Network Security Elements of Applied Cryptography

Network Security Digital Signatures

- Digital Signatures with appendix
- Digital signatures with message recovery
- Digital signatures based on RSA

Roadmap

Introduction

- Classification
- Digital signatures based on RSA

Informal properties

- A digital signature is a number dependent on some secret known only to the signer and, additionally, on the content of the message being signed
- A digital signature must be verifiable, i.e., if a dispute arises an unbiased third party must be able to solve the dispute equitably, without requiring access to the signer's secret

Arbitrated digital signatures (symm. encrypt.

Classification

- Digital signatures with appendix
 - require the original message as input to the verification algorithm;
 - · use hash functions
 - Examples: ElGamal, DSA, DSS, Schnorr
- Digital signatures with message recovery
 - do not require the original message as input to the verification algorithm;
 - the original message is recovered from the signature itself;
 - Examples: RSA, Rabin, Nyberg-Rueppel

S_{A} is the private key; V_{A} is the public key **Network Security** © Gianluca Dini 9 **Network Security** © Gianluca Dini 10 Digital signatures with appendix Digital signatures with appendix S m* true (m<u>*,s)</u> false Boolean MS Signature generation Signature verification • Compute $m^* = h(m)$ and $s = S_{A}(m^*)$ Obtain A's public key V_A A's digital signature for m is s* • Compute $m^* = h(m)$, $u = V_A(m^*, s)$ • (m, s^{*}) are made available to anyone who may wish to verify the signature Accept the signature iff u = true

11

Network Security

Digital signatures with appendix

• A selects a private key which defines a signing algorithm S_A which is a

• A defines the corresponding public key defining the verification algorithm

for all $m^* \in M_h$ and $s \in S$, where $m^* = h(m)$ for $m \in M$. M_A is constructed

such that it may be computed without knowledge of the signer's private

 V_{Δ} such that $V_{\Delta}(m^*, s)$ = true if $S_{\Delta}(m^*)$ = s and false otherwise,

Definitions

Key generation

kev

M is the message space

M_b is the image of h

S is the signature space

h is a hash function with domain M

one-to-one mapping $S_A: M_h \rightarrow S$

Digital signatures with appendix

Properties of S_A and V_A

- S_A should be efficient to compute
- V_A should be efficient to compute
- It should be computationally infeasible for an entity other than A to find an m ∈ M and an s ∈ S such that V₄(m*, s) = true, where m* = h(m)

Digital signature with message recovery

Definitions

- M is the message space
- M_S is the signing space
- S is the signature space

Key generation

- A selects a private key defining a signing algorithm S_A which is a one-to-one mapping $S_A{:}\;M_S\to S$
- A defines the corresponding public key defining the *verification* algorithm V_A such that V_A•S_A is identity map on M_S. V_A is constructed such that it may be computed without knowledge of the signer's private key
- S_A is A's private key; V_A is A's public key

Digital signatures with message recovery

The redundancy function

- R and R⁻¹ are publicly known
- Selecting an appropriate R is critical to the security of the system

A bad redundancy function

- Let us suppose that $M_R \equiv M_S$
- R and S_A are bijections, therefore M and S have the same number of elements
- Therefore, for all $s\in S,$ $V_A(s)\in M_R,$ it is "easy" to find an m for which s is the signature, m = $R^{-1}(V_A(s))$
- s is a valid signature for m (existential forgery)

Network S	Security
-----------	----------

© Gianluca Dini

Scheme with appendix from message recovery

17

- Digital signature with appendix from scheme providing message recovery
- Signature generation
 - Compute $m^* = R(h(m))$, $s = S_A(m^*)$
 - A's digital signature for m is s*
 - $\langle m,\,s^{\star}\rangle$ are made available to anyone who may wish to verify the signature
- Signature verification
 - Obtain A's public key V_A
 - Compute $m^* = R(h(m))$ and $u = V_A(m^*, s)$
 - Accept the signature iff u = true
- R is not security critical anymore and can be any one-toone mapping

Digital signatures with message recovery

A good redundancy function

- M = {m : m \in {0, 1}ⁿ}, M_S = {m : m \in {0, 1}²ⁿ}
- R: M \rightarrow M_S, R(m) = m||m
- $M_R \subseteq M_S$
- When n is large, $|M_R|/|M_S| = (1/2)^n$ is small. Therefore, for an adversary it is unlikely to choose an s that yields $V_A(s) \in M_R$
- ISO/IEC 9776 is an international standard that defines a redundancy function for RSA and Rabin

```
Network Security
```

```
© Gianluca Dini
```

Types of attacks

BREAKING A SIGNATURE

- 1. Total break adversary is able to compute the signer's private key
- 2. Selective forgery adversary controls the messages whose signature is forged
- **3. Existential forgery** adversary has no control on the messages whose signature is forged

BASIC ATTACKS

Network Security

- 1. key-only attacks adversary knows only the signer's public key
- 2. message attacks
 - a. known-message attack adversary has signatures for a set of messages which are known by the adversary but not chosen by him
 - **b. chosen-message attack** in this case messages are chosen by the adversary
 - **c.** adaptive chosen-message attack in this case messages are adaptively chosen by the adversary

19

Attacks: considerations

- Adaptive chosen-message attack
 - · It is the most difficult attack to prevent
 - Although an adaptive chosen-message attack may be infeasible to mount in practice, a well-designed signature scheme should nonetheless be designed to protect against the possibility
- The level of security may vary according to the application
 - Example 1. When an adversary is only capable of mounting a key-only attack, it may suffice to design the scheme to prevent the adversary from being successful at selective forgery.
 - Example 2. When the adversary is capable of a message attack, it is likely necessary to guard against the possibility of existential forgery.

