
Mobile 
Security 
Security in Networked 
Computing System 
 

Andrea Saracino 
 
andrea.saracino@iet.unipi.it 

Outline 
! Mobile Security 

! Evolution in mobile security. 

!  Challenges and Issues. 
!  Mobile Security Attacks. 

! Sybil. 
! Geolocation. 
! Data Spoofing. 



Outline (2) 
! Mobile Application Security 

!  Malware and other threats 
! Malware Evolution 
! Common Malware 
! Trojanized apps 

!  Android System and Security 
! Android Programming 
! Security Libraries 
! Android Security Attacks 

Mobile Security 
!  Mobile Security is a computer security branch 

studying methodologies to ensure all the security 
requirements in mobile and distributed systems.  

!  Mobile System: A system composed of roaming 
agents. 

!  Distributed System: System with several interacting 
autonomous agents that cohordinate themselves 
to provide and/or receive a service. 



Mobile Security (2) 
! Examples: 

!  Distributed Computing 
!  Wireless Sensor Networks 
!  Participatory Sensing Systems 
!  Peer to Peer (P2P) file sharing 
!  Cellular Networks 
 

Mobile Security: How it was 



Mobile Security: How it was (2) 
!  Mobile devices have always been considered as 

constrained, because of: 
!  Limited Battery Power 
!  Low Computational Power 
!  Small Physical Memory 

!  Security imposes a consistent overhead 
!  Asymmetric Criptography 
!  Key Storage, distribution and retrieval 

 

Mobile Security: How it was (3) 
!  Other examples of constrained devices are the more 

recent RFID (passive devices). 
!  Applying classical security techniques on constrained 

device is non feasible. 
!  Mobile security aims at solving these issues through: 

!  Lightweight cryptographic functions 
!  Distributed Computation 
!  Low consumption security protocols (Bluetooth) 



Mobile Security: How it is 

Mobile Security: How it is (2) 
!  Mobile Security current main focus is on the so called 

new generation mobile devices, which are smartphones 
and tablets.  

!  Smartphones and tablets have several features and 
functionalities that makes them extremely more 
complex, compared to legacy mobile phones 

VS 



Mobile Security: How it is (3) 
!  There are several motivations that fosters attackers to target 

new generation mobile devices: 
!  Private Data stored. 
!  Possibility to access charged services (Phone Calls, SMS…). 
!  High distribution and popularity. 
!  High connectivity.  
!  Possibility to attack several levels 
!  Too fast evolution; security can’t catch up! 

Mobile Security: How it is (4) 
!  More features of smartphones and tablets: 

!  Continuously connected to the Internet 
!  Data Network (Provider) 
!  WiFi 

!  It is possible to install mobile applications. 
!  Several accounts for different services (Google, 

Facebook, Twitter, Istant Messaging, Banking 
Apps…) 



Mobile Security: How it is (5) 
!  Summarizing smartphones and tablets have: 

!  High Computational Power 
!  Several Connectivity Interfaces 

!  High Customizability  

!  Thus, they can provide several more services compared to 
legacy mobile phones. 

!  However, at the same time, they are more vulnerable to 
security attacks. 
!  More attack vectors 
!  Greater attacker motivation 

!  Possibility of providing malicious software hidden inside other 
applications. 

Constrained Devices? 
!  CPU & ChipsetIntel® Atom N270 (1,6 GHz) (Single Core) 
!  Memory 1GB  
!  Camera 1.3M Pixel 
!  Weight 1.45kg 

!  CPU: Qualcomm Snapdragon™ 800, 2,26 GHz (4 core) 
!  Memory 2GB 
!  Camera 8 M Pixel  + 1,3M Pixel  
!  Weight 130 g 



New Challenges 
!  Current mobile security challenges have to deal with 

constrained devices only for a subset of applications. 
!  New kinds of security attacks are exploiting both the 

features of new generation mobile devices, and the 
dynamic and distributed nature of mobile systems. 

!  Instead of taking advantage of the reduced capability 
of performing cryptographic operations, attacks are 
brought directly at the application level. 

Sybil Attack 
!  Security attack toward distributed P2P systems. 
!  Let’s consider a distributed system where each 

user (or agent) is considered a peer. 
!  Peer exchange information  between them, 

through a network, in order to receive or provide a 
service. 

!  Each peer is identified, while active in the system, 
by an identifier (ID). 



