
Electronic Voting in a Large-Scale Distributed System

Gianluca Dini
Dipartimento di Ingegneria della Informazione: Elettronica, Informatica, Telecomunicazioni, Via Diotisalvi 2,
56126 Pisa, Italy

In this paper, we propose a practical and secure elec-
tronic voting scheme suitable for large-scale distributed
systems such as the Internet. As in most of the voting
systems in the literature, the proposed voting scheme
allows only eligible voters to vote once, protects the
voters’ privacy, and ensures the accuracy of the tally.
In addition, the proposed scheme satisfies further im-
portant criteria, namely, it tolerates abstention and
does not require voters to control whether their votes
have been correctly processed. If a subset of voters
does not vote, the elections cannot be disrupted. Fur-
thermore, anyone, including an external observer, can
easily be convinced that the election is fair, that is,
that the published final tally is fairly computed from
the ballots that were correctly cast. It follows that
the proposed voting scheme strengthens the security
properties of the electronic voting procedure, simpli-
fies the interaction of voters with the electronic vot-
ing system, and contributes to increased voter confi-
dence in the degree of security of the electronic voting
procedure. © 2001 John Wiley & Sons, Inc.

Keywords: distributed systems; applied cryptography; security
and privacy; voting protocols

1. INTRODUCTION

The development of cryptographic techniques and re-
cent advances in computer and network technology allow
us to carry out several traditional activities electronically
over a large-scale distributed system such as the Inter-
net. Electronic commerce, secure auctions, and secure
elections are relevant examples of these activities. Un-
fortunately, many of the procedures and laws that have
been developed to ensure the security of these types of
activities becomes insufficient when these activities are
performed electronically. Cryptographic protocols pro-

Received October 1999; accepted April 2001
Correspondence to: G. Dini ; e-mail: g.dini@iet.unipi.it
Contract grant sponsor: Italian Ministero dell’Università e della Ricerca
Scientifica e Tecnologica (MURST) within the framework of project
MOSAICO (Design Methodologies and Tools of High Performance
Systems for Distributed Applications) Project

c© 2001 John Wiley & Sons, Inc.

vide a response to this need for new ways of ensuring
security [13]. In this paper, we consider the problem of
building a secure election system which ensures the vot-
ers’ privacy and accuracy of votes and is suitable for a
large-scale distributed system.

The problem of deploying secure elections in a large-
scale distributed system has been extensively investi-
gated, and many solutions have been proposed [1, 2, 3,
5, 6, 9, 10, 15, 17, 18, 21]. Most of these, especially the
earlier ones, deal with theoretical issues and are thus not
practical for large-scale distributed elections. Recently,
systems that are more suitable for a large-scale envi-
ronment have been proposed. Relevant examples are the
voting system proposed by Cranor and Cytron called
Sensus [11], the voting scheme proposed by Fujioka et
al. [14], upon which Sensus is built, and the system pro-
posed by Chang and Wu [5]. These systems have basic
requirements for effective use in a large-scale system:
Only eligible voters can vote, any eligible voter can vote
only once, and the voters’ privacy is protected even from
the voting center itself. In addition, the voting center
cannot present a false tally without being discovered. Fi-
nally, no voter-to-voter interaction is required. However,
the security of these systems is based upon two assump-
tions that strongly limit their effective deployment in a
large-scale system: The first assumption is that all vot-
ers cast their votes. The second assumption is that the
voters check that their votes are correctly processed. If
these assumptions are not satisfied, the voting center can
surreptitiously add votes of its own, thus disrupting the
election results.

As to the former assumption, we believe it is too rigid
and unrealistic [1]. In real life, there is always a possibil-
ity that a voter, either accidentally or intentionally, does
not cast his/her vote even after applying for registration.
Intentional abstention is nowadays a very common and
ever-growing phenomenon. For instance, the abstention
percentage in the last elections in Italy amounted to 42–
43%. A similar large degree of abstention occurred in the
most recent congressional elections in the United States.

In light of these considerations, it soon becomes evi-
dent that the latter assumption is also rigid and unreal-

NETWORKS, Vol. 38(1), 22–32 2001



istic. An (intentionally) abstaining voter is not likely to
be interested in the election at all. Therefore, it is not
reasonable to expect him/her to make any check. Con-
sequently, security breaches may ensue if the security of
the elections rests upon the voters’ control. The assump-
tion is also questionable for practical reasons. In con-
sidering the performance of an electronic-voting system,
the effort required from a voter is clearly one of the main
issues [11, 17]. While governments can mount a large or-
ganizational effort to hold elections, it is mandatory to
make the voting protocol as simple and efficient as pos-
sible for voters. Requiring voters to check the correct al-
location of their votes certainly complicates matters and
does not reinforce the voters’ confidence in the security
level of the electronic procedure.

In this paper, we present two voting schemes that do
not require the above assumptions. As in the Sensus sys-
tem and Chang and Wu system, for instance, the pro-
posed schemes ensure the voters’ privacy, prevent double
voting, and ensure the accuracy of the tally. In contrast to
those systems, the proposed schemes tolerate abstention,
that is, if a subset of voters does not vote, the voting cen-
ter cannot surreptitiously add votes in their place. Thus,
abstaining voters need not take any interest in elections
if they so wish. In the first proposed scheme, voters who
actually cast their votes are still required to check that
their votes are correctly counted. The second proposed
scheme removes this constraint, thus allowing any given
external observer to check that the final tally does indeed
correspond to the ballots submitted by the voters. If the
observer detects a mistake, the observer can ensure its
correction.

The paper is organized as follows: In Section 1.1, we
present the set of requirements of the proposed voting
schemes. In Section 2, we describe related research and
provide some comparisons with other well-known voting
schemes. The proposed voting schemes are presented as
extensions to the Chang and Wu system, which was the
inspiration for this work. In Section 3, we briefly re-
view that system. In Section 4, we show how the afore-
mentioned assumptions come into play. In particular, we
show that in the Chang and Wu system the Voting Cen-
ter can surreptitiously add votes of its own for all those
voters who abstain and do not apply the required check.
This section constitutes the starting point for introduc-
ing the extensions. The first extension, aimed at making
the voting protocol tolerant to abstention, is discussed
in Section 5. The second extension, aimed at allowing
any observer to control the final tally, is discussed in
Section 6.

