Network Security Elements of Applied Cryptography

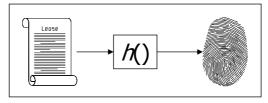
Hash functions and data integrity

- Manipulation Detection Code (MDC)
- Message Authentication Code (MAC)
- Data integrity and origin authentication

Data integrity and data origin authentication

- Message integrity is the property whereby data has not been altered in an unauthorized manner since the time it was created, transmitted, or stored by an authorized source
- Message origin authentication is a type of authentication whereby a party is corroborated as the (original) source of specified data created at some time in the past
- Data origin authentication includes data integrity

© Gianluca Dini

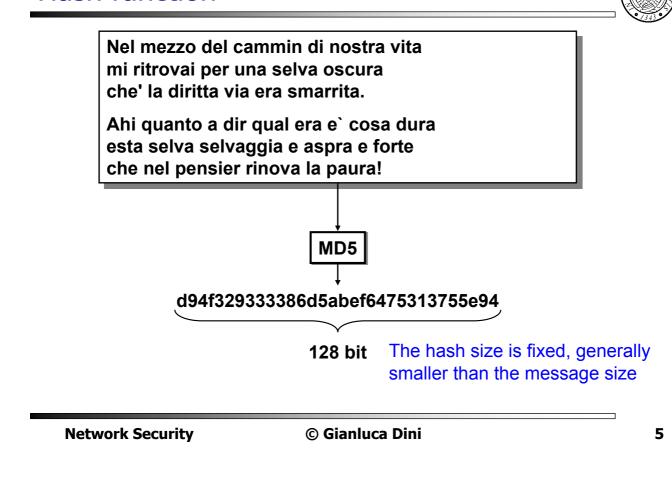

Network Security

Hash function

- The hash (fingerprint, digest) of a message must be
 - "easy" to compute
 - "unique"
 - "difficult" to invert
- The hash of a message can be used to
 - guarantee the integrity and authentication of a message

© Gianluca Dini

• "uniquely" represent the message



4

Hash function

Basic properties

into bitstrings of fixed size

A hash function maps bitstrings of arbitrary, finite length

$$h: \{0,1\}^* \to \{0,1\}^m$$

- A hash function is a function *h* which has, as minumum, the following properties
 - Compression h maps an input x of arbitrary finite lenth to an output h(x) of fixed bitlength n
 - **Ease of computation** given an input *x*, *h*(*x*) is easy to compute
- A hash function is many-to-one and thus implies collisions

A **hash function** may have one or more of the following additional security properties

- Preimage resistance (one-way) for essentially all prespecified outputs, it is computationally infeasible to find any input which hashes to that output, i.e., to find x such that y = h(x) given y for which x is not known
- 2nd-preimage resistance (weak collision resistance)

 it is computationally infeasible to find any second input which has the same output as any specified input, i.e., given *x*, to find *x*' ≠ *x* such that *h*(*x*) = *h*(*x*')
- Collision resistance (strong collision resistance) it is computationallyinfeasible to find any two distinct inputs *x*, *x*' which hash to the same output, i.e., such that *h*(*x*) = *h*(*x*')

Network Security

© Gianluca Dini

Motivation of properties

- Preimage resistance
 - Digital signature scheme based on RSA:
 - (n, d) is a private key; (n, e) is a public key
 - A digital signature s for *m* is $s = (h(m))^d \mod n$
 - If h is not preimage resistance an adversary can
 - select *z* < *n*, compute *y* = *z^e* mod *n* and find *m*' such that *h*(*m*') = *y*;
 - claim that *z* is a digital signature for *m*' (existential forgery)

Motivation of properties

10

2nd-preimage resistance

- Digital signature with appendix (*S*, *V*)
 - s = S(h(m)) is the digital signature for m
- A trusted third party chooses a message m that Alice signs producing s = S_A(h(m))
- If h is not 2nd-preimage resistant, an adversary (e.g. Alice herself) can
 - determine a 2nd-preimage m' such that h(m') = h(m) and

© Gianluca Dini

• claim that Alice has signed m' instead of m

Network Security

Motivation of properties

- Collision resistance
 - Digital signature with appendix (S, V)
 - s = S(h(m)) is the digital signature for m
 - If h is not collision resistant, Alice (an untrusted party) can