Sybil Attack (2) 
!  Definition: A sybil attack is performed when a malicious 

user pretends to be multiple peers in the system by 
creating fake  identities or stealing existing ones. 

Sybil Attack (3) 
!  Through the sybil attack, a single node is seen as a 

group on nodes, called Sybil, because it behaves 
like as she has a multiple personality (identities).  

!  When an identity is stolen (more common than 
creating false identities), the owner of that identity 
is generally silenced by the sybil.  
!  DoS attack 
!  MITM 

!  Other nodes believe they are talking with the 
silenced node, but exchanged information are 
controlled by the Sybil. 



Sybil Attack (4) 
! Applied in several systems: 

!  Voting System 
!  Reputation System (E Bay Feedbacks) 
!  Traffic Redirection (eavesdropping) 
!  Social Network 

! Creation of fake identities. 
! Stealing existing identities.  

Sybil Attack (5) 
!  The network partition: 

!  Attacker has direct control on some network nodes, called 
edge nodes.  

!  Sybil create a network of fake or stolen identities, controlling 
all the messages exchanged in this network partition.  



Sybil Attack (6) 
!  The attack is effective in those environment where 

there is a loose control on peers identity. 
!  Solutions: 

!  Registration authority. 
!  Identity protection (password). 
!  Binding between identity and the owner: each 

physical peer should only have one identity. 
!  Bind the identity to an e-mail address. 
!  Bind the identity to the IMSI-IMEI of a mobile 

device. 

Sybil Attack (7) 
!  The Sybil attack has been proposed in 2002 (JR. 

Douceur, IPTPS 2002). 
!  Recent distributed systems have been designed to be 

resilient to the Sybil Attack.  
!  Account, authentication, password, security question… 

!  Today still exists some extremely popular mobile 
applications relying on loose identity check 
mechanisms, thus prone to the Sybil Attack 



Data Spoofing Attack 
!  Let’s consider a mobile system in which mobile agents 

collect data on the surrounding environment and share 
it with the rest of the system.  

!  Smartphones are equipped with several sensors to 
collect data from the environment, making this kind of 
application desirable.  

!  Several names have been given to these applications: 
!  Participatory Sensing 
!  Crowd Sensing 
!  Distributed Monitoring 
!  … 

Data Spoofing Attack (2) 



Data Spoofing Attack (3) 
!  Verification of data correctness? 

!   It is not performed by default. 
!  Users are supposed to provide correct data. 
!  Users can also be malicious. 

!  Inserting false data in the network can cause 
severe misbehaviors. 

Location Spoofing 
!  An example of Data Spoofing is the Location Spoofing 

attack.  
!  Let’s consider a system where mobile agents share 

pieces of information related to their geographical 
location such as: 
!  The amount of car traffic 
!  The pollution level of a specific area 
!  Weather and temperature 
!  The location itself 

!  In this application, providing a false location means to 
provide data which is completely false.  



Location Spoofing (2) 
!  Performing this attack is really simple with both Android  

Smartphones and iPhones (jailbroken). 
!  Fake Locator is a group of software available also on 

the official application marketplaces. Fake Locator 
allows the user to choose a position on the world map. 
Then, this position is shared with all the applications 
running on the device. 



Location Spoofing (3) 
!  Fake locator main purpose is user’s fun, but the location 

obfuscation is generally allowed for privacy reasons.  
!  However, when fake locator is active, all the location 

based applications will misbehave, since the user is 
providing false data. 
!  Such misbehaviors may also affect other users. 
!  Privacy is a right of the user, but providing the correct 

location to participatory sensing application is a duty. 

Location Spoofing (4) 
!  Solutions: 

!  Selective obfuscation to preserve privacy without 
providing a fake location to all apps. 
!  Location precision granularity. 

!  Exploiting control elements to periodically check the 
real location of a user, comparing it with the one 
provided.  

!  Use of a reputation index to identify users that lies on 
their location. 
!  Reward proportional to the reputation (incentive). 



More on Location Spoofing 
Attack 
!  A location based piece of data can be identified 

through the following tuple: 
<x,y,d> 

!  x and y are respectively latitude and longitude where 
the piece of information d has been collected. 

!  Removing the bound between x,y and d means to 
provide false data. 

!  Data d is correct but if the location is changed, the 
system will read and use wrong data, causing 
misbehaviors. 

More on Location Spoofing 
Attack (2) 
!  Example: Pollution Monitoring 
!  Users collect data on the pollution level of different 

metropolitan areas.  
!  If the pollution level in an area is above a threshold, actions are 

taken to limit the pollution level. 
!  Closing roads to car traffic. 
!  Temporarily shutting down factories to reduce emissions. 