1.1. Requirements

To design a voting protocol which is both secure and
suitable for large-scale elections, it is necessary to iden-
tify a set of criteria which helps us to achieve those goals.

Prior to the beginning of elections, organizers define the
electoral roll, that is, the list of voters who are eligible
to vote.

Eligibility. Only eligible voters are allowed to vote.

Double-Voting. Each eligible voter can vote only once.

Privacy. No one but the voter knows which voting strat-
egy he/she has adopted.

In order to vote, any given voter casts a ballot speci-
fying his/her voting strategy. At any moment, the voter
may renounce his/her right to vote. In practice, a voter
fails to vote by not casting a ballot.

Abstention. Any given voter’s failure to cast his/her vote
does not disrupt the elections.

Alternatively, a voter may cast additional ballots.

Recasting. Each voter can recast before the deadline for
casting ballots expires.

It follows that the voting system may receive sev-
eral ballots. However, the same voter may have speci-
fied more than one candidate. If this is indeed the case,
the voting system has to choose one of them so that
the Double-Voting requirement is not violated. The vot-
ing strategy specified by the chosen ballot will constitute
the voter’s vote. Typically, the voting system chooses the
ballot that was received last [5, 16, 19].

When the deadline for casting ballots expires, the vot-
ing system will produce the final tally which must cor-
respond to the ballots submitted by voters.

Accuracy. It is impossible for an invalid vote to be
counted in the final tally or for a valid vote to be ei-
ther altered or eliminated from the final tally.

If the tally contains any mistakes, any given observer
can detect it and obtain its correction.

Verifiability. Anyone can independently verify that all
votes have been correctly counted.

The requirement Recasting allows any given voter to
change his/her mind. By recasting, the voter can can-
cel his/her vote for a given candidate and vote in fa-
vor of another one [5, 17, 19]. Recasting is generally
not allowed in customary voting systems. In this kind
of system, the procedures aimed at ensuring Privacy
and Double-Voting constitute a large, if not unsurmount-
able, obstacle to Recasting. From this point of view, one
can argue that cryptographic techniques offer a range
of new possibilities and that seemingly impossible tasks
now become possible [19]. On the other hand, the is-
sue of whether it is appropriate to support the require-
ment Recasting and to what extent it may increase the
motivation of an average voter to vote is open to de-

NETWORKS–2001 23



bate. As a consequence, there are different approaches in
cryptography-based voting systems dealing with that re-
quirement [1, 5, 11, 16, 17, 19]. However, we would like
to emphasize that the central issue of this paper, namely,
supporting Abstention and Verifiability requirements, is
largely orthogonal to Recasting.

2. RELATED WORK

The problem of deploying secure elections in a large-
scale distributed system has been extensively investi-
gated. Several solutions have been proposed from both
a theoretical and practical point of view [1, 2, 3, 5, 6, 9,
10, 11, 14, 15, 21]. However, some of these solutions are
not practical for large-scale elections. The voting sys-
tem proposed by Chaum can be disrupted by a single
voter [6, 9]. The faulty voter can be traced and the elec-
tion restarted excluding him/her, but, clearly, the vot-
ing system becomes impractical for large-scale elections.
The voting scheme proposed by Cohen and Fischer en-
sures a limited form of the Privacy requirement because
it does not protect the voters’ privacy from the election
authority [10]. The system proposed by Boyd does not
meet the Accuracy requirement because the Voting Cen-
ter can produce a false tally without being detected [2, 3].
The system proposed by Nurmi et al. guarantees the Pri-
vacy requirement, allows Recasting, and ensures that no
one can change anyone else’s vote without being dis-
covered [19]. However, its use in a large-scale setting is
limited by the fact that it is built on an ANDOS (all-
or-nothing disclosure of secrets) protocol. The commu-
nication complexity of this protocol is O(n2), where n is
the number of voters, because it requires voter-to-voter
interactions. Consequently, the protocol requires an ex-
cessive amount of communication when the number of
voters is large. In addition, the system does not com-
pletely meet the Accuracy requirement and fails to meet
the Abstention requirement. In fact the Voting Center
can surreptitiously cast votes for all the abstaining vot-
ers. These voters may discover such a violation and re-
port it, but they cannot prove that they did not actually
vote. Finally, as an explicit voter check of the final tally
is necessary, the system only meets a limited form of the
Verifiability requirement.

The more practical voting schemes, for instance Sen-
sus [11], Fujioka et al.’s scheme [14], and Chang and
Wu’s system [5], do not require interactions between vot-
ers. However, as already discussed in Section 1, none
of these systems support the Abstention and Verifiabil-
ity requirements. They actually require a voter’s direct
intervention to verify if his/her own vote has been cor-
rectly counted. In both the Sensus system and Fujoka
et al.’s system, the Voting Center can cast votes for all
the abstaining voters. Both these voters and an external
observer can detect the presence of those invalid votes.
However, there is no way of identifying and removing

them from the final tally. It follows that the Accuracy
requirement is violated. One way to solve this problem
is to require abstaining voters to submit blank ballots.
In Chang and Wu’s system, if the Voting Center casts
votes for the abstaining voters, an external observer can-
not even detect them. Only abstaining voters can identify
the invalid votes and remove them from the final tally.

3. THE CHANG AND WU PROTOCOL

In this section, we review Chang and Wu’s protocol
(hereafter, the CW protocol) and the corresponding vot-
ing system. Details concerning both the voting protocol
and its security analysis can be found in [5].

