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Side-Channel	Attacks	on	
Cryptographic	Software

vulnerable to side-channel attacks 
because of its strict requirements 
for absolute secrecy. In the soft-
ware world, side-channel attacks 
have sometimes been dismissed as 
impractical. However, new system 
architecture features, such as larger 
cache sizes and multicore proces-
sors, have increased the prevalence 
of side channels and quality of mea-
surement available to an attacker. 
Software developers must be aware 
of the potential for side-channel at-
tacks and plan appropriately.

History of  
Side-Channel Attacks
Side channels are a variant of the 
classic covert-channel problem. 
Covert channels involve two or 
more processes collaborating to 
communicate via a shared re-
source that they can both affect 
and measure. Attackers can ex-
ploit these channels to bypass op-
erating system protections such as 
mandatory access control that are 
intended to keep the processes 
separate. For example, one process 
can allocate memory while the 
other measures the amount of free 
memory. Through repetition of 
this behavior, the first process can 
slowly communicate information 
to the second. The channel’s sig-
nal-to-noise (S/N) ratio measures 

its quality. For example, memory 
allocations by unrelated processes 
might skew some measurements, 
so a particularly busy system 
might have a low S/N ratio. Error 
correction methods can assist with 
this case.

Whereas covert channels in-
volve the problem of preventing 
cooperation, side-channel attacks 
are a purely adversarial problem. 
Side channels emerge because 
computation occurs on a non- ideal 
system, composed of transistors, 
wires, power supplies, memory, 
and peripherals. Each component 
has characteristics that vary with 
the instructions and data being 
processed. When this variance is 
measurable by an attacker, a side 
channel is present.

Intelligence agencies have of-
ten relied on side-channel attacks 
to monitor their foes. In one clev-
er incident, the Soviet Union pro-
vided a large wooden seal to the 
American consulate in Moscow. 
The US ambassador proudly hung 
it in his office after it had been 
examined for covert transmitters. 
It appeared to be clean. Unbe-
knownst to the ambassador, the 
seal contained a carefully designed 
cavity that vibrated in response 
to sounds in the room. The spies 
transmitted a radio beam at the 

Nate LawsoN

Root LabsW
hen it comes to cryptographic software, 

side channels are an often-overlooked 

threat. A side channel is any observable 

side effect of computation that an attack-

er could measure and possibly influence. Crypto is especially 

seal, measured the beam’s modu-
lation, and recreated the conversa-
tions in the room. This listening 
method went undetected for years.

More recently, side-channel 
attacks have become a powerful 
threat to cryptography. One of the 
first papers on side-channel attacks 
showed how to recover an RSA 
private key merely by timing how 
long it took to decrypt a message.1 
This was possible because RSA and 
other public-key cryptosystems 
work with large numbers (for ex-
ample, 2,048 bits), whereas modern 
CPUs have a smaller word size. 
Crypto implementations compen-
sate by using multiprecision arith-
metic, representing large numbers 
by an array of words and using a 
loop to carry overflows from one 
word to the next.

To raise a multiprecision num-
ber to an exponent, systems such 
as RSA commonly use square-and-
multiply. This optimization de-
composes an exponentiation into a 
series of squarings (x2) and condi-
tional multiplies (* x), which oc-
cur if the bit in question is a one. 
This is similar to pencil-and-paper 
multiplication, in which trailing 
zeros mean that you shift the re-
sult one decimal place to the left 
while nonzero digits are multi-
plied and added to the result.

Because the multiply step is 
conditional, an attacker gains in-
formation about the total number 
of one bits with each decryption. 
By measuring the total time to 
perform a multiprecision expo-
nentiation with different input 
messages, the attacker can eventu-
ally recover the entire private key 
or enough to brute-force the rest.
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Timing attacks have continu-
ally improved, even being per-
formed against a Secure Sockets 
Layer (SSL) implementation over a 
network.2 New ways to filter jit-
ter have improved the distinguish-
ability to 200 ns over a LAN and 
30 ms over the Internet.3 Attacks 
have also exploited new side chan-
nels. Power consumption, RF and 
electromagnetic emissions, sound, 
vibration, and even heat give away 
information about secret computa-
tions. These attacks aren’t merely 
the subject of research papers. 
Smart cards used for payment, 
transit, and satellite TV have been 
compromised by both active fault 
induction attacks (“glitching”) and 
side-channel attacks. Hackers used 
a timing attack against a secret 
key stored in the Xbox 360 CPU 
to forge an authenticator and load 
their own code.4

Embedded-systems designers 
are no longer the only ones who 
must prevent side-channel at-
tacks. Previously, network-based 
timing attacks against SSL were 
the only side-channel attack most 
software developers needed to 
consider. But today, virtualization 
and application-hosting services 
such as Amazon S3 have given at-
tackers a more privileged vantage 
point of running code on the same 
system (possibly even at the same 
privilege level) as the target’s code. 
Also, high-speed multicore CPUs 
with large caches and complicated 
instruction- and data-dependent 
behavior provide more possibili-
ties for side channels and greater 
precision for measurements.