© Gianluca Dini

- choose m and m' so that h(m) = h(m')
- compute $s = S_A(h(m))$
- issue $\langle m,\,s\rangle$ to Bob

Network Security

- later claim that she actually issued $\langle m',\,s\rangle$

MDC classification

- A one-way hash function (OWHF) is a hash function *h* with the following properties: preimage resistance, 2-nd preimage resistance
- A collision resistant hash function (CRHF) is a hash function *h* with the following properties: 2-nd preimage resistance, collision resistance
- OWHF is also called weak one-way hash function
- CRHF is also called strong one-wayhash function

Network Security

© Gianluca Dini

11

Relationship between properties

- Collision resistance implies 2-nd preimage resistance
- Collision resistance does not imply preimage resistance but, in practice, CRHF almost always has the additional property of preimage resistance

To attack a OWHF

- given an hash value y, find a preimage x such that y = h(x); or
- given a pair (x, h(x)), find a second preimage x' such that h(x) = h(x')

To attack a CRHF

find any two inputs x. x', such that h(x) = h(x')

CRHF must be designed to withstand standard birthday attacks

Hash type	Design goal	Ideal strength
OWHF	preimage resistance	2 ^{<i>m</i>}
OVVHF	2nd-premage resistance	2 ^{<i>m</i>}
CRHF	collisione resistance	2 ^{m/2}

Network Security

© Gianluca Dini

13

Severity of practical consequences of an attack

- Severity of practical consequences of an attack depends on the degree of control an adversary has over the message x (2nd-preimage or collision) for which an MDC may be forged
- selective forgery: the adversary has complete or partial control over x
- existential forgery: the adversary has no control over x

until h(x) = h(x')

 $x' \leftarrow random(); // guessing$

Assumptions

- 1. Treat an hash functions as a "black box";
- 2. Only consider the output bitlength *m*;
- 3. hash approximates a random variable

Specific attacks

• **Guessing attack**: find a preimage (O(2^{*m*}))

Problem: given (x, h(x)), find a 2nd-preimage x'

- **Birthday attack**: find a collision (O(2^{*m*/2}))
- **Precomputation of hash values**: if *r* pairs of a OWHF are precomputed and tabulated the probability of finding a second preimage increases to *r* times its original value
- Long-message attack for 2nd preimage: for "long" messages, a 2nd preimage is generally easier to find than a preimage

Network Security

Guessing attack

© Gianluca Dini

- Every step requires an hash computation and a random number generation that are efficient operations
- Storage and data complexity is negligible

Assumption 3 implies that, on average $O(2^m)$ "guesses" are necessary to determine a 2nd-preimage

© Gianluca Dini

- In a room of 23 people, the probability that at least a person is born on 25 december is 23/365 = 0.063
 - **Proof**. P = 1/365 + ... + 1/365 (23 times) = 0.063
- In a room of 23 people, the probability that at least 2 people have the same birthday is 0.507
 - Proof. Let P be the probability we want to calculate. Let Q be the probability of the complementary event, Q = 1 P.
 Q = (364/365) × (363/365) × ... × (343/365) = 0.493
 P = 0.507

Network Security

© Gianluca Dini

The birthday paradox

- An urn has *m* balls numbered 1 to *m*. Suppose that *n* balls are drawn from the urn one at a time, with replacement, and their numbers are listed.
- The probability of at least one coincidence (i.e., a ball drawn at least twice) is

1 – exp(- $n^2/2m$), if $m \to \infty$ and n = O(SQRT(m))

As *m* → ∞, the expected number of draws before a coincidence is

SQRT(II*m*/2).

Objective

Let x_1 be the *legitimate message* and x_2 be a *fraudulent message*.