Let us consider an electoral roll composed of n vot-
ers that we denote by U1, . . . , Un. The CW protocol has
two phases: Registration and Voting. In the Registration
Phase, the Voting Center (VC), generates a set of n valid
identifiers and a set of n packages, each containing the
ciphertext of a different identifier. Then, the Shuffling
Center (SC) shuffles these packages and randomly dis-
tributes them, one to each eligible voter. Upon receiving
a package, any given voter unpacks it and obtains the
valid identifier contained therein. No one, including the
VC, can know which identifier the voter has obtained.
After that, the voter chooses his/her voting strategy and
then performs the Voting Phase. In this phase, the voter
tags his/her vote with the identifier and then casts the re-
sulting ballot. If the voter wants to recast, he/she chooses
another vote, tags it with the same identifier, and casts
the resulting ballot. When the deadline for casting bal-
lots is over, the VC works out the final tally. In doing so,
the VC considers only valid votes, that is, votes tagged
with valid identifiers. If several votes tagged with the
same identifier exist, the VC considers only the last one
received and discards the remaining ones. If a vote spec-
ifies a given candidate, the VC allocates the identifier
which tags the vote to that candidate. Finally, the VC
announces the result of the election by publishing the
candidates and their corresponding identification tags.

For the sake of presentation, let us assume that the
voting system supplies voters with two voting operations,
allowing voters to carry out the voting phases. With ref-
erence to a given user Uj, the package oi distributed to
that voter, the identifier αi contained in oi, and the vote
vj chosen by voter Uj, the voting operations are

• Operation αi = registration(oi), which takes the pack-
age oi as its argument and returns the identifier αi

packaged in oi.
• Operation cast(αi, vj), which takes the identifier αi

and the vote vj as its arguments, tags vj with αi, and
casts the resulting ballot.

It follows that the voting activity of any given voter
Uj can be described by the following pseudocode:

24 NETWORKS–2001



Upon (receiving oi from SC)
begin

αi = registration(oi); {Registration}
repeat
begin

choose vote vj;
cast(vj, αi); {Voting}

end
until (voter is ready );

end

We shall describe the implementation of the voting
operations cast() and registration() in Sections 3.1.1.
and 3.1.2., respectively.

3.1. The Protocol

Consider Figure 1. During the Registration and Voting
Phase, any given voter Uj interacts with the VC through
a Semipublic Board (SPB) service. An SPB is a spe-
cial form of blackboard service. Each client can write
a message onto the blackboard, and the message can
then be read by every user. Unlike a blackboard ser-
vice, the SPB service guarantees both reader and writer
anonymity, that is, the SPB guarantees the unlinkability
between any given user and the messages the user reads
and writes. It follows that the SPB allows a form of re-
liable anonymous communication between the VC and
the voters. This type of communication is fundamental
to ensure the voters’ privacy. The implementation of this
kind of communication is beyond the scope of this work.
However, there are several papers dealing with this is-
sue [6, 20, 21, 22].

3.1.1. The Registration Phase The Registration Phase
begins with a prologue that involves the VC and the SC.
Initially, the VC chooses a large prime number p and a
primitive element e over a Galois Field GF(p) and makes
them public. Next, the VC randomly chooses n numbers
α1, . . . , αn and writes the values {eαi mod p}i=1...n to the
SPB. Then, the VC randomly chooses a secret key d over
GF(p), such that gcd(d, p−1) = 1, computes n packages,
{oi = (eαi mod p, αd

i mod p)}i=1...n, and sends them to the

FIG. 1. The architecture of the CW system.

SC. Upon receiving these packages, the SC shuffles them
and sends each of them to a different eligible voter.

Upon receiving a package oi from the SC, a given
voter Uj carries out the operation αi = registration(oi)
whose execution produces the following actions:

RP1: Voter Uj randomly chooses a secret key sj, such that
gcd(sj, p − 1) = 1, computes aj = (αd

i )sj mod p, and
sends it to the SPB.

RP2: Upon reading aj from the SPB, the VC computes a′
j =

(aj)d−1
= α

sj

i mod p, with d−1 the inverse of d over
GF(p), and sends a′

j back to the SPB.
RP3: Finally, upon reading a′

j from the SPB, Uj computes
αi = (a′

j)
s−1
j mod p, and verifies it using the first field

in oi.

3.1.2. The Voting Phase With reference to the ElGa-
mal public key cryptosystem [12], let xj and yj be the
secret and the public keys of voter Uj, respectively, such
that yj = exj mod p. Furthermore, let x0 and y0 be the
secret and the public keys of the VC, respectively, such
that y0 = ex0 . Finally, let αi be the identifier that voter
Uj has received during the Registration Phase. Voter
Uj casts a given vote vj by calling the operation
cast(αi, vj) whose execution produces the following ac-
tions:

VP1: Uj chooses a random number rj over GF(p) and com-
putes the quantity cj,1 = erj mod p and the quantity
cj,2 = y

rj

0 ⊕ vj mod p, where vj is the voting strategy
of voter Uj and ⊕ denotes the exclusive-or operator.

VP2: Uj encrypts (αi, cj,2) by using a public key cryptosys-
tem and sends the VC the ciphertext.

VP3: VC decrypts the ciphertext and acknowledges the re-
ception by publishing the value cj,2.

VP4: Upon reading cj,2 from the SPB, Uj sends the cipher-
text of (αi, cj,1) to the VC.

VP5: The VC decrypts the ciphertext and publishes
(cj,1, cj,2).

If voter Uj wants to recast, he/she has to choose an-
other vote v′

j and then call operation cast (αi, v
′
j).

When the deadline for casting ballots is over, the VC
initially determines the votes cast by voters. For instance,
for each pair (cj,1, cj,2), the VC computes vj = c

x0
j,1 ⊕cj,2.

If the VC has received two or more pairs, the VC con-
siders only the last pair received. After that, the VC an-
nounces the result of the election by publishing candi-
dates and their corresponding identification tags.

3.2. Functional Properties of the CW
Protocol

In this section, we report the functional properties of
the CW protocol and the assumptions upon which those
properties are based. For the proofs of the properties,
readers can refer to the original paper by Chang and
Wu [5] .

