
Notes on applied cryptography

Gianluca Dini

November 8, 2007

1 The RSA Algorithm

1.1 Small exponent attack

Let us consider a system in which a group of entities have all the same encyption exponent
e, but, each entity has a distinct modulus. If an entity A wishes to send the same message
m to three entities whose public moduli are n1, n2, and n3, and whose encryption exponents
are e = 3, then A would send ci = m mod ni, i = 1, 2, 3. Notice that by definition it must
be m < ni, i = 1, 2, 3, and thus m3 < n1n2n3. Furthermore, if moduli are pairwise prime
(which is very likely), an eavesdropper1 observing c1, c2, and c3 can apply the CRT (using
the Gauss’s algorithm) to find a solution x, 0 ≤ x ≤ n1n2n3, to





x ≡ c1 (modn1)
x ≡ c2 (modn2)
x ≡ c3 (modn3).

(1)

The CRT guarantees that x = m3(modn1n2n3). As m3 < n1n2n3, then x = m3. It follows
that the eavesdropper can recover m by computing the integer cube root of x.

Thus small encryption exponent such as e = 3 should not be used if the same message is
sent to many entities. Alternatively, to prevent such an attack a pesudorandomly generated
string should be appendend to the plaintext prior to encryption.

1.2 RSA with CRT

Let e, d, and n be, respectively, the encryption exponent, the decryption exponent, and
the modulus. Let c a cryptogram obtained by encrypting message m,m < n with e, i.e.,
c = me mod n. In order to recover m from c, the recipient has to compute m = cd mod n.
The same result can be obtained more efficiently using the CRT as follows.

Initially, the recipient computes m1 and m2 as follows
{

m1 = cd modp
m2 = cd modq

(2)

1A passive adversary.

1



For the Little Fermat’s Theorem, equation 2 can be re-written as follows

{
m1 = cd mod p−1 modp
m2 = cd mod q−1 modq.

(3)

Finally, the recipient applies the CRT and computes

m = a1m1q + a2m2p (4)

where a1 = q−1 mod p and a2 = p−1 mod q. Notice that quantities a1 and a2 only depends
on system parameters and thus can be precomputed.

The performance advantages are evident from the following observations. Let us sup-
pose that the binary rapresentation of modulus n requires k bits. The exponent d is of
the same order as n and thus its binary rapresentation requires k bits. It follows that
computing m = cd mod n using the square-and-multiply algorithm takes time O(k3). In
contrast exponents in equation 3 are of the same order as p and q, and thus their rapre-
sentations are on k/2 bits. It follows that computing m using the CRT requires compute
two exponentiations on k/2 bits and thus takes O(k3

4
). It follows that this approach is

four times faster. Furthermore, it requires a smaller amount of memory for intermediate
results, since modular exponentiation is performed on half the bit size.

1.2.1 Fault injection attack

Boneh, DeMillo, and Lipton present an elegant and simple theoretical attack on RSA with
CRT implementations [BDL01]. With reference to equation 3, let us suppose that a fault
is injected during the computation of m1 so producing m′

1 and thus m′. It follows that
m −m′ = a1q(m1 −m′

1). Thus one can observe that gcd(m −m′, n) = q. It follows that
q q can be efficiently computed by applying the Euclid’s algorithm for greatest common
divisor to n and m−m′.

This result comes as a surprise, considering that the RSA algorithm resisted years of
pure mathematical cryptanalysis [1]. Indeed, the mathematical constructions do not take
into account faulty computations, but assume that a computation always results in the
correct output. A physical implementation, however, may perform faulty computations.
This is a known case, especially for space missions, where the environment can be somewhat
hostile. Bit flips can occur for many reasons, such as radiation, power supply or clock
manipulation, or even incomplete testing of the hardware during production. While such
events might be rare in nature, an attacker can actively force the device to operate in
such an environment. Embedded systems can be more vulnerable to such attacks because
their resource-constrained environment makes it easy for an attacker to inject a fault in
the system. These vulnerabilities are worrisome for financial or commercial applications,
such as smart cards for banking (credit cards), cellular phone SIMs, and pay-per-view TV.

Since the introduction of fault-injection attacks, several countermeasures have been
proposed. The first proposal performs double computation. In order to detect faulty com-
putations, this proposal computes the result twice before providing an output. This is not

2



always efficient because it splits latency and throughput for a given system. Furthermore,
this approach cannot detect permanent faults in which a specific memory area is stuck to
a value. The second proposal shows complementary operation of the algorithm. For ex-
ample, signature verification ensures original input of the algorithm. Signature verification
can be rather time-consuming in an embedded system because low value exponents are
used for the operation performed by the system and a high value exponent is used by the
verifying system.This verification results in higher execution time and complexity.

This field of research has been quite active in recent years. Most, if not all, of the
proposed changes in the implementation of the RSA with CRT algorithm, however, were
vulnerable to some form of side-channel attack. In many cases, the additional checks and
countermeasures inserted in the implementation created additional side channels which
can be more easily utilized by attackers instead of protecting the implementation of the
algorithm. For a complete treatment of the subject, interested readers should consult.

References

[BDL01] D. Boneh, R. DeMillo, and R. Lipton. On the importance of checking crypto-
graphic protocols for faults. Journal of Cryptology, 14(2):101–119, 2001.

3