To illustrate side-channel at-
tacks against software cryptogra-
phy, I analyze three recent attacks. 
Each is increasingly more pow-
erful, to the point where the at-
tacker can recover an entire RSA 
key by measuring the behavior of 
a single decryption operation.

Keeping the Correct 
Answer Secret
The Hash Message Authentication 

Code (HMAC) hash construction 
is often used to authenticate mes-
sages. To compute a given mes-
sage’s HMAC, the sender hashes 
the message and a secret key twice 
using a cryptographic hash algo-
rithm (for example, SHA-256). 
The result is attached to the mes-
sage. The recipient then calculates 
the message’s HMAC via the same 
process and compares the result to 
the value included with the mes-
sage. If they match, the message 
wasn’t tampered with after the 
sender calculated the HMAC.

One subtlety with this pro-
cess is that the value the recipient 
calculates must be kept secret. 
Consider what would happen if 
the result were revealed to the 
sender in the case of a mismatch, 
perhaps as part of an error mes-
sage. An attacker could submit a 
message with an invalid HMAC 
field, observe the error message, 
and then resend the same mes-
sage with the correct value at-
tached. The recipient would 
accept this message as valid, even 
though the sender didn’t create 
the authenticator. Although most 
systems probably don’t reveal the 
correct HMAC value directly, 
a side-channel attack can often 
produce the same effect.

I recently reviewed the open-
source Google Keyczar crypto-
graphic library for possible flaws.5 
This library provides useful high-
level key management features, 
with separate implementations in 
Java, Python, and C++. Keyczar 
includes an HMAC implementa-
tion for authenticating messages.

The Python code compared 
the received and calculated byte 
values as follows:

return self.Sign(msg) == 
sig_bytes

The Java code was equivalent.
The underlying  comparison 

operator for both high-level lan-
guages performs a byte-wise 
match of the two arrays. If any el-

ement didn’t match, the compari-
son loop would terminate early. 
This would provide a timing side 
channel in which the attacker 
could iteratively fill in guesses for 
each byte of the HMAC field, re-
submitting the same message each 
time. When the guess was cor-
rect, the comparison would take a 
little longer. Eventually, when the 
whole HMAC was correct, the re-
cipient would accept the message.

An implementation of this at-
tack over a TCP connection to 
localhost took about a thousand 
queries per byte of the secret key. 
This means that an attacker could 
find a 128-bit key in less than a 
few minutes. Because the array 
comparison operators in Java and 
Python aren’t implemented na-
tively, the timing difference for 
each loop iteration was relatively 
large. But even if there was more 
network jitter or the comparison 
loop was faster, the attacker could 
simply take more samples, apply 
an appropriate filter, and perform 
a statistical hypothesis test to de-
termine which guess was correct.

The solution to this problem is 
to implement a comparison func-
tion that doesn’t terminate early. 
Although this might sound easy 
at first, eliminating all conditional 
branches from a comparison loop 
is surprisingly difficult. Even with 
a correct algorithm, some un-
derlying detail of the high-level 
language implementation (such 
as garbage collection) could still 
leave a measurable timing differ-
ence. The standard C memcmp() 
function is unsafe as well because 
it also terminates early.

Footprints in the Cache
Like the original RSA timing at-
tack, the HMAC timing attack 
combines many measurements of 
the entire operation to find the 
target’s secret. However, more 
powerful side-channel attacks can 
give insight into an algorithm’s 
intermediate working values, re-
vealing the secret more quickly.
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Modern systems employ a 
CPU cache to keep frequently ac-
cessed memory close to where it’s 
needed. When data for a given ad-
dress is in the cache, it’s returned 
immediately. If not, it’s fetched 
from memory into the cache, 
stalling the CPU for a few more 
cycles. A cache is often divided 
into blocks called lines.

Because a cache is smaller than 
the memory it shadows, the CPU 
must have a policy for filling 
and reusing its space. The most 
common implementation is a set 
associative cache, which maps 
multiple addresses to the same 
cache line on the basis of some 
fraction of the upper address 
bits. For example, the addresses 
0x100, 0x200, and 0x800 would 
all use the same cache line if the 
cache had 256 lines of one byte 
each. “Set” refers to the number 
of possible destination cache lines 
per address (that is, N-way). The 
CPU evicts older entries when 
data is loaded into an already-
filled cache line.

The Advanced Encryption Stan-
dard (AES) is a standard block ci-
pher. It encrypts and decrypts data 
with a secret key, using a combina-
tion of primitives such as MixCol-
umns, ShiftRows, and SubBytes 
over many rounds (10 for a 128-bit 
key). A common optimization 
 technique on 32-bit processors 
is to precompute a series of tables 
on the basis of the combination 
of these primitives. AES encryp-
tion then becomes a series of table 
lookups and XOR operations.

