

Introduction

● Two levels of security vulnerabilities:
– Project level (cyphers, standard protocols,

BAN logic, etc.)
– Implementation level (bugs, unhandled

inputs, misconfigurations, etc.)

There are two levels of security vulnerabilities:
1) Project level, regarding how a system SHOULD work.

This level includes cyphers, standard protocols, logic proof
tools like BAN logic, etc.

2) Implementation level, regarding how a system DO work,
i.e. how it is effectively implemented and configured. This level
includes bugs, unhandled inputs, errors in configuration, etc.

Introduction

● No “silver bullet” at implementation level (e.g.
BAN logic)

– Programming best-practices
– Knowledge of the most common attacks
– Penetration tests
– Security certifications

At project level we can rely on general tools for proofing the
security of our solution (e.g. BAN logic). At implementation
level we can not. Implementation vulnerabilities are often very
complex and buried under a mountain of code. We can never be
sure that a system is free from security vulnerabilities. The best
thing to do is to follow a set of programming best-practices,
know the most common attacks, and pay human security
experts, armed with good automatic tools, to catch
vulnerabilities.

Some companies are specialized in performing security
analysis and penetration tests. A penetration test is a simulation
of various types of attack. After the penetration tests, they
releases a security certification.

Introduction

● Threat Intention to inflict damage or other hostile action
● Threat agent Individual or group that can manifest a threat
● Attack vector Medium carrying the attack (e.g. an HTTP request,

an IP packet, etc.)
● Vulnerability (Security Weakness, Security Flaw) Defect of the

system that an attacker can exploit for mounting an attack
● Exploit Piece of software that the attacker use to mount the

attack

This is the OWASP's scheme of a typical attack. The threat
agent chooses an “attack path”, including an attack vector, a
security weakness to use, a security control to void, a technical
and a business impact. The used terminology is the following:

- A threat is an intention of inflict damage or other hostile
action.

- A threat agent is an individual or group that can manifest a
threat. Modelling a threat agent (threat model) is very important
in the security evaluation phase. Her capabilities, her intention
and her past activities, must be taken into account.

- An attack vector is the medium through which the attack is
performed. It could be an HTTP request, a simple IP packet, etc.

- A vulnerability (or Security Weakness, Security Flaw,
Security Hole, etc.) is a defect of the system that an attacker can
exploit for mounting her attack.

- An exploit (noun) is a piece of software that the attacker use
to mount the attack.

For each kind of attack, OWASP rated the attack vector's
exploitability, the weakness prevalence (less common, more
common), the weakness detectability (whether the attacker can
easily discover the vulnerability or not) and the technical
impact's severity.

Introduction

Which are the most common attacks
and their goals?

Introduction

● Top attacks methods (1999-2011):
– Unknown (22.5%)
– SQL Injection (20.0%)
– Denial of Service (11.2%)
– Cross-Site Scripting (9.9%)

http://projects.webappsec.org/w/page/13246995/Web-Hacking-Incident-Database

According to webappsec.org, the most common attack
methods of 2010 are:

1) Unknown (22.5% of cases)
2) SQL Injection (20.0%)
3) Denial of Service (11.2%)
4) Cross-Site Scripting (9.9%)
The fact that in the 22.5% of cases the attack methodologies

remain unknown tells us that it's very hard to discover them.

Introduction

● Top attacks goals (1999-2011):
– Leakage of information (29.5%)
– Downtime (13.0%)
– Defacement (12.9%)

http://projects.webappsec.org/w/page/13246995/Web-Hacking-Incident-Database

The most common attack goals are:
1) Leakage of information (steal some important information

e.g. accounts, credit cards, etc.)
2) Downtime (the period of time in which a service remains

unavailable)
3) Defacement (loss of credibility of a company or

organization)

Introduction

● OWASP (Open Web Application Security
Project) www.owasp.org

● Periodically publishes a Top-Ten list of web
vulnerabilities

OWASP (Open Web Application Security Project) is an
independent, nonprofit organization for Web security. It
maintains a collection of web resources regarding web security
and information security in general.

It periodically publish a Top-Ten list of web vulnerabilities,
in order of dangerousness.

Introduction

● OWASP Top-Ten 2010:
– A1: Code Injection (SQL Injection, Command

Injection, XPath Injection, etc.)
– A2: Cross-Site Scripting (XSS)
– A3: Broken Authentication and Session

Management
– A4: Insecure Direct Object References
– A5: Cross-Site Request Forgery (CSRF)
– Etc.

