
Crypto Corner
Editors: Peter Gutmann, pgut001@cs.auckland.ac.nz

David Naccache, david.naccache@ens.fr
Charles C. Palmer, ccpalmer@us.ibm.com

	 NOVEMBER/DECEMBER	2009							■						1540-7993/09/$26.00	©	2009	IEEE							■						COPUBLISHED	BY	THE	IEEE	COMPUTER	AND	RELIABILITY	SOCIETIES	 65	

Side-Channel	Attacks	on	
Cryptographic	Software

vulnerable to side-channel attacks
because of its strict requirements
for absolute secrecy. In the soft-
ware world, side-channel attacks
have sometimes been dismissed as
impractical. However, new system
architecture features, such as larger
cache sizes and multicore proces-
sors, have increased the prevalence
of side channels and quality of mea-
surement available to an attacker.
Software developers must be aware
of the potential for side-channel at-
tacks and plan appropriately.

History of
Side-Channel Attacks
Side channels are a variant of the
classic covert-channel problem.
Covert channels involve two or
more processes collaborating to
communicate via a shared re-
source that they can both affect
and measure. Attackers can ex-
ploit these channels to bypass op-
erating system protections such as
mandatory access control that are
intended to keep the processes
separate. For example, one process
can allocate memory while the
other measures the amount of free
memory. Through repetition of
this behavior, the first process can
slowly communicate information
to the second. The channel’s sig-
nal-to-noise (S/N) ratio measures

its quality. For example, memory
allocations by unrelated processes
might skew some measurements,
so a particularly busy system
might have a low S/N ratio. Error
correction methods can assist with
this case.

Whereas covert channels in-
volve the problem of preventing
cooperation, side-channel attacks
are a purely adversarial problem.
Side channels emerge because
computation occurs on a non- ideal
system, composed of transistors,
wires, power supplies, memory,
and peripherals. Each component
has characteristics that vary with
the instructions and data being
processed. When this variance is
measurable by an attacker, a side
channel is present.

Intelligence agencies have of-
ten relied on side-channel attacks
to monitor their foes. In one clev-
er incident, the Soviet Union pro-
vided a large wooden seal to the
American consulate in Moscow.
The US ambassador proudly hung
it in his office after it had been
examined for covert transmitters.
It appeared to be clean. Unbe-
knownst to the ambassador, the
seal contained a carefully designed
cavity that vibrated in response
to sounds in the room. The spies
transmitted a radio beam at the

Nate LawsoN

Root LabsW
hen it comes to cryptographic software,

side channels are an often-overlooked

threat. A side channel is any observable

side effect of computation that an attack-

er could measure and possibly influence. Crypto is especially

seal, measured the beam’s modu-
lation, and recreated the conversa-
tions in the room. This listening
method went undetected for years.

More recently, side-channel
attacks have become a powerful
threat to cryptography. One of the
first papers on side-channel attacks
showed how to recover an RSA
private key merely by timing how
long it took to decrypt a message.1
This was possible because RSA and
other public-key cryptosystems
work with large numbers (for ex-
ample, 2,048 bits), whereas modern
CPUs have a smaller word size.
Crypto implementations compen-
sate by using multiprecision arith-
metic, representing large numbers
by an array of words and using a
loop to carry overflows from one
word to the next.

To raise a multiprecision num-
ber to an exponent, systems such
as RSA commonly use square-and-
multiply. This optimization de-
composes an exponentiation into a
series of squarings (x2) and condi-
tional multiplies (* x), which oc-
cur if the bit in question is a one.
This is similar to pencil-and-paper
multiplication, in which trailing
zeros mean that you shift the re-
sult one decimal place to the left
while nonzero digits are multi-
plied and added to the result.

Because the multiply step is
conditional, an attacker gains in-
formation about the total number
of one bits with each decryption.
By measuring the total time to
perform a multiprecision expo-
nentiation with different input
messages, the attacker can eventu-
ally recover the entire private key
or enough to brute-force the rest.