The assumptions made by Chang and Wu are as fol-
lows:

NETWORKS–2001 25



A1: The SC is trusted. In particular, the SC and VC are
fully independent, that is, they do not work in coop-
eration.

A2: The SPB is trusted to ensure writer anonymity and
reader anonymity. In particular, the SPB does not
drop messages and is fully independent of the VC,
that is, the SPB and VC do not work in cooperation.

A3: Solving the discrete logarithm is not computationally
feasible.

A4: Each voter checks that his/her vote has been correctly
counted in the final tally.

The Registration Phase has the following properties:

Property 1. It is impossible for anyone, including the
VC itself, to link a voter to his/her identification tag.

Property 2. It is impossible for an intruder to derive
either a valid identifier αi, i ∈ {1, . . . , n} or the secret
key d of the VC.

The Voting Phase has the following properties.

Property 3. The protocol supports the Recasting re-
quirement.

Property 4. It is impossible for anyone, including the
VC, to link a voter with his/her voting strategy.

The CW protocol is resilient to any malicious behav-
ior by the VC to produce a false tally. In particular, the
VC can neither add surreptitiously invalid votes nor omit
counting correctly valid votes. To surreptitiously add an
invalid vote, the VC might choose an invalid identifier
α /∈ {α1, . . . , αn} and then cast a vote of its own tagged
with α. However, the following property states that this
is impossible:

Property 5. It is impossible that an invalid vote is added
to the final tally without being detected.

In practice, any external observer is able to detect that
α is invalid and obtain its removal from the final tally.

As the VC cannot add invalid votes, it might attempt
to incorrectly count valid ones. To correctly count a valid
vote, the VC must allocate the valid identifier tagging
that vote to the candidate specified by the vote. It follows
that the VC might alter a vote by allocating the identifier
tagging the vote to a different candidate. Alternatively,
the VC might eliminate a vote by failing to allocate the
identifier tagging the vote to any candidate. However,
any attempt to either alter or eliminate a vote is bound
to fail. According to assumption A4, any given voter
checks that his/her valid identifier is correctly allocated
to the chosen candidate. If a voter detects that this is
indeed not the case, he/she can produce evidence of the
mistake and ensure that the VC corrects it. Therefore,
the following property holds:

Property 6. The VC cannot incorrectly count a valid
vote without being detected by the voter who cast that
vote.

4. AN ATTACK ON CHANG AND WU’S
PROTOCOL BASED ON ABSTENTION

The CW protocol is based upon the assumption that
all voters cast their votes and that they exert some control
on the VC. In fact, as explained in the previous section,
the voter is the only one able to detect whether his/her
vote has been correctly counted. In this section, we show
that if one or more voters abstain from both voting and
exerting the required control the VC can surreptitiously
add the same number of valid votes of its own.

Let αi be a valid identifier obtained by a given voter
during the Registration Phase. We call this voter the le-
gitimate holder of identifier αi and denote him/her by
U(αi). According to Property 1, no one, including the
VC, can know who U(αi) is. For the sake of simplicity,
let us initially suppose that the VC knows that αi will
not be used in any execution of the Voting Phase. Thus,
the VC can perform an execution of the Voting Phase by
using that identifier and a vote of its own. In so doing,
the VC surreptitiously adds a valid vote to the final tally.
The VC can repeat this procedure for all those identifiers
that will not be used, so surreptitiously adding the same
number of valid votes to the final tally. Notice that, ac-
cording to Property 4, an external observer cannot realize
that it is the VC, and not the legitimate holder U(αi), that
has cast a vote tagged with αi. According to Property 6,
only U(αi) can detect the abuse of identifier αi, but this
voter abstains and does not perform such a control.

Now, we remove the initial simplifying assumption
and assume that the VC does not know which identifiers
will not be used. Thus, the VC has to make a guess.
However, it can make such guesses without being de-
tected as follows: Let ∆ = [tb, tc] be the interval of time
during which the Voting Phase takes place. Furthermore,
let identifier αi be unused at time t ∈ ∆, that is, no vote
tagged with that identifier has been cast at time t. It fol-
lows that, at time t, the VC can assume that U(αi) will
abstain and, consequently, perform an execution of the
Voting Phase using identifier αi. If voter U(αi) really ab-
stains, the VC succeeds in surreptitiously adding a vote
as described above. Suppose instead that U(αi) performs
the Voting Phase at a given time t′ ∈ ∆, t′ > t. Once
again, according to Property 4, an external observer can-
not detect the VC’s attempt to abuse the identifier αi. In
addition, even voter U(αi) remains unaware of that at-
tempt, provided that the VC correctly allocates his/her
vote in the final tally.

Let αi be unused at a given time t ∈ ∆. The VC can
use t to estimate the probability that voter U(αi) will ab-
stain and, thus, that its guess is good. For instance, let
us assume, for the sake of simplicity, that the expected

26 NETWORKS–2001



overall abstention probability is p0 and that the proba-
bility of a voter’s abstention grows linearly with respect
to time. It follows that the probability that U(αi) abstains
conditioned on αi being unused at time t is

Pr{U(αi) abstains | αi is unused at time t}
= p0 + (1 − p0) × t − tb

tc − tb
.

Therefore, the closer t is to tc, the higher is the prob-
ability that U(αi) abstains. Consequently, the VC could
use identifiers that are still unused toward the end of the
Voting Phase to increase the probability of succeeding in
surreptitiously adding votes of its own to the final tally.

5. AN EXTENSION OF A SECURE
VOTING SYSTEM ON A PUBLIC NETWORK

The CW protocol is exposed to the attack described
in Section 4 because there is no way for an external ob-
server to ascertain whether a vote really comes from the
legitimate voter or not. In this section, we propose an
extension of the CW protocol which solves this problem
and still guarantees that the link between votes and vot-
ers is not revealed. The resulting extended CW protocol,
hereafter the ECW protocol, makes it possible to tolerate
abstentions while still maintaining voters’ privacy. In ad-
dition, protocol ECW weakens the requirements on vot-
ers’ behavior. Only voters who actually cast their votes,
actual voters, are required to check whether their votes
have been correctly processed, whereas the others, ab-
staining voters, need take no interest at all in the election,
if they so wish.