!  Such actions cause several inconvenience which may also 
imply monetary losses. 

!  A user residing in an area extremely polluted may send 
readings, while faking the position in a low pollution area. 
!  This will trigger unneeded actions to reduce the pollution in that 

area. 



Mobile Application Security 
!  Currently the greatest threat in mobile security is brought by 

Malicious Applications.  
!  More than 90% of mobile security attacks are based on 

malicious software (malware) installed on user’s device. 

!  Targets of the attack: 
!  Private data 

!  SMS messages 
!  Contacts 
!  IMEI code 
!  Username and Passwords (social network, home banking). 

!  User Money 
!  Leaking credit from SIM card. 
!  Hidden subscription to premius services. 

Mobile Applications (App) 
!  New generation mobile devices can be customized 

installing mobile applications. 
!  Mobile applications (apps) are developed by third party 

developer.  
!  Apps can be malicious (malware). 

Image from zerocalcare.it 



A bit of history 
! First malware for mobile device? 
! Target OS:  
! Year: 
! Effect: 

A bit of History (2) 



A bit of history (3) 

A bit of history (4) 



Mobile Malware Evolution 



Mobile Malware Evolution (1) 
!  First mobile malicious applications were mainly created 

as research products.  
!  Proof of concepts to spot system vulnerabilities.  

!  Current malware aims at generating a revenue for the 
attacker. 
!  Directly stealing money (Zeus). 
!  Stealing private information which can be sold for money. 
!  Subscription to premium services. 

Common Malware Type 
!  Rootkit: Application that exploits system vulnerabilities to 

acquire root (super user) privileges. 
!  Spyware: Collect information on the device user and 

her behavior.  
!  SMS Trojan: Send unsolicited text messages or intercept 

and drop incoming messages. 



Trojanized Applications 
!  Trojanized application is the greatest vector of 

malicious software.  
!  A Trojanized Application is an application for 

mobile devices (app) that hides malicious 
code. 

!  Trojanized apps generally looks like apps that 
works correctly, providing a service to the 
user.  

!  Malicious code runs in background. 
!  They are quite hard to be detected by 

average users. 

Target of the attack 
!  Given that Android is the most common operative 

system, it is also the main target for mobile malware. 



Android 
! The Android Open Source Project 

!  Philosophy 
!  Players 

Android (2) 
! Part I: Android System and Applications 

!  Android Framework 

!  Android Applications 

!  Google Play 

 



Android (3) 
! Part II: Android Security 

!  Native Mechanisms 

!  Attacks 

!  Innovative Solutions 

Part I 
! Android System and Applications 



The Android Open Source 
Project (AOSP) 
! What is Android? 

!  A mobile OS?  

!  A framework for mobile devices 

! Android is an Open Source Project held 
by the Open Handset Alliance. 

Open Handset Alliance 
! Consortium of Enterprises that work in the 

field of mobile communications. 
!  Service Provider 
!  Hardware Manifacturer 
!  Smartphone Producer 
!  Software developer 
!  … 



Open Handset Alliance 
! The Open Handset Alliance is led by one 

company: 



Android Philosophy 
! Open Source: 

!  All of Android source code is available and 
can be downloaded and modified. 

!  Improvement can be uploaded as system 
patches. 

!  Patches pass through a long review 
process. 

Android Devices 
! Android has been designed for three type 

of devices: 
!  Smartphones 

!  Tablets 

!  Embedded Systems. 



Versions and Distributions 
!  Apple Pie (Android 1.0) Developed for HTC Dream. 
!  Cupcake (Android 1.5) Several Graphic improvements. 
!  Donut and Eclair(Android 1.6 – 2.1). 
!  Froyo(Android 2.2) First version with a large distribution. 
!  Gingerbread (Android 2.3 – 2.6) Installed on several smartphone in 

particular: Samsung Galaxy, Galaxy S and Galaxy S2. 
!  Honeycomb (Android 3.0) Distribution for tablets only. 
!  Ice Cream Sandwich (Android 4.0) For tablets and smartphone. 

Large distribution, used on Samsung Galaxy Nexus.  
!  Jelly Bean (Android 4.1 – 4.3) Released in 2012, includes new 

graphical elements for applications. 
!  Kit Kat (Android 4.4) Latest Release for Smartphones and Tablets. 

