, the e-voting service is not able to
tolerate honest clients. That is, a client crash may cause
a voter to become unable to vote even after recovery. In
the rest of this section, we discuss problems connected
to crashes of clients during the validation and casting
protocols, and present extensions to these protocols
aimed at allowing a voter to vote across crashes and
recoveries. Once again, we shall refer to userU that
performs the voting phase from a given client and use

the terms client and voter interchangeably but when
the difference is relevant.

Let us consider the casting protocol first. Assume
that a voter suffers a crash failure during an execu-
tion of that protocol just before the vote has been cor-
rectly propagated to every server in a quorum. As a
consequence of the failure, quantitiesν, α andCα get
lost. As Property 2 ensures that a voter can obtain at
most one certificate, then the voter cannot obtain an-
other certificate, and thus vote, even after recovery.
A way to solve this problem is to equip clients with
stable storage where to store quantitiesν, α andCν.
Upon crashing, all data are lost, except for the part
that was recorded in stable storage. During recovery,
the client reads quantitiesν, α and Cν from stable
storage, repeats the voting protocol with these quan-
tities. It should be noted that the e-voting service al-
ready supports a limited form of recasting that makes
this solution feasible without compromising the accu-
racy of the final tally. In fact, although the e-voting
service prevents a voter from voting twice or more
times, however, the service permits the repeated cast-
ing of thesamevote.Propositions 8 and 11guarantee
that no repetition of that vote will be present in the fi-
nal tally, and thus that requirement uniqueness is met.
From these considerations it follows that:

Proposition 21. If a client remains correct for suffi-
ciently long time, then a voter eventually completes
the casting protocol.

It should be noted that “sufficiently long time” must
be taken as the time necessary to perform the casting
protocol. In an asynchronous distributed system, no
upper bound to this time can be specified.

Simply equipping clients with stable storage is not
sufficient to allow them to perform the validation pro-
tocol across crashes and recoveries. Actually, a crash
failure during an execution of that protocol may pre-
vent a voter from ever obtaining a voting certificate,
and thus vote, even after recovery. The reason for
this is the following. Consider a client that suffers a
crash failure during the execution of the validation
protocol. Assume also that the crash failure occurs
when the client has already contacted a given quorum
Q but has not yet received all the corresponding re-
sponse messages. Finally, assume that, after recovery,
the execution of the validation protocol is repeated
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and, as part of this execution, a new quorumQ′ is
contacted, where, in general,Q �≡ Q′. For Property
Q-Consistency,Q ∩ Q′ is not empty and contains at
least one correct server, namelySi. AsSi set VTi[U] to
value true during the first execution of the validation
protocol (before the crash failure), the server returns a
validation response message containing⊥ (step 2(b)
of the validation protocol). Consequently, the voter
will be never able to collect enough signatures to form
a voting certificate.

A way to tolerate crash failures during the valida-
tion phase is to give an eligible voter the opportunity to
repeat the validation protocol after recovery. However,
as the voter submits blinded material to servers, such a
repetition may cause a security leak. In fact, an eligible
but malicious voter, pretending to suffer several crash
failures, could execute the validation protocol repeat-
edly, each time with a different voting strategy. As
servers cannot know what they are signing, the voter
would succeed in obtaining several voting certificates.
Consequently, the voter could vote several times, so
violating the uniqueness requirement. A solution to
this problem is to allow the voter to repeat the vali-
dation protocol with thesameblinded material. This
requires changes at both the voter and server side, as
follows.

Prior to the beginning of the validation protocol,
the quantitiesf andb are stored in stable storage, in
addition toν, α. These quantities will be used in any

Fig. 2. The extended validation protocol. We use the “dot” notation to specify fields of a table entry, and〈f, s〉 to denote the tuple contained
therein.

repetition of the validation protocol that follows a re-
covery from a crash failure.

On the server side, the validation table structure is
modified. Any given table entry is now composed of
two fields: theblinded form field, f, and theblinded
signature field, s. With reference to entry VTi[U], field
f specifies the blinded form of the voting strategyν of
voterU, i.e.,b[i] = bf [i](h(ν||α)); and fieldsspecifies
the corresponding (blinded) signatureσsi(b[i]) with
the server private key. Initially, both fields contain the
null value ⊥. Fig. 2 shows an extended version of
the validation protocol that takes into account the new
structure of the validation table. While steps 1 and 3
of the extended protocol are the same as the original
protocol, step 2 has been modified to take advantage
of the new table structure.