Protocol ECW is obtained from protocol CW by
adding the Validation Phase, carried out between the
Registration Phase and the Voting Phase. In the Reg-
istration Phase, the voter obtains a valid identifier αi, as
described in Section 3.1.1. Then, in the Validation Phase,
the voter validates that identifier and obtains a validated
identifier α′

i . Finally, the voter chooses his/her voting
strategy and performs the Voting Phase. In this phase,
the voter tags his/her vote with the validated identifier
and casts the resulting ballot. If the voter wants to recast,
he/she chooses another vote, tags it with the same iden-
tifier, and casts the resulting ballot. The Voting Phase
takes place as described in Section 3.1.2., provided that
the identifier αi is replaced with the corresponding vali-
dated identifier α′

i . When the deadline for casting ballots
is over, the VC works out the final tally. In doing so, the
VC only considers valid those votes tagged with vali-
dated identifiers. The VC announces the election results
by publishing the candidates with their validated identi-
fiers allocated.

Informally, the Validation Phase guarantees that only
the legitimate holder of an identifier can validate it. It
follows that the VC cannot exploit an unused identifier
to surreptitiously add a valid vote because the VC cannot

validate that identifier. Any given external observer is
able to detect whether an invalid vote is present in the
final tally. If this is indeed the case, the external observer
can produce evidence of this and ensure that the VC
removes the invalid vote from the final tally.

The addition of the Validation Phase causes the intro-
duction of a new voting operation:

• Operation α′
i = validation(αi), which takes the identi-

fier αi as its argument and returns the validated iden-
tifier α′

i .

Consequently, the voting activity of any given voter
Uj can be described by means of the following pseu-
docode:

Upon (receiving oi from SC);
begin

αi = registration(oi); {Registration}
α′

i = validation(αi); {Validation}
repeat
begin

choose vote vj;
cast(vj, α

′
i); {Voting}

end
until (voter is ready );

end

We describe the implementation of validation() in Sec-
tion 5.2.

With reference to Figure 2, the Validation Phase is
carried out through the Validation Center (VAC) which
maintains a copy of the electoral roll. Any given voter
interacts with the VAC through a bidirectional commu-
nication channel. The VAC is trusted. In particular, we
assume that the VAC is fully independent from the VC,
that is, they do not collude.

Let αi be the identifier a given voter Uj has obtained
in the Registration Phase. When voter Uj sends αi to the
VAC for validation, the VAC initially authenticates Uj

and ascertains his/her authorization to vote. Then, the
VAC validates the identifier αi by digitally signing it.

FIG. 2. The architecture of the ECW system. The rectangular box
highlights the architecture of the original CW system.

NETWORKS–2001 27



It follows that a validated identifier α′
i consists of two

fields, the identifier αi and its signature σvac(αi) by the
VAC, that is, α′

i = σvac(αi). To preserve the voters’ pri-
vacy, the link between a given validated identifier and
its legitimate holder must not be disclosed to anyone, in-
cluding the VAC itself. Therefore, VAC signs identifiers
by means of a blind signature protocol.

5.1. Blind Signatures

A blind signature is a special form of digital signa-
ture. Just as in any digital signature scheme, only the
signer can create blind signatures by means of his/her
private signing function, while anyone can verify the sig-
nature against the public signature verification function
of the signer. Unlike a normal digital signature scheme,
the signer does not learn which messages he/she is actu-
ally signing. Moreover, the signer does not know which
blind signatures he/she is actually creating, that is, the
signer cannot correlate a given signed message with the
act of signing it, even though the signer keeps a record
of every blind signature he/she makes.

Several blind signature schemes exist: The origi-
nal scheme proposed by Chaum [6, 7] is based upon
RSA [23]. As a further example, Camenisch et al. [4]
proposed a scheme based on the discrete logarithm prob-
lem [24]. For the sake of generality, in this paper, we
consider blind signatures in an abstract form, without
committing to a specific scheme.

By σa, we denote the signature function of a given
principal A, and by σ−1

a , the corresponding verification
function. Principal A keeps σa secret, but makes σ−1

a pub-
licly known. We denote by σa(x) the digital signature of
a given quantity x by (means of the secret function σa of)
principal A. Any given principal can verify such a signa-
ture by obtaining the public verification function σ−1

a of
principal A, calculating y = σ−1

a (σa(x)), and, finally, as-
certaining that y ≡ x. Any given principal can obtain the
public verification function of any other given principal
as needed.

We assume that functions σa and σ−1
a are cryptograph-

ically strong, that is, although the pair of functions σa

and σ−1
a are mathematically related, it is not computa-

tionally feasible to derive one function from the knowl-
edge of the other. Thus, although many people may know
the verification function σ−1

a of a given principal A and
use it to verify the principal’s signatures, they can nei-
ther discover that principal’s signature function σa nor
forge his/her digital signatures.

Let us suppose now that a given principal A wants to
obtain the blind signature of a given information item x
by a given signer B. Initially, principal A chooses a com-
muting function ca and its inverse function c−1

a which sat-
isfy the following properties: (i) c−1

a (σb(ca(x))) = σb(x);
(ii) it is not possible to link ca(x) to x, even knowing
both quantities; (iii) it is not possible to link ca(x) to

σb(x), even knowing both quantities; and (iv) both func-
tions ca and c−1

a are known only to principal A. Then,
principal A calculates ca(x) and sends this quantity to B.
Upon receiving it, B signs it by means of σb and returns
the signed quantity σb(ca(x)) to A. Upon receiving this
quantity, A calculates c−1

a (σb(ca(x))) and obtains σb(x).
Anyone can verify that quantity σb(x) has been pro-

duced by B. However, on the basis of hypotheses ii–iv,
the signer B cannot learn which information he/she is
signing. Furthermore, he/she cannot establish any cor-
respondence between σb(x) and σb(ca(x)) and therefore
determine which blind signature he/she is creating [7].