Includes the Google Now service. 

Android Full Code 
!  The full code of Android is available at 

www.source.android.com as a git repository. 
!  Requires more than 10 GBs of mass storage and a 

swap of 20 GBs to be compiled.  
!  Note: The source download is approximately 

8.5GB in size. You will need over 30GB free to 
complete a single build, and up to 100GB (or 
more) for a full set of builds. 

!  There is a version for smartphone (Maguro), one 
for Emulator (Goldfish) and one for embedded 
devices (Panda). 



ROMs (1) 
! The ROM is an Android Image (few MBs) 

of the OS that is installed on a device. 
! Manufacturers ROM 

!  Smartphone manufacturers equip their 
devices with custom ROMs.  

!  Inclusion of manufacturer software 
(Samsung Kies…)  

!   Some limitations on functionalities 
(Tethering). 

ROMs (2) 
! Custom ROM 

!  ROMs modified by third party developers.  
!  Inclusion of additional features. 
!  No limitations on functionalities. 

! Original ROMs 
!  Installed on Nexus devices, which are 

devices produced by manufacturer under 
the guidance of Google. 



Android Framework 

Kernel(1) 
! The Android framework runs on top of a 

Linux Kernel.  
!  Shell available. 
!  Some commands are not available.   
!  Some modules are not compiled. 
!  In particular it is not possible:  

! To copy a file. 
! To create or modify users. 
! Become Super-User. 



Kernel(2) 
! Kernel Tasks: 

!  Handles Inter Process Communication (IPC). 
! Processes cannot communicate directly. 

!  Handles Inter Component Communication 
(ICC). 
! Hardware and Connection Interfaces. 

!  Executes all of the low-level tasks. 
!  Enforces Security.  

Android Framework 



Libraries 
! Libraries written in C/C++. 

!  They work as support for high performance 
and real time tasks (OpenGL).  

!  Security (SSL). 
!  Communication (Socket). 
!   Database interaction (SQLite) 
!  … 

Android Framework 



Application Level 
! The application level of Android is entirely 

based on Java. 
!  Android uses a slightly modified version of 

Java.  
! Clash between Google and Oracle. 

! Android applications are programmed in 
Java. 

Why Java? 
! Open Source Language. 
! Highly portable. 
! Object-Oriented and extremely 

expressive. 
! Use of Virtual Machine. 

!  The Java Virtual Machine is an environment 
in which Java applications run.  

!  Ensures portability and security. 



Android Applications (App) 
!  Android applications come as a unique file 

directly installed on the device. 
!  Application PacKage (APK) are a bundle of file 

that contains both executables and static 
resources. 

!  Android applications are developed in Java.  
!  They are distributed through marketplace. 

Installing 
! How to install an app? 
! There are three methods: 

1.  Market Installer: Use an application like 
Play to browse choose and Install Apps 

2.  File Browser: Put the app on the device 
memory and install it with a file browser . 

3.  Use the Android Debug Bridge (ADB). 



Building (1) 

Building (2) 
1.  Interfaces, resources and source code are 

compiled by a classical java compiler. 
2.  Class files are dexed. The result is a dex  

(Dalvik EXecutable) file, an optimized version 
of bytecode. 

3.  Executable are merged with static resources 
to create an apk file.  

4.  The apk is signed to ensure integrity. 
5.  Further optimization through zip align. 



Android Framework 

Android Runtime 
!  In Android applications run on a modified 

version of the JVM. 

! Dalvik Virtual Machine (DVM) is faster and 
lighter than the classical JVM.  
!  Suitable for mobile devices. 



App Execution (1) 

Kernel 

App 1 App 2 App 3 App 4 

DVM 1 DVM 2 DVM 3 DVM 4 

U-ID U-ID U-ID U-ID 

App Execution (2) 
!  Android applications run in the Dalvik Virtual 

machine. For each running application a 
different DVM is instantiated.  

!  The DVM interacts with the underlying Linux 
kernel. 

!  Every DVM has a Linux UID. Thus every Android 
application is considered a different Linux 
user.  
!  The Linux UID is assigned to an application at 

install time and is not changed until the app is 
not uninstalled. 



Device Side Components 

Developer Side Components 



Standard Development Kit 
(SDK) 
!  The Android SDK is a bundle of all the software 

and tools necessaries to develop, debug and test 
Android applications. 
!  APK Builder: Creates ready-to-install applications from code 
!  Android Debug Bridge: Allow the USB connection  and 

management of an Android device. 
!  Emulator: Android device emulator. 
!  Android Developer Tool (ADT): Plugin for the Eclipse IDE. 
!  Fastboot: Boot a connected device in different modes. 
!  Mksdcard: Used to create a virtual SDCard. 

