

Virus writers, who are they?

● Programmers who want to prove their skills
to the community ('80-'90)

● Spammers
● Criminals searching for passwords and credit

card numbers
● Detectives or secret services searching for

personal information
● Intelligence agencies for cyber-warfare

Who writes malware?
In the past ('80-'90), the virus writers were principally young

male programmers wanting to prove their skills to the
community of black hats.

Nowadays, malware is developed mainly for business
purposes. Spammers create malware in order to force legitimate
email accounts to send spam. Criminals develop spyware, in
order to steal passwords and credit card numbers.

Finally, detectives and intelligence agencies develop malware
to gather information about people under investigation, to
perform industrial espionage or sabotage, or for cyber-warfare
purposes.

The malware is software that performs features that are
unwanted by the user.

A first classification of malware is based on its infection
paradigm. A virus is a piece of code (not a standalone program)
which infects executable files. A worm is a standalone program
which infects computers (typically through the Internet).
Finally, a trojan horse is a program which infects computers but
does not self-propagate to other hosts.

Actually, (pure) viruses are very rare nowadays. The majority
of malware is constituted by trojans and worms.

Terminology

– Spyware: Malware that collects information
about the user and possibly sends it
through Internet

– Keylogger: Spyware that records the key
strokes

– Adware: Software (possibly malware) that
displays advertising

– Rootkit: Malware that grants privileged
access to the host system

– Dialer: Malware that performs phone calls
(old 56k modem or modern smartphones)

We can make another classification of malware, basing on its
objective.

Spyware is the malware which gathers information about the
victim and possibly sends them to the cracker via Internet. A
keylogger is a type of spyware which records the pressed keys.
It is very useful to steal passwords. Adware shows advertising
to the user, and is not necessarily malware. It is considered
malware if the user did not give his consent to receive such
advertising. A rootkit is the malware which grants a remote and
privileged access to the victim's computer, typically through a
remote shell. Finally, a dialer is malware that performs (pay
per) phone calls to specific numbers. They were widespread in
the '80-'90, when the majority of Internet connections were 56k-
based. Nowadays, they made a strong comeback due to the
diffusion of smartphones.

Malware functionalities

● Execution and infection (infection location)
● Self-replication (infect another host)
● Privilege escalation
● Manipulation (damage the host)
● Concealment (hide from detection)

The main functionalities of malware are the following:
1) Execution and infection. In order to execute the first time,

the malware can leverage on poor precautions of the user,
which runs suspect programs without security checks, or even
on a security vulnerability of the software, without user's
participation. In the first execution the malware infects the host
(installation), that is, the malware makes sure about its
successive executions. These features are mandatory for every
malware. The following features are optional.

2) Self-replication. The malware propagates itself by
infecting other hosts.

3) Privilege escalation. On the first execution, the malware
assumes the privileges of the application it cracked. If this
application run with limited privileges, the malware will have to
assume administrator's privileges, in order to take the full
control of the system. Typically, this is done by leveraging on a
vulnerability of some admin-privileged process.

4) Manipulation. The malware modifies in some way the host
and make some damage.

5) Concealment. The malware hides its presence to the user
and the anti-virus software.

Execution of viruses

● Infection location:
– Prepending
– Appending
– ...

Original programVirus

Original program

Original program Virus

The old-fashioned '80 viruses acted this way. They appended
or prepended on executable files (programs, dynamic libraries,
etc.) and run before the legitimate program. They infected
executables rather than computers, and they spread from a
computer to another through floppy discs containing infected
executables.

Pseudo-code of a virus

void virus(){
const char* signature = "1234567";

do{
get_random_executable_file();
if(first_bytes != signature){

prepend_me_to_file();
}

} while(first_bytes != signature);

if(trigger){
do_some_damage();

}

execute_host_program();
}

Infection

Damage

Avoid
multiple
infection

The image above shows the pseudo-code of a typical virus.
The virus code is executed every time the user executes the
program. It contains a mechanism to avoid multiple infections
of the same executable. The mechanism involves a signature,
that is a sequence of bytes by which the virus self-identifies.
During the infection phase, the virus seeks for a non-infected
executable and infects it. Then, if some particular activation
condition is met, it makes some damage. Finally, it runs the
original program.

Note that the virus is not a standalone program. It is rather a
“fragment of code”, which “becomes alive” by appending itself
to another program.

Pseudo-code of a worm

void main(){ // worm
check_if_already_infected();
if(already_infected){

return;
}

infect(); // make sure of successive executions

if(!admin_privileges){
get_admin_privileges();

}

for(;;){
block_until_some_condition();

send_copies_of_me_over_internet();

do_some_damage();
}

}

Infection

Self-replication

Avoid
multiple
infection

Activation

Privilege
escalation

Manipulation

The image above shows the pseudo-code of a typical worm.
Note that this time the malware is a standalone program (void
main).

Once the worm is executed, it checks whether the computer is
already infected. If it is not, it infects on the system. Then, it
checks for administrator privileges, and performs privilege
escalation in case. After that, it blocks its execution until an
activation condition is met. When it activates, it tries to infect
other hosts through Internet and makes some damage.