Quantity x must satisfy certain redundancy constraints
in order to make the search for valid signatures imprac-
tical [7, 8]. In the following, we shall assume that this
requirement is satisfied.

5.2. The Validation Phase

Let αi be the identifier a given voter Uj has obtained in
the Registration Phase. Voter Uj validates αi by calling
the operation α′

i = validate(αi), whose execution pro-
duces the following actions:

VAP1: Voter Uj selects a commuting function cuj and
its corresponding inverse function c−1

uj . Then, Uj

signs quantity cuj (αi) so obtaining σuj (cuj ). Fi-
nally, voter Uj sends the VAC a message con-
taining both cuj (αi) and σuj (cuj (αi)).

VAP2: Upon receiving this message, the VAC authen-
ticates the voter by verifying the signature
σuj (cuj (αi)), and accesses the electoral roll to as-
certain the voter’s authorization (if any of these
actions fails, the Voting Protocol is unsuccess-
fully terminated). Then, the VAC signs cuj (αi)
and sends Uj a message containing the resulting
signed quantity σvac(cuj (α)).

VAP3: Upon receiving this message from the VAC, voter
Uj computes σvac(αi) = c−1

uj (σvac(cuj (αi))) and ver-
ifies signature σvac(αi) (if this action fails, the
Voting Protocol is unsuccessfully terminated). Fi-
nally, Uj builds a valid identifier α′

i by pairing αi

with σvac(αi).

5.3. Discussion

In this section, we argue that our protocol meets all
the requirements mentioned in Section 1.1 except for
the Verifiability requirement. In fact, protocol ECW only
satisfies a weaker form of this requirement. As we shall
argue, an external observer can check that no invalid
vote is added to the final tally. Nevertheless, checking
that valid votes are correctly counted remains a task for
actual voters.

The security of the protocol ECW is based on assump-
tions A1–A3 and on the the following assumptions:

28 NETWORKS–2001



A4′: Each actual voter checks that his/her vote has been
correctly counted.

A5: The VAC is trusted. In particular, the VAC and VC
are fully independent, that is, they do not work in
cooperation.

Notice that assumption A4′ is weaker than is assump-
tion A4 since abstaining voters are not required to exert
any check.

In the rest of this section, we shall proceed as follows:
First, we shall prove some of the functional properties of
the protocol. Then, we shall argue that these properties
guarantee that the protocol satisfies the requirements.

5.3.1. Functional Properties of the Extended Protocol
Since both the Registration Phase and the Voting Phase
of the ECW protocol are the same as those of the CW
protocol, Properties 1–5 continue to be satisfied under
Assumptions A1–A3. As to Property 5, it should be noted
that, in the ECW protocol, a valid vote is tagged with a
validated identifier α′. Thus, any given observer can as-
certain whether an identifier in the final tally is validated
or not by checking whether the first field specifies a valid
identifier and the second field specifies the signature of
that identifier by the VAC.

The Validation Phase satisfies the following proper-
ties:

Property 7. It is impossible for anyone, including the
VAC, to link a voter to his/her validated identifier.

Proof. The proof directly derives from Property 1
and the properties of the blind signature scheme used in
the Validation Phase.
Property 7 implies that the Validation Phase maintains
the unlinkability between voters and identifiers.

Property 8. The VC cannot obtain a validated identifier.

Proof. To validate a given identifier αi, it is neces-
sary to obtain quantity σvac(αi). Thus, the proof consists
in showing that it is impossible for the VC to obtain
that quantity. On the basis of assumption A5, the VC
cannot obtain σvac(αi) through an execution of the Val-
idation Phase because the VAC discovers at step VAP2
that the VC is not an eligible voter. Furthermore, since
the signature and the verification functions are crypto-
graphically strong, no principal, including the VC, can
either forge the signature σvac(αi) or impersonate a voter
in the Validation Phase.

Property 9. The VC cannot add valid votes surrepti-
tiously.

Proof. To surreptitiously add a valid vote, the VC
needs a validated identifier. However, the VC cannot ob-
tain such an identifier (Property 8).
Property 9 prevents the VC from carrying out the attack
described in Section 4. It follows that a voter can freely
abstain and take no part in the election process if he/she
so wishes. However, actual voters are still required to
check the correct allocation of their votes.

Property 10. The VC cannot omit correctly counting a
valid vote without being detected by the actual voter who
cast that vote.

Proof. The proof closely follows that of Prop-
erty 6 [5]. Let vj be a valid vote tagged with a given
valid identifier α′

i and let Uj be the voter who cast vj.
If the VC does not properly allocate vj, voter Uj detects
this by assumption A4′ and points it out by presenting
(α′

i , Cj,2, Cj,1) to a third party. By step VP3 of the Vot-
ing Phase, the third party realizes that Uj is right and,
consequently, makes the VC correct the result.

5.3.2. Correctness Proof of the Voting Protocol

Proposition 11 Eligibility. The protocol satisfies the
Eligibility Requirement.

Proof. The proof follows directly from the follow-
ing observations: First, identification tags are distributed
only to eligible voters. Second, according to Property 2,
it is impossible for an intruder to derive a valid identi-
fier.

Proposition 12 Recasting. The protocol satisfies the
Recasting Requirement.

Proof. The proof follows directly from Property 3.

Proposition 13 Double-Voting. The protocol satisfies
the Double-Voting Requirement.

Proof. On the basis of Property 5 and Proposition 12,
to vote twice or more, an eligible voter needs the same
number of validated identifiers. Thus, the proof lies in
showing that an eligible voter can obtain at most one
validated identifier. As a validated identifier α′

i is basi-
cally a valid identifier αi signed by the VAC, the proof
is reduced to showing that an eligible voter can obtain at
most one valid identifier. This is proved as follows: In the
Registration Phase, the voter obtains one valid identifier
and cannot derive another valid identifier (Property 2).

Proposition 14 Privacy. The protocol satisfies the Pri-
vacy Requirement.