+ Denial of Service (DoS)

The 2010 Top 10 is the following:
A1) Code Injection in all the forms (SQL Injection,

Command Injection, XPath Injection, etc.)
A2) Cross-Site Scripting (XSS)
A3) Broken Authentication and Session Management. This

regards logic error on the management of web session, cookies,
etc.

A4) Insecure Direct Object References
A5) Cross-Site Request Forgery (CSRF).
Etc.
OWASP did not included Denial of Service in this list

because it is not a web attack: it actually affect the lower layers
of the OSI stack (network, transport).

A broken authentication and session management is a bug in
the management of the PHP session.

A direct object reference occurs when a developer exposes a
reference to an internal implementation object, such as a file,
directory, database record, or key, as a URL or form parameter.
An attacker can manipulate direct object references to access
other objects without authorization, unless an access control
check is in place.

SQL injection

SQL injection

https://example.com/app/accountView?id= pippo &pwd=pluto

● Example: a web page shows information
about a user given the user's id and pwd

● Id and pwd are GET parameters
● URL:

● The user's information is stored in an SQL
database

SQL injection

● Vulnerability example:

● An attacker makes the following URL
request:

● The resulting query expose the entire users'
database:

$query = " SELECT * FROM accounts WHERE id=' " . $_GET["id"] .
" ' and pwd=' " . $_GET["pwd"] . " ' ";

http://example.com/app/accountView?id= foo &pwd=bar' or '1'='1

SELECT * FROM accounts WHERE id=' foo ' and pwd=' bar' or '1'='1 '

This is an example of SQL injection vulnerability. The PHP
code above performs a simple login procedure. It takes a
username and a password as inputs by means of URL GET
parameters. Then, it concatenates the data to build an SQL
query, which retrieves user's information from the accounts'
database. This information is then released to the client.

This code works normally if the inputs are those expected,
but what if the input, accidentally or intentionally, contains
some SQL special characters?

Consider an attacker that sends the above malicious request.
The “pwd” parameter contains SQL special characters. When
the PHP interpreter builds the query, the result is shown. The
“or '1'='1' ” condition in the WHERE clause bypasses the
controls on the username and password and exposes the entire
database. If some of this information is confidential, for
example passwords or credit card numbers, the users and the
website will be in big trouble.

SQL injection

● To add a new user with administrator
privileges:

● Resulting query:

● To delete the users' database:

● Resulting query:

https://example.com/app/accountView?id= foo &pwd=bar'; INSERT INTO
accounts VALUES("Mallory", "pa55word", "administrat or"); --

https://example.com/app/accountView?id= foo &pwd=bar'; DROP
TABLE accounts; --

SELECT * FROM accounts WHERE id=' foo ' and pwd=' bar'; INSERT INTO
accounts VALUES("Mallory", "pa55word", "administrat or"); -- '

SELECT * FROM accounts WHERE id=' foo ' and pwd=' bar'; DROP
TABLE accounts; -- '

Not only the confidentiality is threatened. With the above
malicious requests, the attacker is able respectively to add a
controlled administrator user (integrity threat), and to delete the
entire users' database (availability threat).

Note the use of SQL spacial characters “; ”, to separate two
SQL commands, and “-- ” (SQL line comment), to eliminate
the final single quote.

Note also that the attacker must know some implmentation
details of the website, namely the SQL dialect and the tables'
names and structures. This information is not normally
available to the attacker, because the PHP code is not exposed
outside the server. However, the attacker can leverage on other
methods to scan PHP internal code, for example she can
provoke PHP errors and study the debug messages.

SQL injection

● This is the most dangerous web attack
– Vector exploitability: classified as EASY
– Weakness prevalence: classified as

COMMON
– Technical impact: classified as SEVERE
– The use of secure protocol (SSL) is irrelevant

● Not only SQL Injection
– Command Injection
– XPath Injection
– Etc...

Despite it is simple, this is the most dangerous web attack.
OWASP Top Ten 2010 categorized its vector exploitability as
EASY, the weakness prevalence as COMMON and its technical
impact as SEVERE.

Note that the use of a secure transport protocol (SSL, TLS,
HTTPS) is IRRELEVANT for the attack, because it works on
the higher application level. In fact, from the SSL point of view,
the malicious code injected is just normal data.

The SQL injection is the most common case of code
injection, but it's not unique. In general, code injection
vulnerability is possible whenever an interpreted command (e.g.
an SQL query) is constructed using untrusted data and then run.
Other possible code injections are Command injection
(injection of shell commands), XPath injection (XPath
expressions are statements that identify tags or list of tags in an
XML document or database), etc.