Infection

● Registering as a start-up program
● Hijacking:

After infection:

Dynamic library (foo2.dll)Application

Malware (foo.dll)

Dynamic library (foo.dll)Application call

Before infection:

How malware assures its successive executions, every time
the computer is booted?

There are many methods to do this. A first one is simply to
register itself as a start-up program. As the operative system
boots, it runs the malware together with the other services.
Another method is the hijacking. The malware substitutes a
legitimate library (e.g. a DLL) assuming its name and interface.
When an application calls a method of the library, it actually
executes the malware, which in turn forwards the call to the
legitimate library. In this way the malware executes without the
application noticing anything.

Self-replication

● A worm uses security vulnerabilities to infect
other computers

● Infection vectors:
– Web page
– P2P
– Any file containing code (executable,

document, etc.)
– Email (with file attached)
– USB autorun
– Malformed requests

Typically, a worm uses the following infection vectors to
propagate to a host to another:

1) A web site, cracked or controlled directly by the malware
writer.

2) Peer to peer channels. Especially through the “fakes”.
3) Any file containing code. Thus, not only executables but

every file format which can contain scripts or macros, like
Word documents, etc.

4) Emails with attached an infected file.
5) The autorun functionality of the USB flash drives.
6) Malformed requests which leverages on vulnerabilities

(e.g. buffer overflow) of the receiving applications.

Concealment

● Concealment through system call hijacking:

Deamon1
Daemon2
Deamon3
TheWorm

Actual list of active
processes:

An application asks for
active process list
(system call)

System call

Malware

Application

Malware deletes
“TheWorm” from
the list

Deamon1
Daemon2
Deamon3

The process list
appears to be “clean”:

2

3 4

1

Some malware takes actions in order to hide its infection.
Several techniques are possible. The image above shows an
example:

1) An application (or the user) wants to view the list of the
active processes.

2) In the process list, among legitimate processes, there is the
worm's process. The malware wants to hide it.

3) The malware hijacks the library call that retrieves the
active process list. It intercepts the system call and cancels its
name from the actual list.

4) The application (or the user) views the “clean” list.

Concealment

● Concealment through Dll-Injection
– Inject malicious code into a legitimate

process
– Effects:

● Conceal from detection
● Grant access to process's resources

Deamon1
Daemon2
Deamon3

+ malware

Another technique is called Dll-Injection. In this case, the
worm injects its code, usually a Dll image, inside another
legitimate process. In this way, the malware conceals from
detection and accesses the resources of the injected process.

Anti-virus functionalities

● Recognize malware
– Prevent infection
– Detect infection

● Remove malware
● Other functions, like firewall, intrusion

detection, anti-spam, anti-phishing

The main functionalities of anti-virus software are the
following three:

1) Prevent malware's infection
2) Detect malware's infection
3) Remove malware's infection
The first two features require the ability to recognize malware

from legitimate software, before and after the infection.
Modern anti-virus software has other features, among which

firewall, intrusion detection, anti-spam and anti-phishing.

Malware detection

Is it possible to develop
a perfect malware detector?

Cohen's theorem

“A perfect malware detector is impossible”

Proof (by contradiction):

bool is_malware(·);

void my_prog(){
if(!is_malware(my_prog)){

behave_like_malware();
}

}

is_malware(my_prog)

false

true

1

2 3

Fred Cohen (the inventor of the word “computer virus”)
developed the following theorem: “a perfect malware detector is
impossible”. A proof by contradiction follows.

1) Let us suppose a function is_malware(·) exists, which
examines a program or a piece of code and returns true or
false whether the code is malware or not. Let us suppose that
is_malware is perfect, that is it does not give any false
negatives nor false positives.

2) Then, it is possible to build a program named my_prog ,
which executes is_malware on itself. It behaves like a
malware if the function return false , it does nothing
otherwise.

3) is_malware(my_prog) cannot return neither true or
false . If it return true , my_prog will not be malware, thus
it will be a false positive. If it return false , my_prog will be
a malware, thus it will be a false negative.

Hence, such a perfect malware detector is not possible.

The real-life anti-virus software tries to recognize malware by
means of two main techniques: signature-based detection and
anomaly-based detection.

A signature is a sequence of instructions in the code of a
piece of malware, which univocally identifies it. The presence
of a signature reveals the presence of malware inside an
infected file or a running process.

The signature-based detection relies on a database of
malware's signatures. Every suspect program is checked to
contain such signatures. Obviously, signature database is
periodically updated by the anti-virus company.

Signature-based detection

● Signature-based detection
– Efficient
– No false positives
– Identification of malware
– No protection against new malware
– No protection against polymorphic malware

Such a method is efficient, gives very rare false positives, and
identifies the specific malware, rather than detecting its
presence only. The identification is particularly important for
the sake of the removal procedure. Different malware requires
different removal procedures. This is the main recognizing
method of every anti-virus software.

The main drawback of this method is that it cannot recognize
new malware, whose signature has not been isolated yet.
Another drawback is that it does not protect against
polymorphic malware, as we will see in the following.