Proof. The proof follows directly from Proper-
ties 1, 7, and 4.

NETWORKS–2001 29



Proposition 15 Abstention. The protocol satisfies the
Abstention Requirement.

Proof. The proof follows from observing that the
VC cannot exploit the identification tag of an abstaining
voter to surreptitiously add a valid vote (Property 9).

Proposition 16 Accuracy. The protocol satisfies the
Accuracy Requirement.

Proof. The proof follows directly from Properties 9
and 10.

6. A FURTHER EXTENSION

In the extended protocol ECW only actual voters are
required to check whether their votes have been cor-
rectly accounted for, that is, every actual voter must as-
certain that his/her vote has been neither eliminated nor
altered. In this section, we present a further extension to
the original CW protocol that makes it possible to re-
move this constraint. The resulting protocol, EECW, al-
lows any given observer to check that the VC correctly
counts valid votes. It follows that no voter intervention is
required and thus the Requirement Verifiability is fully
satisfied.

6.1. Preventing Vote Elimination

As discussed in Section 3.2, the VC may eliminate
a vote by eliminating the identifier tagging it. It follows
that one way to prevent the VC from eliminating a vote is
to keep track of the validated identifier tagging that vote.
This task is accomplished by a Logging Center (LC).
With reference to Figure 3, the LC reads the SPB during
the Voting Phase and keeps track of validated identifiers
used to tag votes. The LC stores the validated identifiers
in stable storage and makes them available to any given
external observer. The LC is trusted. In particular, it is
fully independent from the VC, that is, the LC and VC
do not collude.

With reference to the Validation Phase (Sec-
tion 3.1.2.), LC reads validated identifiers from messages
at steps VP2 and VP4. However, the contents of those
messages are encrypted by means of a VC’s public key. It
follows that the LC really reads validated identifiers in
their encrypted form. However, when the deadline for
casting ballots expires, the VC’s private key is made
available to the LC, which can thus obtain the cleartext
of the validated identifiers.

According to the Recasting Requirement, the SPB
may contain one or more validated identifiers whose first
fields coincide but whose second fields differ. These iden-
tifiers are based on the same valid identifier but account

for different votes. Therefore, the LC records only the
last validated identifier which is read and discards the
remaining ones.

6.2. Preventing Vote Alteration

As discussed in Section 3.2, the VC could alter a vote
by allocating the identifier tagging the vote to a different
candidate from the one specified by the vote. It follows
that one way to prevent the VC from altering a vote
is to indissolubly link the vote to the identifier tagging
it. Therefore, if the identifier is allocated, it cannot be
done so incorrectly. One way to obtain such a link is as
follows:

Let αi be the identifier voter Uj has obtained in the
Registration Phase. The voter chooses a given vote vj,
computes αi‖vj, where ‖ denotes the concatenation op-
erator, and then performs the Validation Phase using
αi‖vj instead of αi. This phase takes place as speci-
fied in Section 5.2 and thus the VAC blindly signs the
quantity αi‖vj. At the end of that phase, voter Uj ob-
tains the quantity σvac(αi‖vj) that indissolubly links αi

to vj. A validated identifier α′′
i is now given by the pair

(αi, σvac(αi‖vj)). Finally, the voter performs the Voting
Phase, which takes place as described in Section 3.1.2.
provided that α′′

i replaces αi. The voting procedure of
voter Uj can now be described by the following pseu-
docode:

Upon (receiving oi from SC);
begin

αi = registration(oi); {Registration}
repeat
begin

choose vote vj;
α′′

i = validation(αi‖vj); {Validation}
cast(vj, α

′′
i ); {Voting}

end
until (voter is ready );

end

It should be noted that, since a validated identifier in-
dissolubly links an identifier with the vote tagged with
it, the valid identifier can only be used for one execu-
tion of the Voting Phase. Consequently, if a given voter
wants to cast a different ballot, before repeating the Vot-
ing Phase, the voter must repeat the Validation Phase and
obtain another validated identifier according to the new
voting strategy. Clearly, repeating the Validation Phase
adversely affects the performance of the voting system.
However, since these repetitions take place only when
voters want to recast their votes, and since we expect
that this seldom happens, the effect on the performance
should be negligible.

30 NETWORKS–2001



FIG. 3. The architecture of the EECW system.

6.3. Enforcing Tally Validity

An external observer can check the tally validity as
follows:

C1: Initially, the external observer ascertains that no vote
has been eliminated. To do this, the observer cross-
checks the final tally with respect to the set of identi-
fiers maintained by the LC. Every validated identifier
that is present in the set must also be present in the
final tally. If not, the VC has to correct the final result.

C2: Then, the external observer ascertains whether any
vote has been altered. For each validated identifier
that is present in the final tally, the external observer
repeats the following actions: Let α′′

i be a validated
identifier allocated to a given candidate C. The exter-
nal observer initially obtains vj from α′′

i by applying
the verification function σ−1

vac to σvac(αi‖vj), the sec-
ond field of α′′

i . Then, the observer ascertains whether
vj actually specifies C. If not, VC has to correct the
result.

6.4. Discussion

In this section, we argue that the EECW protocol
meets all the requirements mentioned in Section 1.1. The
security of the EECW protocol is based on assumptions
A1–A3 and A5 in addition to the following assumption:

A6: The LC is trusted. In particular, the LC and VC are
fully independent, that is, they do not work in coop-
eration.

Given assumptions A1–A3 and A5, Properties 1–5, 7–
9 continue to be valid in the EECW protocol. Conse-
quently, Propositions 11–15 are valid. Proofs can easily
be deduced by replacing α′

i with α′′
i . Thus, it remains to

be shown that protocol EECW meets the requirements
of Verifiability and Accuracy.

Neither assumption A4 nor assumption A4′ is re-
quired. Therefore, in the EECW protocol, no voter, in-

cluding actual voters, is required to check the correct
processing of his/her vote. As we now show, this con-
trol can be successfully performed by any observer.