By applying "small" variations to x_1 and x_2 find x'_1 and x'_2 s.t. $h(x'_1) = h(x'_2)$

An adversary signs or lets someone sign x'_1 and later claims that x'_2 has been signed instead

Network Security

© Gianluca Dini

The Yuval's attack

- Generate *t* variations x₁' of x₁ and store the couple (x, h(x₁')) in table T (time and storage complexity O(t))
- repeat

generate a new variation x'_2 for x_2 until $h(x'_2)$ is in the table T; return the corresponding variation x_1' for x_1

If $t \ll 2^m$, we can obtain a collision after N = H/t trials with probability equal to 1

(if $t = 2^{m/2}$, then $N = 2^{m/2}$)

Design goal

The best possible attacks should require no less than $O(2^m)$ to find a preimage and $O(2^{m/2})$ to find a collision

Ideal security

given y, producing a preimage or a 2nd-preimage requires 2^m operations

given x, producing a collision requires $2^{m/2}$ operations

MDC may be categorized based on the nature of the operations comprising their internal compression functions

- funzioni hash basate sui cifrari a blocchi
- funzioni hash personalizzate
- funzioni hash basate sull'aritmetica modulare

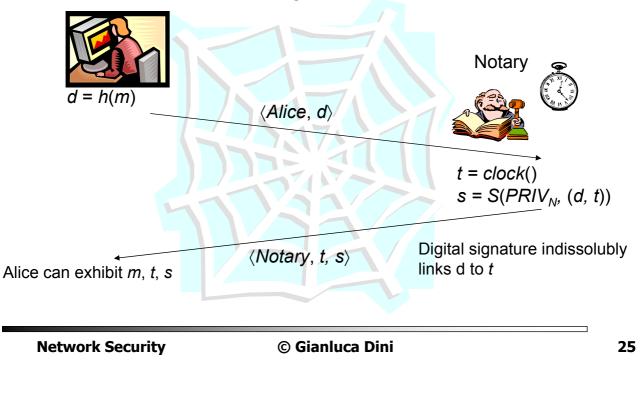
Network Security

© Gianluca Dini

Upper bounds of strength

Hash Function	n	т	Preimage	Collision	Comments
Matyas-Meyer-Oseas	n	т	2 ⁿ	2 ^{n/2}	cifrario
MDC-2 (con DES)	64	128	2×2 ⁸²	2×2 ⁵⁴	cifrario
MDC-4 (con DES)	64	128	2 ¹⁰⁹	2×2 ⁵⁴	cifrario
Merkle (con DES)	106	128	2 ¹¹²	2 ⁵⁶	cifrario
MD4*	512	128	2 ¹²⁸	2 ²⁰	ad-hoc
MD5	512	128	2 ¹²⁸	2 ⁶⁴	ad-hoc
RIPEMD-128	512	128	2 ¹²⁸	2 ⁶⁴	ad-hoc
SHA-1, RIPEMD-160	512	160	2 ¹⁶⁰	2 ⁸⁰	ad-hoc

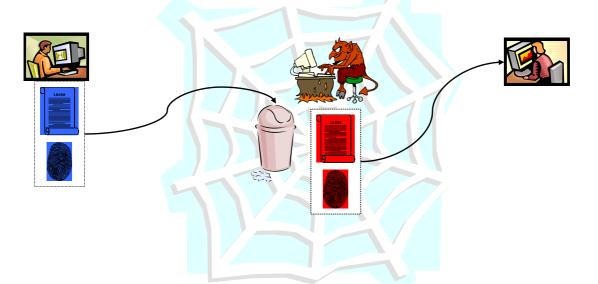
block size: *n* output size: *m*


bitsize for practical security OWHF: m ≥ 80

CRHF: m ≥ 160


Alice wants to be able to proof that, at a given time *t*, she held a document *m* without revealing it

Manipulation Detection Code



The purpose of **MDC**, **in conjunction with other mechanisms** (authentic channel, encryption, digital signature), is to provide **message integrity**

An insecure system made of secure components

MDC alone is not sufficient to provide data integrity

Network Security

© Gianluca Dini

27

Integrity with MDC

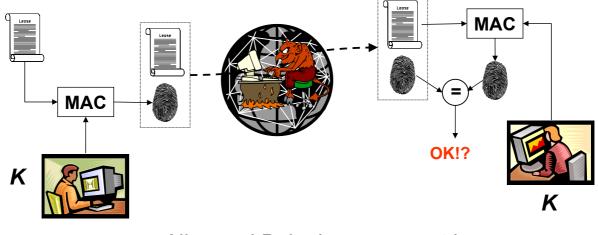
MDC and an authentic channel

- physically authentic channel
- digital signature

MDC and encryption

- $E_k(x, h(x))$
 - confidentiality and integrity
 - *h* may be weaker
 - as secure as E
- $x, E_k(h(x))$
 - h must be collision resistant
 - k must be used only for integrity