SQL injection

● The error: not clearly separate untrusted data
from code

● Key countermeasure: bind variables

$stmt = $db->prepare(" SELECT * FROM accounts WHERE id= ? and
pwd=?")

$stmt->bind_param('ss', $_GET["id"], $_GET["pwd"]);

$result = $stmt->execute();

In general, the key error is not to clearly separate untrusted
data from code. The solution recommended by OWASP is to
use “bind variables”. The technique is referred also as
“parametrized query”. An example is reported above.

With the first statement we “prepare” the query, that is, the
query is interpreted and represented by an object ($stmt). The
query is defined except for two parameters (the “?” characters).
At the second stage, these missing parameters are bound to the
actual values. Then the query is executed.

Note that with this method, there is a clear separation
between code and data. The code is inserted with the “prepare”
statement, and it's trusted because it does not contain any
untrusted data. The data is inserted with the “bind_param”
statement, and we are sure it will be treated as data.

The “ss” parameter in the bind_param method represents the
types of the bind variables: two strings.

SQL injection

● Other countermeasures:
– Isolation

Connect to database and run the queries with
the least sufficient privileges

– Input length limits
– Do not expose database or PHP

implementation details

Other best practices are:
1) The isolation, i.e. connect the database and execute the

queries with the least sufficient privileges. Or, at least, never
connect a database with administrator privileges.

2) Limit the length of the inputs (GET or POST parameters).
This is because many SQL Injection attacks require inserting
long and complex input parameters, containing a lot of code.

3) Do not expose database implementation details or PHP
code details. Especially on error messages, these details are sent
to the browser. An attacker could use this information to seek
for vulnerabilities.

SQL injection

● A famous example: the CardSystem incident
– June 2005. CardSystems Solutions reported

that hackers stole 263,000 credit card
numbers, exposed 40 million of them

– Estimated damage of $16,000,000
– April 2006. The hacking system was

discovered: Code Injection

A famous example of Code Injection is the CardSystem
incident. CardSystem Solution was a company managing the
credit card information and home banking transactions for Visa
and Mastercard customers. In June 2005, they reported that
hackers have stolen 263,000 credit card numbers and exposed
(in cipher text) 40 millions other. The money loss for the
company is estimated in $16,000,000, for refunds, lawsuits and
fines.

In April 2006, the hacking method was discovered: a Code
Injection.

Don't try this at home!

Cross-site scripting

Cross-site scripting

● Vulnerability example:
– A forum application receives messages from

users, stores them in a database, and
releases them to the other users

● The attacker post a message:

● Other users view the message and their
browsers run the script

Post message:
Subject: Get money for FREE!!!
Body: <script> malicious code </script>

Cross-Site Scripting (XSS) is the second most dangerous web
attack according to OWASP. An example is shown above.

A simple forum application receives messages from users,
stores them in a database, and then sends the messages to the
users that want to read them.

Suppose an attacker sends a message containing a malicious
script. Without proper controls, the forum application would
store it in the database and send it to other users. The users trust
the server, so their browsers execute every script they receive
from it. The malicious script is run on a lot of computers.

Cross-site scripting

● The vulnerability is on the server, but clients
are the victims

● The website is a victim too
● The clients trust the server (digital

certificate), so they execute the script
● The browser can't recognize “good” scripts

from malicious ones

Note that the vulnerability is on the server, but clients are the
final victims. However, the website is a victim too, because it
loses credibility.

The key problem is that the clients trust the server. The server
could even own a digital certificate and install secure
communications with clients. Consider that nowadays almost
every site contains scripts, and the browsers are configured not
to block the scripts coming from a trusted server.

This attack is very hard to block at the client-side, because
the browser can not recognize good script from malicious ones.

Cross-site scripting

● Two types of XSS:
– Stored XSS (previous example)
– Reflected XSS

There are two main types of XSS:
1) Stored XSS, whenever the script is permanently stored in

the server's database and run by many clients, as depicted in the
previous example.

2) Reflected XSS, a bit more complicated, whenever the
script is not stored, but sent to a single client.

Cross-site scripting

● Example of reflected XSS
● A web page displays an edit field with a

default value inside:

● The default value “1234567” is a GET
parameter

12345671234567CC:

https://www.creditcards.com?CC=1234567

Cross-site scripting

● Reflected XSS:
– On the server (www.creditcards.com):

– The attacker tricks the user (by email or by
another controlled site) to follow the link:

– The resulting HTML will be:

echo " <input name='creditcard' type='TEXT' value=' " .
_GET["CC"] . " '> ";

www.creditcards.com?CC= '><script>malicious code</script>'

<input name='creditcard' type='TEXT' value=' '><script>malicious
code</script>' '>

The above example shows how a reflected XSS works.
The server at www.creditcards.com builds a dynamic HTML

page with an input field. The content of such input field can be
specified by the client with a GET parameter. Note that the
construction of the dynamic HTML code contains an HTML-
Injection flaw.