Property 17. The VC cannot eliminate a vote without
being detected by any given external observer.

Proof. If the VC eliminates a vote, an external ob-
server detects this mistake at step C1. Thus, the VC has
to correct the final result.

Property 18. The VC cannot alter a vote without being
detected by any given external observer.

Proof. If the VC alters a vote, an external observer
detects this mistake at step C2. Thus, the VC has to cor-
rect the final result.

Property 19. The VC cannot avoid correctly counting
a vote without being detected by any given external ob-
server.

Proof. In order not to correctly count a vote, the VC
can either alter or eliminate it. However, these actions
are not possible according to Properties 17 and 18.

Proposition 20 Verifiability. The protocol satisfies the
Verifiability Requirement.

Proof. The proof follows directly from Prop-
erty 19.

Proposition 21 Accuracy. The protocol satisfies the Ac-
curacy Requirement.

Proof. The proof follows from Properties 9 and 19.

7. CONCLUSIONS

In this paper, we have presented a practical and se-

NETWORKS–2001 31



cure electronic voting scheme for large-scale distributed
systems such as the Internet. In addition to Eligibil-
ity, Double-Voting, Privacy, and Accuracy requirements,
which are generally satisfied by most of the systems
in the literature, the proposed voting scheme tolerates
the Abstention requirement and does not require vot-
ers to exert any control over the correct processing of
their votes (Verifiability requirement). It follows that the
voting scheme strengthens the security properties of the
electronic-voting procedure, simplifies the interaction of
voters with the electronic-voting system, and contributes
to increased voter confidence in the security level of the
electronic procedure.

Acknowledgements

The author is indebted to the anonymous referees
for their comments and suggestions, which helped enor-
mously to improve the paper.

REFERENCES

[1] A. Baraani-Dastjerdi, J. Pieprzyk, and R. Safavi-Naini, A
secure voting protocol using threshold schemes, Proc 11th
IEEE Ann Computer Security Application Conf, 1995,
pp. 143–148.

[2] C. Boyd, Some applications of multiple keys ciphers, Proc
Advances in Cryptology–EUROCRYPT 88, 1988, pp. 455–
467.

[3] C. Boyd, A new multiple keys cipher and an im-
proved voting scheme, Proc Advances in Cryptology–
EUROCRYPT 89, 1989, pp. 617–625.

[4] J. Camenisch, J.-M. Piveteau, and M. Stadler, Blind signa-
tures based on the discrete logarithm problem, Proc Ad-
vances in Cryptology–EUROCRYPT 94, 1994, pp. 428–
432.

[5] C.-C. Chang and W.-B. Wu, A secure voting system on a
public network, Networks 29 (1997), 81–87.

[6] D. Chaum, Untraceable electronic mail, return address, and
digital pseudonyms, Comm ACM 24 (1981), 84–88.

[7] D. Chaum, Blind signatures for untraceable payments, Proc
Advances in Cryptology–CRYPTO 82, 1983, pp. 199–203.

[8] D. Chaum, Security without identification: Transaction sys-
tems to make the big brother obsolete, Comm ACM 28
(1985), 1030–1044.

[9] D. Chaum, Elections with unconditionally secret ballots
and disruption equivalent to breaking RSA, Proc Advances
in Cryptology–EUROCRYPT 88, 1988, pp. 177-182.

[10] J.D. Cohen and M.J. Fischer, A robust and verifiable cryp-
tographically secure election scheme, Proc 26th IEEE Ann
Symp on Foundation Computer Science, 1985, pp. 372–
382.

[11] L.F. Cranor and R.K. Cytron, Sensus: A security-conscious
electronic polling system for the Internet, Proc 30th IEEE
Hawaii Int Conf on System Sciences, 1997, pp. 561–570.

[12] T. ElGamal, A public key cryptosystem and a signature
scheme based on discrete logarithms, IEEE Trans Inf The-
ory IT-31 (1985), 469–472.

[13] M.K. Franklin and M.K. Reiter, The design and implemen-
tation of a secure auction service, IEEE Trans Soft Eng 22
(1996), 302–312.

[14] A. Fujioka, T. Okamoto, and K. Otha, A practical secret
voting scheme for large scale elections, Proc of Advances
in Cryptology–AUSCRYPT 92, 1992, pp. 244–251.

[15] K.R. Iversen, A cryptographic scheme for computer-
ized general elections, Proc Advances in Cryptology–
CRYPTO 91, 1991, pp. 405-419.

[16] J.K. Jan and C.C. Tai, A secure electronic voting protocol
with IC cards, J Syst Soft 39 (1997), 93–101.

[17] J. Karro and J. Wang, Towards a practical, secure, and very
large scale online election, Proc 15th IEEE Ann Computer
Security Applications Conf, 1999, pp. 161–169.

[18] Y. Mu and V. Varadharajan, Anonymous secure e-voting
over a network, Proc 14th IEEE Ann Computer Security
Applications Conf, 1998, pp. 293–299.

[19] H. Nurmi, A. Salomaa, and L. Santean, Secret ballot elec-
tions in computer networks, Comput Sec 10 (1991), 553–
560.

[20] W. Ogata, K. Kurosawa, K. Sako, and K. Takatani, Fault
tolerant anonymous channel, Proc First Int Conf Infor-
mation and Communications Security–ICICS ’97, 1987,
pp. 440–444.

[21] C. Park, K. Itoh, and K. Kurosawa, Efficient anonymous
channel and all/nothing election scheme, Proc Advances
in Cryptology–EUROCRYPT ’93, 1993, pp. 248–259.

[22] A. Pfitzmann and M. Waidner, Networks without user ob-
servability, Comput Sec 6 (1987), 158–166.

[23] R.L. Rivest, A. Shamir, and L. Adleman, A method for
obtaining digital signatures and public key cryptosystems,
Comm ACM 21 (1978), 120–126.

[24] B. Schneier, Applied cryptography—Protocols, algorithms,
and source code in C, Wiley, New York, 1994.

32 NETWORKS–2001


