
Network Security
Elements of Applied Cryptography

Network Security
Digital Signatures

Digital Signatures with appendix

Digital signatures with message recovery

Digital signatures based on RSA

© Gianluca DiniNetwork Security 3

Roadmap

Introduction

Classification

Digital signatures based on RSA

© Gianluca DiniNetwork Security 4

Informal properties

A digital signature is a number dependent on some
secret known only to the signer and, additionally, on the
content of the message being signed

A digital signature must be verifiable, i.e., if a dispute
arises an unbiased third party must be able to solve the
dispute equitably, without requiring access to the
signer's secret

© Gianluca DiniNetwork Security 5

Arbitrated digital signatures (symm. encrypt.)

AT

BT

K

K

Hypotheses

1. A T

2. B T
3. h is a OWHF

↔

↔

()()
()()

()()

AT

AT

BT

K

K

K

Protocol
1. A B: A,B,m,E

2. B T B,A,E

3. T B A,E

A h m

A h m

A h m

→

→

→

Bob decifra M3, ricavando
A||H, e verifica se H = h(m)

• Bob let a third party G verify that
Alice has originated message m by
sending G the pair:

()() ()()()
AT BTK KE ,EA h m A h m

• Then, G asks T to decrypt both
ciphertexts so obtaining A||H1 and
A||H2 and then

• G verifies that H1 = H2 = h(m)

© Gianluca DiniNetwork Security 6

Arbitrated digital signatures

Security of arbitrated digital signatures systems depends
on
• security of the cipher
• security of the hash function
• security of the key distribution protocol

The TTP must be unconditionally trusted
• TTP becomes a single-point of failure

Arbitrated digital signatures are more efficient than digital
signatures based on public-key encryption
• TTP becomes a bottleneck

© Gianluca DiniNetwork Security 7

Digital signatures based on asymmetric cryptography

Hypotheses

• (eA, dA): Alice's private-public key pair
• h: hash function

()()
→

=

Signature generat
, ,

where

n

io

Ad

A B A m s
s E h m

Signature verification

• By means of (m, s), a third party G
verifies that Alice has originated
messahe m as follows

• G obtains Alice's public key eA;

• G obtains H by decrypting s with eA;

• G verifies whether H = h(m);

digital
signature of

m with key dA

© Gianluca DiniNetwork Security 8

Roadmap

Introduction

Classification

Digital signatures based on RSA

© Gianluca DiniNetwork Security 9

Classification

Digital signatures with appendix
• require the original message as input to the

verification algorithm;
• use hash functions
• Examples: ElGamal, DSA, DSS, Schnorr

Digital signatures with message recovery
• do not require the original message as input to the

verification algorithm;
• the original message is recovered from the signature

itself;
• Examples: RSA, Rabin, Nyberg-Rueppel

© Gianluca DiniNetwork Security 10

Digital signatures with appendix
Definitions
• M is the message space
• h is a hash function with domain M
• Mh is the image of h
• S is the signature space
Key generation
• A selects a private key which defines a signing algorithm SA which is a

one-to-one mapping SA: Mh → S

• A defines the corresponding public key defining the verification algorithm
VA such that VA(m*, s) = true if SA(m*) = s and false otherwise,
for all m* ∈ Mh and s∈S, where m* = h(m) for m ∈ M. MA is constructed
such that it may be computed without knowledge of the signer’s private
key

• SA is the private key; VA is the public key

© Gianluca DiniNetwork Security 11

Digital signatures with appendix

Signature generation

• Compute m* = h(m) and s = SA(m*)

• A’s digital signature for m is s*

• 〈m, s*〉 are made available to anyone who
may wish to verify the signature

© Gianluca DiniNetwork Security 12

Digital signatures with appendix

Signature verification

• Obtain A’s public key VA

• Compute m* = h(m), u = VA(m*, s)

• Accept the signature iff u = true

© Gianluca DiniNetwork Security 13

Digital signatures with appendix

Properties of SA and VA

• SA should be efficient to compute

• VA should be efficient to compute

• It should be computationally infeasible for an entity other
than A to find an m ∈ M and an s ∈ S such that
VA(m*, s) = true, where m* = h(m)

© Gianluca DiniNetwork Security 14

Digital signature with message recovery

Definitions
• M is the message space
• MS is the signing space
• S is the signature space
Key generation
• A selects a private key defining a signing algorithm SA which is a one-

to-one mapping SA: MS → S

• A defines the corresponding public key defining the verification
algorithm VA such that VA•SA is identity map on MS. VA is constructed
such that it may be computed without knowledge of the signer’s
private key