With reference toFig. 2, assume that voterU car-
ries out the validation protocol. The first time any
given serverSi receives the validation request mes-
sage, VTi[U] contains〈⊥, ⊥〉 and therefore the server
takes step 2(a). Assume now the voter suffers a crash
failure. After recovery, the voter will repeat the vali-
dation protocol with the quantities retrieved from sta-
ble storage. It follows thatSi will receive a validation
request message conveying quantityb[i] which is al-
ready present in thef field of VTi[U]. Thus Si will
take step 2(b). Finally, suppose the server receives a
(malicious) validation request message conveying a
quantityb′ �= b[i]. As this quantity is different from
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quantity stored in thef field, Si takes step 2(c). So do-
ing Si prevents malicious validations of two or more
voting strategies for the same voter. From these con-
siderations it follows that:

Proposition 22. If a client remains correct for suf-
ficiently long time, then an eligible voter eventually
completes the validation protocol.

Similarly to the casting protocol, “sufficiently long
time” must be taken as the time necessary to perform
the validation protocol. In an asynchronous distributed
system, no upper bound to this time can be specified.

Propositions 21 and 22imply that the extended
e-voting service satisfies a weaker availability require-
ment than specified inSection 2:

Weak availability—If a client is correct for suffi-
ciently long time, then a voter eventually succeeds in
voting.

In practice, this means that, in order to vote, an hon-
est client is not required anymore to be uninterruptedly
correct for the joint execution of the validation and
casting protocols. In contrast, a client may crash and
recover, even repeatedly, so long as it remains correct
for sufficiently long time.

8. Prototype

We have implemented a fully operational research
prototype of our e-voting service using the protocols
in Sections 5.2 and 7, in an effort to understand the
factors that limit its performance. Our implementation
used the Java programming language, and employed
the Cryptix cryptography toolkit[12] for the basic
cryptographic operations. In particular, the implemen-
tation used the DES[32] algorithm for symmetric en-
cryption, the MD5[39] algorithm to digest a message,
and RSA[40], with 1024 moduli, for asymmetric en-
cryption, digital signatures and blind signatures.

Table 1andFig. 3show the approximate latency of
the validation, casting, and tallying Protocols in the
case of no failures.Table 2 shows the approximate
throughput of the validation and casting protocols in
the same case. Tests were performed on a cluster of
personal computers interconnected by a 100Mb/s Eth-
ernet. Every personal computer was based on a Pen-
tium II 350 MHz with 512KB cache, 128MB of RAM,

Table 1
Latency of the validation and casting protocols averaged over 20
runs of 100 requests eacha

Protocol Latency (ms) S.D. (%)

Validation 590 8
Casting 218.51 12.3

a The S.D. is expressed as a percentage of the corresponding
average latency.

and 3.2GB of disk. From the software point of view,
every personal computer ran the Windows NT Client
4.0 operating system. Personal computers that acted
as voting servers used the MySQL[31] relational
database management system to store the validation
table and the Collection Set. There were four voting
servers, which is the minimum number of servers re-
quired to tolerate the failure of one voting server, under
the assumption of independent failures (Section 4).

With reference to Table 1, latency labelled
“Validation” was measured as the elapsed time be-
tween sending a validation request message to all
servers and receiving a validation response message
from every server in a quorum. This latency includes
the latency of waiting for validation response mes-
sages from every server in a quorum—about 310 ms—
and the latency of unblinding the contents of these
messages—about 170 ms. The remaining 110 ms are
ascribed to verification of blinded signatures and
other computational overheads.

Latency labelled “Casting” was measured as the
elapsed time between sending a ballot message to
all servers and receiving a ballot acknowledgement
message from every server in a quorum. This latency
includes the latency of waiting for ballot acknowledge-
ment messages from every server in a quorum—about
210.6 ms—and the latency of verifying signatures in
these messages—about 8 ms.

Table 2
Throughput of the validation and casting protocols, averaged over
20 runs of 100 requests eacha

Protocol Throughput S.D. (%)

Validation 3.28 1
Casting 4.17 2

a The S.D. is expressed as a percentage of the corresponding
average latency.
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Fig. 3. Latency of the tallying protocol versus the number of ballots. Data points are the average value over 20 runs. Standard deviations
were less than 7%, except for the I/O time for 200 ballots, which was 11.6%.