Crypto Corner

66	 IEEE	SECURITY	&	PRIVACY

Timing attacks have continu-
ally improved, even being per-
formed against a Secure Sockets
Layer (SSL) implementation over a
network.2 New ways to filter jit-
ter have improved the distinguish-
ability to 200 ns over a LAN and
30 ms over the Internet.3 Attacks
have also exploited new side chan-
nels. Power consumption, RF and
electromagnetic emissions, sound,
vibration, and even heat give away
information about secret computa-
tions. These attacks aren’t merely
the subject of research papers.
Smart cards used for payment,
transit, and satellite TV have been
compromised by both active fault
induction attacks (“glitching”) and
side-channel attacks. Hackers used
a timing attack against a secret
key stored in the Xbox 360 CPU
to forge an authenticator and load
their own code.4

Embedded-systems designers
are no longer the only ones who
must prevent side-channel at-
tacks. Previously, network-based
timing attacks against SSL were
the only side-channel attack most
software developers needed to
consider. But today, virtualization
and application-hosting services
such as Amazon S3 have given at-
tackers a more privileged vantage
point of running code on the same
system (possibly even at the same
privilege level) as the target’s code.
Also, high-speed multicore CPUs
with large caches and complicated
instruction- and data-dependent
behavior provide more possibili-
ties for side channels and greater
precision for measurements.

To illustrate side-channel at-
tacks against software cryptogra-
phy, I analyze three recent attacks.
Each is increasingly more pow-
erful, to the point where the at-
tacker can recover an entire RSA
key by measuring the behavior of
a single decryption operation.

Keeping the Correct
Answer Secret
The Hash Message Authentication

Code (HMAC) hash construction
is often used to authenticate mes-
sages. To compute a given mes-
sage’s HMAC, the sender hashes
the message and a secret key twice
using a cryptographic hash algo-
rithm (for example, SHA-256).
The result is attached to the mes-
sage. The recipient then calculates
the message’s HMAC via the same
process and compares the result to
the value included with the mes-
sage. If they match, the message
wasn’t tampered with after the
sender calculated the HMAC.

One subtlety with this pro-
cess is that the value the recipient
calculates must be kept secret.
Consider what would happen if
the result were revealed to the
sender in the case of a mismatch,
perhaps as part of an error mes-
sage. An attacker could submit a
message with an invalid HMAC
field, observe the error message,
and then resend the same mes-
sage with the correct value at-
tached. The recipient would
accept this message as valid, even
though the sender didn’t create
the authenticator. Although most
systems probably don’t reveal the
correct HMAC value directly,
a side-channel attack can often
produce the same effect.

I recently reviewed the open-
source Google Keyczar crypto-
graphic library for possible flaws.5
This library provides useful high-
level key management features,
with separate implementations in
Java, Python, and C++. Keyczar
includes an HMAC implementa-
tion for authenticating messages.

The Python code compared
the received and calculated byte
values as follows:

return self.Sign(msg) ==
sig_bytes

The Java code was equivalent.
The underlying comparison

operator for both high-level lan-
guages performs a byte-wise
match of the two arrays. If any el-

ement didn’t match, the compari-
son loop would terminate early.
This would provide a timing side
channel in which the attacker
could iteratively fill in guesses for
each byte of the HMAC field, re-
submitting the same message each
time. When the guess was cor-
rect, the comparison would take a
little longer. Eventually, when the
whole HMAC was correct, the re-
cipient would accept the message.

An implementation of this at-
tack over a TCP connection to
localhost took about a thousand
queries per byte of the secret key.
This means that an attacker could
find a 128-bit key in less than a
few minutes. Because the array
comparison operators in Java and
Python aren’t implemented na-
tively, the timing difference for
each loop iteration was relatively
large. But even if there was more
network jitter or the comparison
loop was faster, the attacker could
simply take more samples, apply
an appropriate filter, and perform
a statistical hypothesis test to de-
termine which guess was correct.

The solution to this problem is
to implement a comparison func-
tion that doesn’t terminate early.
Although this might sound easy
at first, eliminating all conditional
branches from a comparison loop
is surprisingly difficult. Even with
a correct algorithm, some un-
derlying detail of the high-level
language implementation (such
as garbage collection) could still
leave a measurable timing differ-
ence. The standard C memcmp()
function is unsafe as well because
it also terminates early.

Footprints in the Cache
Like the original RSA timing at-
tack, the HMAC timing attack
combines many measurements of
the entire operation to find the
target’s secret. However, more
powerful side-channel attacks can
give insight into an algorithm’s
intermediate working values, re-
vealing the secret more quickly.