Suppose an attacker induces an user to follow a particular
URL. This can be done through a simple email or even by
means of a site controlled by the attacker. The URL contains an
HTML Injection attack and some malicious code. The site
builds the dynamic HTML page, that contains now the
malicious script, and sends it to the user that runs the script.

Note that the final “''> ” characters of the resulting HTML is
ignored by the browser, for HTML syntax tolerance.

This is the strategy scheme of a Stored XSS attack.

This is the strategy scheme of a Reflected XSS attack.

Cross-site request forgery

● Cross-Site Request Forgery (CSRF):
– Kind of XSS in which the malicious code

makes the victim do an unwanted request
to a site

– For example a “voluntary donation„ to the
attacker

A Cross-Site Request Forgery (CSRF) is a special case of
XSS, in which the malicious script performs an unwanted
request to a site, for example a “voluntary donation” to the
attacker.

The image above shows an example of (Stored) CSRF.
The victim is contemporaneously holding a secure connection

to a Home-Banking site and visiting another site, for example
the forum of the bank's costumers. Suppose the attacker stores a
malicious script on the forum (by Stored XSS) and the victim
downloads and runs it. The script uses the open session to make
a donation of a lot of money to a bank account controlled by the
attacker.

Cross-site scripting

● Very few countermeasures at client side
● Countermeasures (at server side):

– As for SQL Injection, clearly separate what is
code and what is untrusted data

– Escape all untrusted strings before inserting
them in HTML code

● & becomes &

● < becomes <

● > becomes >

● " becomes "

● ' becomes '

● / becomes /

There is no effective countermeasure at the client side, for
two main reasons: 1) browsers can't distinguish between “good”
scripts and “bad” scripts; 2) we can't force all the people on the
world to take security countermeasures.

From the server point of view, we must protect our costumers
from an XSS attack. The key countermeasure is, as for SQL
Injection, to clearly separate what is code from what is
untrusted data. Developers must escape all untrusted strings
before inserting them in the HTML code. “Escaping” means to
substitute all the special HTML characters (&, <, >, " , ' , /) in
escaping sequences (respectively & , < , > ,
" , ' , /).

After that the string is safe, and can be concatenated to form
HTML code, without problems.

Cross-site scripting

● Escaping methods:

● The “safe” string can then be inserted in
HTML code (by concatenation)

$safe = $encoder->encodeForHTML(_GET["CC"]);

OWASP provided ESAPI (Enterprise Security API), a PHP
library for building secure Web Applications. Among other
functionalities, there is some methods to properly escape
untrusted data for inserting in HTML code. The above example
shows how.

ESAPI is available in other languages: Java, .NET, Python,
ASP and Coldfusion.

ESAPI library

● ESAPI (OWASP Enterprise Security API):
library for web security utilities

– PHP
– Server Java
– .NET
– ColdFusion
– etc.

Denial of service

Denial of service

● Denial of Service (DoS): attack aimed at
making unavailable a resource

– Bug-based DoS
● Ping of Death

– Asymmetry-based DoS
● SYN flood

– Flooding-based DoS
● Smurf attack (Amplification-based)
● Distributed DoS (DDoS)

A Denial of Service (DoS) is an attack aimed at making
unavailable a resource (site, application, server, etc.).

There are three main strategies to do this:
1) Bug-based DoS exploits some bug in the input handling of

the victim, for example a buffer overflow, to cause a system
crash. The bug may reside in the application as well as in the
operative system, in the network driver or even in the network
card firmware. An (old) example of bug-based DoS is the Ping
of Death.

2) Asymmetry-based DoS does not exploit a bug, but an
inefficiency of the victim in handling particular inputs.
Generally speaking, there is a vulnerability every time an
attacker can, using a small amount of her resources, cause a
high resources consumption of the victim (hence the name
“asymmetry”). An example is the SYN flood attack.

3) Flooding-based DoS does not exploit bugs or
inefficiencies. It simply overwhelm the victim with a huge
amount of legitimate requests. This can be done through
amplification technique (Smurf attack) or through Distributed
DoS (DDoS).