Latencies shown inTable 1 do not include the
latency of preparing both the validation request mes-
sage and the ballot messages. Preparation of these
messages requires public key operations. In particular,
preparation of validation request messages requires
a signature for every server, whereas preparation
of ballot messages requires a public key encryption
of the per-ballot symmetric key for every server.2

Preparation of these messages is part of aninitial-
isation phasethat precedes the actual execution of
the protocols. In addition to message preparation, the
initialisation phase includes the initialisation of the
random numbers generator, and the random choice of
both the blind factors and the per-ballot symmetric
key. The initialisation phase takes about 5.5 s, five
of which are mostly spent for the initialisation of the
random number generator.

2 The DES encryption of the ballot results largely negligible with
respect to the other public key computations.

It should be noted that the latencies shown in
Table 1represent an underestimation because they do
not include certain network and service overheads.
First, we have carried out measurements so that no
queueing at the servers could take place. Further-
more, measurements were carried on a fast local
area network, through the TCP/IP reliable transport
protocol, whose latencies resulted mostly negligible
with respect to the computation latencies. Conse-
quently, the shown latencies neither include queueing
time at servers, nor the overhead due to anonymous
communication over a wide area network[17,37].
In a large-scale distributed system, these quantities
contribute to increase the overall latencies of the
service.

Fig. 3 shows the latency of the tallying protocol
that grows with the number of ballots cast. This
latency was measured as the elapsed time at the tal-
lier/observer between sending a tallying request mes-
sage to all servers and working out a tally. This time
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has been split into two components, “I/O time” and
“CPU time”. The I/O time includes the latency of the
servers reading ballots from the Collection Set and
sending them (in parallel) to the tallier/observer, and
the latency of this principal receiving those ballots.
The CPU time includes the latency of the tallier group-
ing those ballots, verifying them and selecting valid
ones.

Table 2shows the throughput of the validation and
casting protocols. Each throughput value was mea-
sured as the service response rate when queues at the
servers were not empty. In order to understand the fac-
tors that influence throughput we have measured the
average service time of any given server in the val-
idation and casting protocols. In the validation pro-
tocol, the average service time of any given server
amounts to about 299 ms and is split into 200 ms of
computation time, spent mainly performing the sig-
nature of blinded material, and 99 ms of I/O time,
spent interacting with the MySQL DBMS. It follows
that the e-voting service is able to process at most
five validations per second. The service time of the
casting protocol amounts to 210.6 ms and is split into
131.8 ms of computation time, mainly spent perform-
ing RSA decryption and digital signature, and 78.8 ms
of I/O time, spent interacting with the DBMS. It fol-
lows that the e-voting service is able to process at
most 7.6 casting operations per second. From these
considerations, it follows that the service might ben-
efit from a multi-threaded implementation aimed at
masking the latencies introduced by the DBMS. In
fact, we implemented a new, multi-threaded version
of the voting server, which, as expected, produced
an improved throughput of 4.32 validations per sec-
ond, for an increase of about 37%, and 7.15 cast-
ing operations per second, for an increase of about
72%.

Cryptographic operations are a factor that strongly
influences the performance of our voting protocols.
These performance numbers are thus very sensi-
tive to choices of cryptographic algorithms and key
lengths. Moreover, they should improve substantially
if more powerful server machines or special-purpose
hardware to perform RSA were used. Finally, given
the computation intensive nature of these operations,
higher performance can be achieved by implementing
the service in a compiled programming language such
as C or C++.

9. Conclusion

We have presented a replicated e-voting service
for a large-scale distributed system such as the In-
ternet. Provided that enough servers are correct, the
service ensures both security and availability despite
the presence of faulty servers acting against the vot-
ing process, even in collusion with one another or
with malicious voters. The service allows eligible vot-
ers that suffers a crash failure to successfully vote af-
ter recovery. Furthermore, the replicated structure of
the service makes it possible to increase the security
of the e-voting process by supporting verifiability of
the voting outcome without requiring any interven-
tion of voters. This simplifies the voting scheme and
makes it more convenient for voters. Our implemen-
tation of the service suggests that this approach per-
forms sufficiently well to be useful in a wide area
setting.
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