Crypto Corner

	 www.computer.org/security	 67	

Modern systems employ a
CPU cache to keep frequently ac-
cessed memory close to where it’s
needed. When data for a given ad-
dress is in the cache, it’s returned
immediately. If not, it’s fetched
from memory into the cache,
stalling the CPU for a few more
cycles. A cache is often divided
into blocks called lines.

Because a cache is smaller than
the memory it shadows, the CPU
must have a policy for filling
and reusing its space. The most
common implementation is a set
associative cache, which maps
multiple addresses to the same
cache line on the basis of some
fraction of the upper address
bits. For example, the addresses
0x100, 0x200, and 0x800 would
all use the same cache line if the
cache had 256 lines of one byte
each. “Set” refers to the number
of possible destination cache lines
per address (that is, N-way). The
CPU evicts older entries when
data is loaded into an already-
filled cache line.

The Advanced Encryption Stan-
dard (AES) is a standard block ci-
pher. It encrypts and decrypts data
with a secret key, using a combina-
tion of primitives such as MixCol-
umns, ShiftRows, and SubBytes
over many rounds (10 for a 128-bit
key). A common optimization
 technique on 32-bit processors
is to precompute a series of tables
on the basis of the combination
of these primitives. AES encryp-
tion then becomes a series of table
lookups and XOR operations.

Because the index for these
AES tables is the XOR of a plain-
text byte and a key byte, the in-
dices themselves must remain
secret. However, a spy process
running on the same system can
observe the variable timing of
the AES encryption due to cache
behavior, narrowing down the
possible values for the key.6 Even
if running a spy process isn’t pos-
sible, a remote attacker can of-
ten trigger changes in the system

cache state by interacting with
other processes and timing those
unrelated tasks’ behavior.

Dag Arne Osvik and his col-
leagues have described two useful
ways to induce variability and ob-
serve cache behavior: Evict+Time
and Prime+Probe.6

Evict+Time works as follows:

1. Trigger an encryption in the
target process.

2. Evict memory from chosen
cache lines by accessing the
appropriate addresses in the
attacker’s process.

3. Trigger and time another en-
cryption of the same plaintext.

The first step ensures that all the
AES lookup tables accessed by
the given plaintext and key are
cached. The second step forces
the CPU to evict part of one AES
table that the attacker is target-
ing, on the basis of a guess of the
key byte. The final step tests the
attacker’s hypothesis. If a cache
miss occurs and the AES en-
cryption takes longer than other
cases, the guess for the XOR of
the plaintext and key bytes was
correct and caused the CPU to
reload the table from RAM after
it had been evicted. If not, the
guess was incorrect. The attacker
repeats this process to narrow the
possible key values.

Prime+Probe (see Figure 1) is
more powerful. It’s analogous to
placing a film negative behind an
object and measuring the outline
cast by the object’s shadow. Instead
of timing the encryption process,
which is subject to noise and jit-
ter due to surrounding code in
the target, the attacker repeatedly
times accesses to its own memory
while the target encrypts. Each
time an encryption occurs, the
CPU evicts one or more lines of
the attacker’s memory from the
cache, causing timing variation.
Because the cache eviction is local
to the attacker, countermeasures
such as randomizing or normaliz-

ing the total encryption time have
no effect.

Such an attack isn’t merely a
timing attack. Although time is
the method for probing cache be-
havior, this attack could use other
methods to determine the cache
state. For example, if an instruc-
tion provided the number of valid
cache lines for the current task, it
would directly provide the same
information obtained from this
timing side channel.

Intel and AMD (and previ-
ously, Via) introduced AES in-
structions to address this problem
and increase performance. Unfor-
tunately, owing to the structure
of AES, there appears to be no
way to build a high-performance
implementation on a general-
purpose CPU while avoiding
cache side channels.

Which Way Did He Go?
A related but even more powerful
attack uses the branch prediction
cache’s status as a side channel.7
Instead of detecting memory ac-
cesses to the key data, this attack

Advanced Encryption Standard
(AES) process

Cache

Spy process

Figure 1. In a Prime+Probe attack, a spy process probes

the cache by monitoring timing of accesses to its

own memory. As the target process encrypts, it evicts

portions of the attacker’s memory from the cache,

resulting in longer access times. The access times

for the individual regions of the attacker’s memory

correspond to which tables the encryption process

accessed, and thus the target’s key.