• SA is A’s private key; VA is A’s public key

© Gianluca DiniNetwork Security 15

Digital signatures with message recovery

Signature generation

1. Compute m* = R(m) and
s = SA(m*) (R is a redundancy
function)

2. A’s signature for m is s that is
made available to entities which
may wish to verify the signature
and recover m from it

Signature verification

1. Obtain A’s authentic public key SA

2. Compute m* = VA(s)

3. Verify that m*∈MR, otherwise
reject the signature

4. Recover m = R-1(m*)

© Gianluca DiniNetwork Security 16

Digital signatures with message recovery

Properties of SA and VA

• SA should be efficient to compute

• VA should be efficient to compute

• It should be computationally infeasible for an entity other
than A to find an s ∈ S such that VA(s) ∈ MR

© Gianluca DiniNetwork Security 17

Digital signatures with message recovery
The redundancy function

• R and R-1 are publicly known

• Selecting an appropriate R is critical to the security of the
system

A bad redundancy function

• Let us suppose that MR ≡ MS

• R and SA are bijections, therefore M and S have the same
number of elements

• Therefore, for all s ∈ S, VA(s) ∈ MR, it is “easy” to find an
m for which s is the signature, m = R-1(VA(s))

• s is a valid signature for m (existential forgery)

© Gianluca DiniNetwork Security 18

Digital signatures with message recovery

A good redundancy function

• M = {m : m ∈ {0, 1}n}, MS = {m : m ∈ {0, 1}2n}

• R: M → MS, R(m) = m m

• MR ⊆ MS

• When n is large, |MR|/|MS| = (1/2)n is small. Therefore, for
an adversary it is unlikely to choose an s that yields
VA(s)∈MR

• ISO/IEC 9776 is an international standard that defines a
redundancy function for RSA and Rabin

© Gianluca DiniNetwork Security 19

Scheme with appendix from message recovery

Digital signature with appendix from scheme providing
message recovery

Signature generation
• Compute m* = R(h(m)), s = SA(m*)
• A’s digital signature for m is s*
• 〈m, s*〉 are made available to anyone who may wish to verify the

signature

Signature verification
• Obtain A’s public key VA

• Compute m* = R(h(m)) and u = VA(m*, s)
• Accept the signature iff u = true

R is not security critical anymore and can be any one-to-
one mapping

© Gianluca DiniNetwork Security 20

Types of attacks
BREAKING A SIGNATURE
1. Total break – adversary is able to compute the signer’s private key
2. Selective forgery – adversary controls the messages whose

signature is forged
3. Existential forgery – adversary has no control on the messages

whose signature is forged
BASIC ATTACKS
1. key-only attacks – adversary knows only the signer’s public key
2. message attacks

a. known-message attack – adversary has signatures for a set
of messages which are known by the adversary but not
chosen by him

b. chosen-message attack – in this case messages are chosen
by the adversary

c. adaptive chosen-message attack – in this case messages
are adaptively chosen by the adversary

© Gianluca DiniNetwork Security 21

Attacks: considerations

Adaptive chosen-message attack
• It is the most difficult attack to prevent
• Although an adaptive chosen-message attack may be infeasible

to mount in practice, a well-designed signature scheme should
nonetheless be designed to protect against the possibility

The level of security may vary according to the
application
• Example 1. When an adversary is only capable of mounting a

key-only attack, it may suffice to design the scheme to prevent
the adversary from being successful at selective forgery.

• Example 2. When the adversary is capable of a message attack,
it is likely necessary to guard against the possibility of existential
forgery.

© Gianluca DiniNetwork Security 22

Attacks: considerations

Hash functions and digital signature processes
• When a hash function h is used in a digital signature scheme

(as is often the case), h should be a fixed part of the signature
process so that an adversary is unable to take a valid signature,
replace h with a weak hash function, and then mount a selective
forgery attack.