Denial of service

● Ping of Death (PoD):
– IP packet with fragment_offset=65535

and payload_size>1

– The victim reserves a memory buffer of
>65536 bytes

– Buffer overflow, or at least high resource
consumption

– Windows, Unix, Linux, Mac, printers and
routers were vulnerable

– Corrected in '97-'98

The ping of Death is a famous case of Denial of Service
attack. The attacker forges a IP packet (not necessarily a ping
packet) that appear to be an IP fragment, with a fragment offset
of 65535 bytes (the maximum) and a payload length greater
than 1 byte. The victim's operative system would reserve a
buffer of >65536 bytes, causing either a buffer overflow or a
high resource consumption

All the major operative systems were vulnerable to this
attack, including Windows, Unix, Linux, Max and the dedicated
software on network printers and even routers. The
vulnerabilities have been corrected in '97-'98.

A TCP connection starts with a three-way handshake (SYN,
SYN-ACK, ACK). At the reception of the first SYN, the
connection is said to be “half-opened” and the server reserves
some memory for containing the related information (socket
descriptor, etc.).

Suppose that an attacker begins a lot of three-way handshakes
without completing them. For each SYN received, the victim is
forced to occupy more and more memory. The attack continues
until the victim's memory is depleted.

Note that the attacker spends a small resource (the bandwidth
to send a SYN packet) but the victim wastes a lot of resources
(the memory).

The “Smurf” attack is a classic example of flood-based
“amplification” DoS. The attacker produces a ping message
with the victim's address as the source IP (spoofing), and sends
it in broadcast to a network. The network's gateway is
misconfigured and effectively broadcasts the message
(amplification). The network reply the ping messages,
exhausting the victim's resources (in this case, the IP receiving
queue).

In Distributed DoS (DDoS) the attacker induces a lot of
honest systems to make a lot of requests to a single site,
exhausting its resources.

An example is the botnet attack, in which the attacker installs
malware (bot) on honest systems (servers or clients). The bots
remain inactive until a specific command is received. After that,
the bots start making a lot of requests to the victim. The
infected systems are called “zombie agents”, because they act
against their will.

A computer can take part of a DDoS attack even with the
owner's consent. For example, in 2010, many supporters of
WikiLeaks voluntarily ran bots to perform a DDoS attack
against the major credit cards companies after Julian Assange
was arrested.

Denial of service

● Countermeasures for Bug-based DoS
– Firewalls
– Security updates

● Countermeasures for Asymmetry-based DoS
– Upgrade the server's performance
– Downgrade the client's performance

Firewalls and security updates are normally used to counter
bug-based DoS. We can never be sure that our software is bug-
free. So a firewall is mandatory for every system connecting to
Internet.

To counter asymmetry-based DoS, we must find methods to
break the asymmetry in resource consumption. There are two
methods:

1) Upgrade the performance of the server. For example, in the
SYN flood attack, the server could put a limit on the number of
half-open connections.

2) Downgrade the performance of the clients. An example are
puzzle-based defences: a new connection is accepted only if the
client is able to perform some computation (puzzle). The puzzle
computing time is negligible for legitimate users, but it's huge
for attackers.

Denial of service

● Countermeasures for Amplification-based
DoS

– Avoid amplification effects (routers should
not broadcast)

● Countermeasures for DDoS
– The requests are legitimate but with a

malicious intent
– Load balancing between multiple proxy

servers
– Intrusion Detection Systems (IDS, e.g. Snort)

analyse the traffic profile

For amplification-based DoS, the best defence is to configure
the system to avoid the amplification. In the Smarf attack, no
gateway router should be allowed to broadcast packets.

The Distributed DoS is harder to fight. A simple security
system like a firewall cannot distinguish legitimate requests
from malicious ones. In effect, in most DDoS attacks, the
requests forming the attack ARE legitimate (at least in their
form), but they have a malicious intent.

Intrusion Detection Systems (IDS) can analyse statistically
the incoming traffic and detect DDoS attacks by means of smart
algorithms. They can be configured with complex and flexible
rules and can set up on-the-fly “deny rules” to firewalls. IDSs
are effective also against a large gamma of attacks, including
Bug-based and Asymmetry-based DoS.

References

● OWASP online resource collection:
https://www.owasp.org/index.php/Main_Page

● M. Bishop Introduction to Computer Security,
Addison-Wesley Professional

● Hacking Exposed series (McGraw-Hill)
– S. McClure, J. Scambray, G. Kurtz Hacking

Exposed: Network Security Secrets and
Solutions

– J. Scambray, V. Liu, C. Sima Hacking
Exposed: Web Applications Security
Secrets and Solutions