Crypto Corner

68	 IEEE	SECURITY	&	PRIVACY

determines the code path the tar-
get process takes while executing
the encryption code.

As I previously described,
square-and-multiply has an op-
tional multiplication step. If the at-
tacker can detect when this branch
is taken, he or she can determine
which bits of the key are ones.
(Other, more optimized routines
such as sliding-window exponen-
tiation have similar weaknesses.)

Because modern CPUs have a
deep pipeline, they implement a
branch prediction unit, which keeps
track of the target address and
whether the branch was taken in
a cache called the branch prediction
target buffer (BTB). As with the
memory cache, an attacker can
influence and measure the cache
state by performing jumps and
timing either the encryption pro-
cess (as in Evict+Time) or its own
execution speed (Prime+Probe).

One potential hurdle for branch
prediction side-channel attacks is
disruption due to support code or
other processes running. This adds
noise to the measurements. How-
ever, Onur Aciiçmez and his col-
leagues discovered that this noise
was highly periodic.7 By taking
several different measurements,
they could select the one with the
lowest noise and use it as the source
for the key bits they were detecting.
Unlike the cache attacks on AES,
such an attack can derive enough
key bits from a single trace that re-
peated analysis is unnecessary.

S ide-channel attacks were once
esoteric, remaining the do-

main of special-purpose hardware.
However, with the advent of cloud
computing and virtualized servers,
you can no longer assume that at-
tackers are remote. Advanced sta-
tistical methods and modeling have
given them precise measurements
independent of jitter. Meanwhile,
CPUs’ increasing microarchitec-
tural complexity has created more
side channels to exploit. Any soft-

ware developer who writes or
deploys an application utilizing
cryptography must be aware of this
powerful class of attacks.

References
1. P. Kocher, “Timing Attacks on Im-

plementations of Diffie- Hellman,
RSA, DSS, and Other Systems,”
Cryptography Research, 1995;
www.cryptography.com/resources/
whitepapers/TimingAttacks.pdf.

2. D. Brumley and D. Boneh, “Re-
mote Timing Attacks Are Practi-
cal,” Proc. 12th Conf. Usenix Security
Symp., Usenix Assoc., 2003, p. 1.

3. S.A. Crosby, D.S. Wallach, and
R.H. Riedi, “Opportunities and
Limits of Remote Timing At-
tacks,” ACM Trans. Information
and System Security, vol. 12, no.
3, 2009, article 17; www.cs.rice.
edu/~dwallach/pub/crosby-timing
2009.pdf.

4. “Timing Attack Tested Success-
fully: Downgrade from Any Ker-
nel without CPU-Key”; www.
xbox-scene.com/xbox1data/sep/
EElZluZypZpmixPJrS.php.

5. N. Lawson, “Timing Attack
on Google Keyzar,” blog, 28
May 2009; http://rdist.root.org/
2009/05/28/timing-attack-in
-google-keyczar-library.

6. D.A. Osvik, A. Shamir, and E.
Tromer, “Cache Attacks and
Countermeasures: The Case of
AES,” Topics in Cryptology—CT-
RSA 2006, LNCS 3860, Spring-
er, 2006; pp. 1–20.

7. O. Aciiçmez, Ç.K. Koç, and J.-P.
Seifert, “On the Power of Simple
Branch Prediction Analysis,” Proc.
2nd ACM Symp. Information, Com-
puter and Communications Security,
ACM Press, 2006, pp. 312–320.

Nate Lawson is the founder of Root

Labs, a security consulting practice fo-

cusing on kernel, embedded-platform,

and cryptography design and analysis.

Contact him at nate@rootlabs.com.

Selected CS articles and columns
are also available for free at

http://ComputingNow.computer.org.

Computational
tools and
methods for 21st
century science.

MEMBERS
$47/year
for print and online

Subscribe to CiSE online at
http://cise.aip.org and
www.computer.org/cise

Interdisciplinary

Communicates to those at the
intersection of science, engineer-
ing, computing, and mathematics

Emphasizes real-world applica-
tions and modern problem-solving