- $E_k(x), h(x)$
 - h must be collision resistant
 - *h* can be used to check a guessed *x*


Network Security

© Gianluca Dini

Message Authentication Code

29

The purpose of **MAC** is to provide **message authentication by symmetric techniques** (without the use of any additional mechanism)

Alice and Bob share a secret key

Definition. A MAC algorithm is a famility of functions h_k , parametrized by a **secret** key k, with the following properties:

ease of computation – Given a function h_k , a key k and an input x, $h_k(x)$ is easy to compute

compression – h_k maps an input x of arbitrary finite bitlength into an output $h_k(x)$ of fixed length n.

computation-resistance – for each key k, given zero o more $(x_i, h_k(x_i))$ pairs, it is **computationally infeasible** to compute $(x, h_k(x))$ for any new input $x \neq x_i$ (including possible $h_k(x) = h_k(x_i)$ for some i).

Network	Security
---------	----------

© Gianluca Dini

Message Authentication Code

- MAC forgery occurs if computation-resistance does not hold
- Computation resistance implies key non-recovery (but not vice versa)
- MAC definition says nothing about preimage and 2nd-preimage for parties knowing k
- For an adversary not knowing k
 - *h_k* must be 2nd-preimage and collision resistant;
 - *h_k* must be preimage resistant w.r.t. a chosen-text attack;

Adversary's objective

- without prior knowledge of k, compute a new text-MAC pair (x, h_k(x)), for some x ≠ x_i, given one or more pairs (x_i, h_k(x_i))
- Attack scenarios for adversaries with increasing strenght:
 - known-text attack
 - chosen-text attack
 - adaptive chosen-text attack
- A MAC algorithm should withstand adaptive chosen-text attack regardless of whether such an attack may actually be mounted in a particular environment

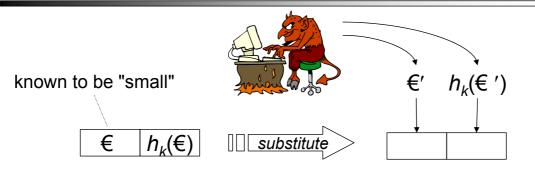
© Gianluca Dini

Types of forgery

- Forgery allows an adversary to have a forged text accepted as authentic
- Classification of forgeries
 - Selective forgeries: an adversary is able to produce text-MAC pairs of text of his choice
 - *Existential forgeries*: an adversary is able to produce text-MAC pairs, but with no control over the value of that text
- Comments
 - Key recovery allows both selective and existential forgery

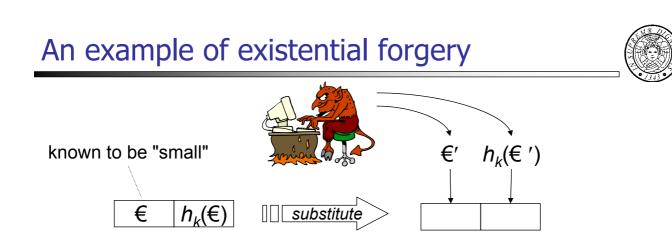
© Gianluca Dini

• Even an existential forgery may have severe consequences



An example of existential forgery

35



Mr. Lou Cipher

- knows that € is a small number
- esistentially forges a pair (€', hk(€ ')) with €' uniformly distributed in [0, 2³² 1] (P_{forgery} = 1 €/2³²)
- substitutes $(\in, hk(\in))$ with $(\in', hk(\in'))$

Network Security

© Gianluca Dini

Countermeasure

Messages whose integrity or authenticity has to be verified are constrained to have pre-determined structure or a high degree of verifiable redundancy

For example: change \in into $\in || \in$

Let h_k be a MAC algorithm, then h_k is, against a chosen-text attack by an adversary not knowing key k,