Self-encrypting malware

Decryptor Malware's codekey

retrieve_key();
decrypt_malware_code();
execute_malware_code();

generate_random_key();
crypt_malware_code();
send_infection();

On first execution: On self-replication:

The malware can self-encrypt itself in order to avoid
detection. The image above shows an example of self-
encrypting malware. The decryptor and key are stored in the
clear before the cyphered malware's code. During the first
execution, the decryptor recover the malware's code and
executes it. During the self-replication phase, the malware
chooses a new random key and encrypts its code.

Note that a strong encrypting algorithm is not needed here.
The cyphering aims only at avoid the detection, rather than
protecting the confidentiality. Very simple encrypting
algorithms like XOR masks are often used.

Self-encrypting malware

● Self-encryption
– Efficient
– Malware detection system can match the

decryptor as a signature

This concealment technique is easy and efficient, but
malware can still be recognized by means of the code of the
decryptor. In fact, such a code does not vary from an infection
to another and can be used as a signature. However, this
technique is still useful for the malware, because it significantly
reduces the space where a signature can be found.

Polymorphic malware

● Changes its form from generation to
generation

● Does not change its behaviour

A more advanced technique is polymorphism, which consists
in changing the code of the malware without changing its
behaviour.

This can be done in many ways. For example by simply
inserting nop operations at random.

Or by changing instruction or sequence of instruction with
equivalent ones, that have the same final effect.

Polymorphic malware

● Code obfuscation: register reassignment

EAX
EBX
EDX

EBX
EDX
EAX

Or by exchanging every occurrence of a register (e.g. EAX)
with another (e.g. EBX).

Anomaly-based detection

● Training phase: register statistics about the
normal behaviour

● Detection phase: using the training data, try
to recognize abnormal behaviours

Learned
valid

behaviour
Valid behaviour

Malware behaviour

Another technique is the anomaly-based detection. This
technique tries to detect malware by discriminating the
“normal” behaviour of a system from the “abnormal” one.

It works in two phases. During the learning phase, the anti-
virus records statistical data about what it's consider the
“normal” behaviour. It's important that the learning phase is run
on non-infected systems. Then, during the detection phase, the
anti-virus uses the collected data to detect malware's behaviour.

Anomaly-based detection

● Protects against new malware
● Protects against polymorphic malware
● More complex and inefficient
● False negatives and false positives
● No identification
● Requires malware execution

This technique can protect against new malware and
polymorphic malware, but has some drawbacks. It is more
complex compared to signature-based techniques. It gives high
percentages of false negatives and false positives. It does not
offer an identification for the detected malware. Finally, it
requires to execute the malware. The last drawback is avoided
by means of the sandbox technique.

Sandbox technique

● Run the suspect program in a controlled and
isolated environment (typically a virtual
machine)

● Search for signatures or anomalies

A sandbox is a controlled and isolated environment, typically
a virtual machine, where the anti-virus can run suspect
programs in order to detect malicious behaviours. The malware
must be unaware to be running inside a sandbox.

Malware's evolution

Blaster case

● Blaster worm: August 2003
● Infects through Windows' DCOM-RPC (buffer

overflow)
● Contains the joke string:

● DDoS against windowsupdate.com on 15th of
each month

I just want to say LOVE YOU SAN!!
billy gates why do you make this possible ?
Stop making money and fix your software!!

Blaster (2003), also known as Lovesan, was a computer
worm famous for its quick diffusion.

Stuxnet case

“Stuxnet is the type of threat we hope
to never see again„

Symantec Security Response team (2010)

Stuxnet case

● Discovered in June 2009 (1st variant), March
2010 (2nd variant), April 2010 (3rd variant)

● Exploits 4 zero-days vulnerabilities to self-
replicate and perform privilege escalation

● Uses 2 compromised digital certificates for
driver installation

● Can sabotage industrial control systems (gas
pipelines, power plants)

● 60% of infections in Iran

Stuxnet (2009-2010) and its brother Duqu (2011) are the first
computer worms developed for cyber-warfare. Stuxnet
exploited four zero-day (that is, previously unknown)
vulnerabilities and two compromised digital certificates. The
development of Stuxnet required a lot of money. Security
experts believe that probably a government or an intelligence
agency are involved in its development.

Stuxnet case

● Self-replicates through 6 different infection
vectors

● Self-updates through a peer-to-peer
mechanism

● Performs Dll-Injection on different processes,
depending on the security software installed

● Do nothing if industrial control system is not
found

● Programmed to self-removal on 24 June
2012

Stuxnet case

● Aggiungere una struttura con un clic

The image above shows the execution scheme of Stuxnet. It
uses two different zero-day vulnerabilities to take administrator
privileges, depending on the operative system of the host
(WinXP-2K or Vista-Win7). After that, it Dll-injects different
processes depending on the anti-virus software installed.

References

● D. Ferbrache A Pathology of Computer
Viruses, Springer-Verlag

● E. Skoudis, L. Zeltser Malware: Fighting
Malicious Code,

● N. Falliere, L.O. Murchu, E. Chien
W32.Stuxnet Dossier, Symantec Security
Response