Because the index for these 
AES tables is the XOR of a plain-
text byte and a key byte, the in-
dices themselves must remain 
secret. However, a spy process 
running on the same system can 
observe the variable timing of 
the AES encryption due to cache 
behavior, narrowing down the 
possible values for the key.6 Even 
if running a spy process isn’t pos-
sible, a remote attacker can of-
ten trigger changes in the system 

cache state by interacting with 
other processes and timing those 
unrelated tasks’ behavior.

Dag Arne Osvik and his col-
leagues have described two useful 
ways to induce variability and ob-
serve cache behavior: Evict+Time 
and Prime+Probe.6

Evict+Time works as follows:

1. Trigger an encryption in the 
target process.

2. Evict memory from chosen 
cache lines by accessing the 
appropriate addresses in the 
attacker’s process.

3. Trigger and time another en-
cryption of the same plaintext.

The first step ensures that all the 
AES lookup tables accessed by 
the given plaintext and key are 
cached. The second step forces 
the CPU to evict part of one AES 
table that the attacker is target-
ing, on the basis of a guess of the 
key byte. The final step tests the 
attacker’s hypothesis. If a cache 
miss occurs and the AES en-
cryption takes longer than other 
cases, the guess for the XOR of 
the plaintext and key bytes was 
correct and caused the CPU to 
reload the table from RAM after 
it had been evicted. If not, the 
guess was incorrect. The attacker 
repeats this process to narrow the 
possible key values.

Prime+Probe (see Figure 1) is 
more powerful. It’s analogous to 
placing a film negative behind an 
object and measuring the outline 
cast by the object’s shadow. Instead 
of timing the encryption process, 
which is subject to noise and jit-
ter due to surrounding code in 
the target, the attacker repeatedly 
times accesses to its own memory 
while the target encrypts. Each 
time an encryption occurs, the 
CPU evicts one or more lines of 
the attacker’s memory from the 
cache, causing timing variation. 
Because the cache eviction is local 
to the attacker, countermeasures 
such as randomizing or normaliz-

ing the total encryption time have 
no effect.

Such an attack isn’t merely a 
timing attack. Although time is 
the method for probing cache be-
havior, this attack could use other 
methods to determine the cache 
state. For example, if an instruc-
tion provided the number of valid 
cache lines for the current task, it 
would directly provide the same 
information obtained from this 
timing side channel.

Intel and AMD (and previ-
ously, Via) introduced AES in-
structions to address this problem 
and increase performance. Unfor-
tunately, owing to the structure 
of AES, there appears to be no 
way to build a high-performance 
implementation on a general- 
purpose CPU while avoiding 
cache side channels.

Which Way Did He Go?
A related but even more powerful 
attack uses the branch prediction 
cache’s status as a side channel.7 
Instead of detecting memory ac-
cesses to the key data, this attack 

Advanced Encryption Standard
(AES) process
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Figure 1. In a Prime+Probe attack, a spy process probes 

the cache by monitoring timing of accesses to its 

own memory. As the target process encrypts, it evicts 

portions of the attacker’s memory from the cache, 

resulting in longer access times. The access times 

for the individual regions of the attacker’s memory 

correspond to which tables the encryption process 

accessed, and thus the target’s key.
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determines the code path the tar-
get process takes while executing 
the encryption code.

As I previously described, 
square-and-multiply has an op-
tional multiplication step. If the at-
tacker can detect when this branch 
is taken, he or she can determine 
which bits of the key are ones. 
(Other, more optimized routines 
such as sliding-window exponen-
tiation have similar weaknesses.)

Because modern CPUs have a 
deep pipeline, they implement a 
branch prediction unit, which keeps 
track of the target address and 
whether the branch was taken in 
a cache called the branch prediction 
target buffer (BTB). As with the 
memory cache, an attacker can 
influence and measure the cache 
state by performing jumps and 
timing either the encryption pro-
cess (as in Evict+Time) or its own 
execution speed (Prime+Probe).

One potential hurdle for branch 
prediction side-channel attacks is 
disruption due to support code or 
other processes running. This adds 
noise to the measurements. How-
ever, Onur Aciiçmez and his col-
leagues discovered that this noise 
was highly periodic.7 By taking 
several different measurements, 
they could select the one with the 
lowest noise and use it as the source 
for the key bits they were detecting. 
Unlike the cache attacks on AES, 
such an attack can derive enough 
key bits from a single trace that re-
peated analysis is unnecessary.

S ide-channel attacks were once 
esoteric, remaining the do-

main of special-purpose hardware. 
However, with the advent of cloud 
computing and virtualized servers, 
you can no longer assume that at-
tackers are remote. Advanced sta-
tistical methods and modeling have 
given them precise measurements 
independent of jitter. Meanwhile, 
CPUs’ increasing microarchitec-
tural complexity has created more 
side channels to exploit. Any soft-

ware developer who writes or 
deploys an application utilizing 
cryptography must be aware of this 
powerful class of attacks. 
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