Attacks: considerations

- Hash functions and digital signature processes
 - When a hash function h is used in a digital signature scheme (as is often the case), h should be a fixed part of the signature process so that an adversary is unable to take a valid signature, replace h with a weak hash function, and then mount a selective forgery attack.
 - For example, let $\langle m, s \rangle$ where s = S_A(h(m)), the adversary may
 - 1. replace h with a weaker hash function g that is vulnerable to selective forgery. Thus, the adversary can
 - 1. determine m' such that g(m') = h(m);
 - 2. replace m with m'

Network Security	© Gianluca Dini	21	Network Security	© Gianluca Dini	22
Roadmap			Introductory co	omments	
IntroductionClassification	า on		 Since the encry signatures can encryption and 	vption transformation is a bije be created by reversing the decryption	ection, digital roles of
 Digital signature 	natures based on RSA		 Digital signature M_S ≡ S ≡ Z_n 	e with message recovery	
			 A redundancy f public knowledge 	function R: $M o \mathbb{Z}_n$ is choser ge	ו and is

Key generation

- 1. Generate two **large**, **distinct primes** *p*, *q* (100÷200 decimal digits)
- 2. Compute $n = p \times q$ and $\phi = (p-1) \times (q-1)$
- 3. Select a **random number** $1 \le e \le \phi$ such that gcd(e, ϕ) = 1
- Compute the **unique** integer 1 < d < φ such that ed ≡ 1 mod φ
- 5. (*d*, *n*) is the private key
- 6. (e, n) is the public key

At the end of key generation, *p* and *q* must be destroyed

Network Security © Gianluca Dini	25	Network Security	© Gianluca Dini	26
Proof that verification works		Possible attack Integer factoriza 	KS ation	
 If s is a signature for a message m, then s = m*d mod where m* = R(m). Since ed = 1 (mod φ), s^e = m*ed = m* (mod n). Final R⁻¹(m*) = R⁻¹(R(m)) = m. 	d n ly,	 Factorization A should cho infeasible tas Multiplicative pr 	of n lead to total break. ose p and q so that factoring n is a c k operty of RSA	omputationally
		 Condizione n existential for moltiplicativa 	ecessaria ma non sufficiente per dife gery è che la funzione di ridondanza	ndersi da non deve essere

Signature generation. In order to sign a message m, A does

Signature verification. In order to verify A's signature s and

1. Compute $m^* = R(m)$ an integer in [0, n–1]

1. Obtain A's authentic public key (*e*, *n*)

recover message m, B does the following

3. Verify that m^* is in M_{R} ; if not reject the signature

the following

Compute s = m*^d mod n
 A's signature for m is s

2. Compute $m^* = s^e \mod n$

4. Recover $m = R^{-1}(m^*)$

RSA signature in practice

- Reblocking problem
 - If A wants to send a secret and signed message to B then it must be $\rm n_A < n_B$
 - · There are various ways to solve the problem
 - **reordering**: the operation with the smaller modulus is performed first; however the preferred order is always to sign first and encrypt later
 - two moduli for entity: each entity has two moduli; moduli for signing (e.g., t-bits) are always smaller of all possible moduli for encryption (e.g., t+1-bits)
 - prescribing the form of the modulus

RSA signature in practice

- Redundancy function
 - A suitable redundancy function is necessary in order to avoid existential forgery
 - IOS/IEC 9796 (1991) defines a mapping that takes a k-bit integer and maps it into a 2k-bits integer
- The RSA digital signature scheme with appendix
 - MD5 (128 bit)
 - PKCS#1 specifies a redundancy function mapping 128-bit integer to a k-bit integer, where k is the modulus size (k ≥ 512, k = 768, 1024)

Network Security	© Gianluca Dini	29	Network Security	© Gianluca Dini	30
RSA signature i	n practice		RSA signature	in practice	
 Performance ch Let p = q = signature generies signature verificirequires O(k²) b Suggested valuand q must be a The RSA signal signature verificiperformed. Example. A transition of the signature matrix 	haracteristics = k then ration requires $O(k^3)$ bit operations cation, in the case of small public exp bit operations ue for e in practice are 3 and $2^{16}+1$. O chosen so that $gcd(e, (p - 1)(q - 1)) =$ ture scheme is ideally suited to situat cation is the predominant operation be rusted third party creates a public-key cert a requires only one signature generation, a by be verified many times by various other	onent, f course, p = 1. ions where eing rtificate for an and this r entities	 Parameter sele bitsize of the m signatures of lo large network (No weaknesse is chosen to be It is not recomm d in order to im Bandwidth efficion By definition, E For (RSA, ISO, modulus can b 	ection nodulus: miminum 768; at least 102 onger lifetime or critical for overall s (i.e., the private key of a certification is have been reported when the pul- e a small number such as 3 or 2^{16+1} mended to restrict the size of the pr prove the efficiency of signature generators Signer BWE = log2 ($ M_s $) / log2 ($ M_R $) /IEC 9796), BWE = 0.5, that is, with re signed 512-bits messages	24 for security of a on authority) Iblic exponent e 1. rivate exponent eneration h a 1024-bits

RSA signature in practice

- System wide parameters
 - Each entity must have a distinct RSA modulus; it is insecure to use a system-wide modulus
 - The public exponent e can be a system-wide parameter, and is in many applications. In this case, the low exponent attack must be considered
- Short vs. long messages
 - Suppose n is a 2k-bit RSA modulus which is used to sign k-bit messages (i.e., BWE is 0.5)
 - Suppose entity A wishes to sign a kt-bit message m
 - For t = 1 RSA with message recovery is more efficient;
 - For t > 1, RSA with appendix is more efficient

Network Security	© Gianluca Dini	33