• For example, let 〈m, s〉 where s = SA(h(m)), the adversary may
1. replace h with a weaker hash function g that is vulnerable to

selective forgery. Thus, the adversary can
1. determine m′ such that g(m′) = h(m);
2. replace m with m′

© Gianluca DiniNetwork Security 23

Roadmap

Introduction

Classification

Digital signatures based on RSA

© Gianluca DiniNetwork Security 24

Introductory comments

Since the encryption transformation is a bijection, digital
signatures can be created by reversing the roles of
encryption and decryption

Digital signature with message recovery
MS ≡ S ≡ Zn

A redundancy function R: M → Zn is chosen and is
public knowledge

© Gianluca DiniNetwork Security 25

Key generation

1. Generate two large, distinct primes p, q (100÷200
decimal digits)

2. Compute n = p×q and φ = (p-1)×(q-1)

3. Select a random number 1 < e < φ such that gcd(e, φ) = 1

4. Compute the unique integer 1 < d < φ such that
ed ≡ 1 mod φ

5. (d, n) is the private key

6. (e, n) is the public key

At the end of key generation, p and q must be destroyed

© Gianluca DiniNetwork Security 26

Signature generation and verification

Signature generation. In order to sign a message m, A does
the following

1. Compute m* = R(m) an integer in [0, n–1]
2. Compute s = m*d mod n
3. A’s signature for m is s

Signature verification. In order to verify A’s signature s and
recover message m, B does the following

1. Obtain A’s authentic public key (e, n)
2. Compute m* = se mod n
3. Verify that m* is in MR; if not reject the signature
4. Recover m = R-1(m*)

© Gianluca DiniNetwork Security 27

Proof that verification works

If s is a signature for a message m, then s = m*d mod n
where m* = R(m).

Since ed = 1 (mod φ), se = m*ed = m* (mod n). Finally,
R-1(m*) = R-1(R(m)) = m.

© Gianluca DiniNetwork Security 28

Possible attacks

Integer factorization

Factorization of n lead to total break.

A should choose p and q so that factoring n is a computationally
infeasible task

Multiplicative property of RSA

Condizione necessaria ma non sufficiente per difendersi da
existential forgery è che la funzione di ridondanza non deve essere
moltiplicativa

© Gianluca DiniNetwork Security 29

RSA signature in practice

Reblocking problem
• If A wants to send a secret and signed message to B then

it must be nA < nB

• There are various ways to solve the problem
• reordering: the operation with the smaller modulus is

performed first; however the preferred order is always to sign
first and encrypt later

• two moduli for entity: each entity has two moduli; moduli for
signing (e.g., t-bits) are always smaller of all possible moduli
for encryption (e.g., t+1-bits)

• prescribing the form of the modulus

© Gianluca DiniNetwork Security 30

RSA signature in practice

Redundancy function
• A suitable redundancy function is necessary in order to

avoid existential forgery
• IOS/IEC 9796 (1991) defines a mapping that takes a k-bit

integer and maps it into a 2k-bits integer

The RSA digital signature scheme with appendix
• MD5 (128 bit)
• PKCS#1 specifies a redundancy function mapping 128-bit

integer to a k-bit integer, where k is the modulus size (k ≥
512, k = 768, 1024)

© Gianluca DiniNetwork Security 31

RSA signature in practice
Performance characteristics
• Let p= q= k then
• signature generation requires O(k3) bit operations
• signature verification, in the case of small public exponent,

requires O(k2) bit operations
• Suggested value for e in practice are 3 and 216+1. Of course, p

and q must be chosen so that gcd(e, (p – 1)(q – 1)) = 1.
• The RSA signature scheme is ideally suited to situations where

signature verification is the predominant operation being
performed.

• Example. A trusted third party creates a public-key certificate for an
entity A. This requires only one signature generation, and this
signature may be verified many times by various other entities

© Gianluca DiniNetwork Security 32

RSA signature in practice

Parameter selection
• bitsize of the modulus: miminum 768; at least 1024 for

signatures of longer lifetime or critical for overall security of a
large network (i.e., the private key of a certification authority)

• No weaknesses have been reported when the public exponent e
is chosen to be a small number such as 3 or 216+1.

• It is not recommended to restrict the size of the private exponent
d in order to improve the efficiency of signature generation

Bandwidth efficiency
• By definition, BWE = log2 (MS) / log2 (MR)
• For (RSA, ISO/IEC 9796), BWE = 0.5, that is, with a 1024-bits

modulus can be signed 512-bits messages

© Gianluca DiniNetwork Security 33

RSA signature in practice

System wide parameters
• Each entity must have a distinct RSA modulus; it is insecure to

use a system-wide modulus
• The public exponent e can be a system-wide parameter, and is

in many applications. In this case, the low exponent attack must
be considered

Short vs. long messages
• Suppose n is a 2k-bit RSA modulus which is used to sign k-bit

messages (i.e., BWE is 0.5)
• Suppose entity A wishes to sign a kt-bit message m
• For t = 1 RSA with message recovery is more efficient;
• For t > 1, RSA with appendix is more efficient