- 2nd-preimage and collision resistant
 - PROOF. Computation resistance implies that MAC cannot be even computed without the knowledge of k
- preimage resistant
 - PROOF BY CONTRADICTION. The recovery of preimage x of a randomly selected hash-output y violates computation resistance

Network Security

© Gianluca Dini

Let h_k be a MAC algorithm with a *t*-bit key and an *m*-bit output

Design Goal	Ideal strength	Adversary's Goal
key non-recovery	2^t	deduce <i>k</i>
computational resistance	$P_f = \max(2^{-t}, 2^{-m})$	produce new (text, MAC)

 P_f is the probability of forgery by correctly guessing a MAC

bitsize for practical security

- $m \ge 64$ bit
- $t \ge 64 \div 80$ bit

- MAC based on block-cipher
 - CBC-based MAC
- MAC based on MDC
 - The MAC key should be involved at both the start and the end of the MAC computation

 $h_k(x) = h(k||p||x||k)$ envelope method with padding $h_k(x) = h(k||p_1||h(k||p_2||x))$ hash-based MAC

- Customized MAC (MAA, MD5-MAC)
- MAC for stream ciphers

Network Security

© Gianluca Dini

Data integrity

- Data integrity using MAC alone
 - $x \parallel h_k(x)$
- Data integrity using an MDC and an authentic channel
 - message x is transmitted over an insecure channel
 - MDC is transmitted over the authentic channel (telephone, daily newspaper,...)

- Data integrity combined with encryption (...)
 - Encryption alone does not guarantee data integrity
 - reordering of ECB blocks
 - encryption of random data
 - bit manipulation in additive stream cipher and DES ciphertext blocls
 - Data integrity using encryption and an MDC (...)
 - $C = E_k(x \parallel h(x))$
 - h(x) deve soddisfare proprietà più deboli rispetto a quelle necessarie per la firma digitale
 - La sicurezza del meccanismo di integrità è pari al più a quella cifrario

Network Security

© Gianluca Dini

- Data integrity combined with encryption
 - Data integrity using encryption and an MDC
 - soluzioni sconsigliabili
 - (x, E_k(h(x)) h must be collision resistant, otherwise pairs (x, x') with colliding outputs can be verifiably predetermined without the knowledge of k
 - E_k(x) || h(x) little computational savings with respect to encrypt x and h(x); h must be collision resistant; correct guesses of x can be confirmed

Data integrity using encryption and a MAC

- $C = E_{k1}(x || h_{k2}(x))$
 - Pros w.r.t. MDC
 - » Should E be defeated, h still guarantees integrity
 - » *E* precludes an exhaustive key search attack on *h*
 - Cons w.r.t. MDC
 - » Two keys instead of one
 - Recommendations
 - » k1 and k2 should be different
 - » E and h should be different

Network Security

Data integrity

43

- Data integrity using encryption and a MAC
 - Alternatives
 - $E_{k1}(x), h_{k2}(E_{k1}(x))$
 - allow authentication without knowledge of plaintext
 - no guarantee that the party creating MAC knew the plaintext

© Gianluca Dini

- $E_{k1}(x), h_{k2}(x)$.
 - E and <u>h</u> cannot compromise each other

Comments

- Data origin mechanisms based on shared keys (e.g., MACs) do not provide non-repudiation of data origin
- While MAC (and digital signatures) provide data origin authentication, they provide no inherent uniqueness or timeliness guarantees

To provide these guarantees, data origin mechanisms can be augmented with **time variant parameters**

- timestamps
- sequence numbers
- random numbers

Network Security

© Gianluca Dini

Resistance properties

Resistance properties required for specified data integrity applications

Hash properties required \rightarrow	Preimage	2nd-preimage resistant	Collision resistant
Integrity application \downarrow	resistant		
MDC + asymmetric signature	yes	yes	yes†
MDC + authentic channel		yes	yes†
MDC + symmetric encryption			
Hash for one-way password file	yes		
MAC (key unknown to attacker)	yes	yes	yes†
MAC (key known to attacker)		yes‡	

© Gianluca Dini

[†] Resistance required if chosen message attack

[‡] Resistance required in the rare case of multi-cast authentication