Get it!! 

 
http://developer.android.com/sdk/index.html 



Checklist 
! Java Runtime Environment installed? 

! Java Environment variables correctly set? 

! PATH Environment variables correctly set? 

ADT 
! Plugin for Eclipse to develop Android 

applications. 

!  Includes DDMS to interact with other tools 
of the Android SDK. 



Emulator 
! An Android device emulator with (almost) 

all the functionalities of a real 
smartphone.. 

! Virtual devices are created through the 
Virtual Device Manager. 

Android Debug Bridge (1) 
! Used to connect and interact with an 

Android device. 
! Some options: 

!  adb shell: open a linux shell on the device. 
!  adb push/pull: push or pull a file onto/from 

device. 
!  adb install: installs an application on the 

device. 



Android Debug Bridge (2) 
! Other ADB commands: 

!  adb reboot: reboots the connected 
device. 

!  adb devices: lists the connected devices.  
!  adb logcat: show the device logcat, used 

for debugging. 
!  … 

App Developer 
! Since the Android SDK can be 

downloaded for free, virtually anyone can 
be an app developer. 

! We can roughly divide developers in 3 
categories: 
!  Enthusiast Developers. 
!  Professional Developers. 
!  Google 



Building 

Building (with Eclipse) 



Programming 
! Hello World! 

! Create a new project 
in Eclipse and call it: 
HelloWorld. 

! When ready, build the 
project. 

Application Project (1) 
!  Folders: 

!  src: contains the source code written by the 
developer. 

!  gen: auto-generated files. These files should not 
be manually modified. 

!  assets: all non-pictures resources used by an 
application should be put here. 

!  bin: automatically generated executable and 
files. 

!  libs: external libraries. 
!  res: icons, pictures and xml files to describe 

layouts and fixed values. 



Application Project (2) 
! Android Manifest 

!  XML file that describes an application. 
!  Contains info on developer and version. 
!  Lists all the application components. 
!  Lists all the resource accessed by the 

application (permissions). 
!  Lists all functionalities offered to other 

applications (intent filter). 

Application Components 
! Android applications have 5 main 

components: 
!  Activity 
!  Service 
!  Intent 
!  Content Provider 
!  Broadcast Receiver 



App Execution (3) 

Kernel 

App 1 App 2 App 3 App 4 

DVM 1 DVM 2 DVM 3 DVM 4 

C1 C2 C1 C2 C1 C2 C1 C2 

PID PID PID PID PID PID PID PID 

App Execution (4) 
! An Android application may launch, 

through the DVM, different processes. 
! Generally an application with several 

components launches a process for each 
running component. The user of this 
processes is the one assigned to the 
application.  



Activity 
!  An Activity is a single screen with a user interface of an 

application. 
!  Generally an application is composed by several 

activities. Each activity represent a single application 
screen. 

Creating an activity 
! First Step? 
! The activity is an application component, 

so it has to be declared in the Manifest 
file.  

! Look at the code of the sample 
application… 
 



Creating an Activity (2) 
!  Graphic Layout.  
!  Layout of activities are described statically 

through XML files stored in res folder. 
!  Text box, buttons, loading bars and so on can 

be added and customized. 
!  GUI. Simple with drag and drop functionality. 

!  Hint: Insert the items in the activity screen using 
the GUI, then customize them statically from 
XML code. 

Creating an Activity (3) 
! Java class. 
! Each activity should be a java class in 

your project.   
public class myActivity extends Activity { 

 … 
 } 

! There is no main in an activity class. 
Everything starts from the method 
OnCreate(). 



Activity 
Lifecycle 

Activity Status 
!  Running Foreground.  

!  The activity is visible and in the foreground. 
!  Running Background (Paused). 

!  The activity is visible but another app has the 
focus. 

!  Stopped. 
!  The activity is not visible. 

!  Destroyed. 
!  The activity has been killed, all variables have 

been destroyed. 



Zygote 
! User does not decide when to close an 

application.  
! The user starts an Android application 

(and thus one or more activities), then the 
application runs until the process 
manager Zygote does not assert that it is 
not useful anymore. 

! What about variables stored in memory? 

Variables 
!  If Zygote destroy an application, all 

variables will be deleted!  



Bundle 
! The Bundle is a data container. Is a 

structure where it is possible to push values 
of variables. 

! Bundles are stored in memory and survive 
when an application is destroyed. 

! Save data to bundle in 
OnSaveInstanceState() method, restore 
data from bundle in OnCreate(). 

Warning!!! 
! Do not save data in onStop() or 

onDestroy() methods. These methods 
could be not invoked in cases of 
extremely low memory. 

! Use them only for clean-ups.  



Starting an Activity (1) 
! When an application is started the main 

activity is launched. 
! The main activity is declared in the 

manifest file through an intent filter for the 
application launcher. 

!  If the main activity is not declared the 
application will not start. 

Starting an Activity (2) 
 
 
public void callActivity(){ 
Intent intent = new 
Intent(this,CalledActivity.class); 
startActivity(intent); 
} 



Intent 
!  Intents are used to send messages and 

data between applications or application 
components. 

! Every Intent has a sender and a receiver. 
! There are two types of Intents: 

!  Explicit Intents: the sender specifies the 
intent receiver. 

!  Implicit Intents: the sender specifies a class 
of possible receivers.  

Intent Components 
! Action: The action that should be 

performed by the receiver. Used to assess 
who should be the receiver. Example: 
ACTION_CALL, ACTION_MAIN 

! Data: information sent from the sender to 
the receiver. 

! Category: Additional info on the type of 
operation requestested. 



Explicit Intent 
!  Intent(this,CalledActivity.class); 

! The receiver is explicitly specified. The 
Intent has to be delivered to the 
CalledActivity class.   

! The action can be considered implicit, 
since it is specified by the method: 
startActivity(intent); 

Implicit Intents 
Intent i = new Intent(Intent.ACTION_VIEW, Uri.parse("http://www.google.com"));  
startActivity(i); 
 

!  For implicit intents the receiver is not specified. With this intent 
the sender asks that the web page at www.google.com is 
displayed.  

!  The OS looks for all the applications or components that are 
able to satisfy such a request. 

!  Applications specifies that they are able to satisfy a request 
declaring an Intent Filter. 



Intent Filters 
!  Intent Filters are declared in manifest file. 
 
<activity android:name=".BrowserActivitiy" android:label="@string/
app_name">  

<intent-filter> 
 <action android:name="android.intent.action.VIEW" />  
<category android:name="android.intent.category.DEFAULT" /> 
<data android:scheme="http"/> 
 </intent-filter>  
</activity>  

Exercise 
! An easy Money converter with two 

activities. 
! The first activity allows conversion. 
! The second activity allows the definition of 

the conversion rate. 



 
Service 
! A service is an application component 

that perform long and heavy background 
operations. 

! Services do not provide a user interface. 
! A service is called by an activity or 

another service and generally run for a 
long period of time. 

Example of Services 
! GPS location service. 
! Timers. 
! Watchdogs 
! Streaming managers. 
! Loggers. 
! … 



Why do we need Services? 

Long Operations in Activities 
! Each time an activity takes more than 30 

seconds to perform an operation an alert 
is raised. 

! This is considered a programming error.  



Long Operations in Activities 
! When an Activity has to perform a long 

operation should start a service and go 
on with the execution. 

! The service executes its task in 
background and eventually return results 
to the calling activity. 

! An activity start a service similarly to other 
activities: using Intents.  

Starting a Service 
!  There are two methods to start a service from 

an activity 
!  startService(Intent): Non-bounded call. The new 

service starts and live indipendently from the 
calling application. 

!  BindService(Intent): Bounded call. The service is 
linked to the calling application and there is an 
interface of communication between the 
service and the application. The service dies 
when the application is called. 



Service Lifecycle 

Terminating a Process 
! Differently from activities, services can be 

terminated programmatically using the 
stopService() or stopSelf() methods.  

!  If not terminated explicitely, the service 
will be stopped and destroyed by Zygote 
when the system needs memory.  

! A service can be closed when it is still 
necessary.  



Sticky Start 
! The method startService(intent, flags) can 

be used to specify what happens when a 
service is destroyed by Zygote. 

1.  START_NOT_STICKY: After destruction the 
service is not re-created.  

2.  START_STICKY: The service starts again 
after destruction as soon as the system 
has enough memory. 

Content Providers 
! Content providers are data structures that 

allow to save and access data as in a 
relational database. 

! Data are stored in tables. 
! Tables are accessed by SQL like queries. 


