
Secure Coding – Laboratory
Exercises
Pericle Perazzo, PhD

Version 2018-03-13

Laboratory Exercises

• Download assignments and code at:
http://www.iet.unipi.it/p.perazzo/teaching/index.html

http://www.iet.unipi.it/p.perazzo/teaching/index.html

Exercise #1 – Arrays

• Inserts the integer value <value> inside a global table at position <pos> (zero-
based indexed)

• Increases the table capacity if needed

• Returns 0 on success, -1 on failure

• Initially, the global table has zero capacity

• The main program repeatedly:
• asks user for argument values

• and calls insert_table() with such values

int insert_table(size_t pos, int value)

Exercise #1 – Arrays

• insert_in_table() contains vulnerabilities

• Mount the following attacks:

1. Cause an out-of-bound write (segmentation fault) with a single call
• Correct the flaw

2. Cause an out-of-bound write (segmentation fault) with two calls
• Correct the flaw

3. Cause an out-of-bound write (segmentation fault) with two calls
with another tactic
• Correct the flaw

Exercise #2 – Arrays

• Allocates an array of <a> long integers, all of which are 0 except those from
 to <c> indexes (zero-based) included which are -1

1. Implement the above function in secure coding
• Use malloc() to allocate
• Use memset() to write 0’s and -1’s

• Writes <num> bytes to 0x00 beginning from <ptr>
• A long integer = 0 is represented by sizeof(long) bytes = 0x00

• Writes <num> bytes to 0xFF beginning from <ptr>
• A long integer = -1 is represented by sizeof(long) bytes = 0xFF

long* create_long_array(int a, int b, int c)

memset(void* ptr, 0x00, size_t num)

memset(void* ptr, 0xFF, size_t num)

Exercise #3 – Strings

• Creates a text file named «<name>.txt» containing the result of the command
«dir» (note: «dir» command is present in both Windows and Unix platforms)

• Returns 0 on success, -1 on failure

Il volume nell'unit… C non ha etichetta.
Numero di serie del volume: BA88-A5EA

Directory di C:\Users\Pericle\Documents\MEGAsync\Teaching\Seminario IDS\code\string

11/01/2018 13:45 <DIR> .
11/01/2018 13:45 <DIR> ..
11/01/2018 13:42 94 creditcards
11/01/2018 08:31 22 creditcards.bak
11/01/2018 13:45 0 list.txt
11/01/2018 13:38 1.560 string.cpp
11/01/2018 13:38 1.566.073 string.exe
11/01/2018 13:38 4.250 string.o
11/01/2018 13:44 1.509 string_attacks.txt
10/01/2018 23:22 1.016 string_secure.cpp

8 File 1.574.524 byte
2 Directory 944.408.940.544 byte disponibili

int create_file_list(const char* name)

Exercise #3 – Strings

• create_file_list() contains vulnerabilities
• Mount the following attacks:
1. Cause a buffer overflow

• Correct the flaw

2. Cause the overwrite of the file named «critical_file.txt» in the folder
named «critical_application», which is parallel to the current folder

3. Steal the content of the file named «creditcards»
• Correct flaws 2 and 3

<root folder>
<exercise folder>

critical_application
string.exe

critical_file.txt

Exercise #4 – C++ Strings

• Assigns to an environment variable named «TMP_<name>» the value <value>

• Returns 0 on success, -1 on failure

• Returns a string containing the name and the value of the environment
variable named «TMP_<name>», with the following format:

«Name:TMP_foo;Value:bar»

int set_TMP_envvar(const std::string& name, const std::string& value)

std::string export_TMP_envvar(const std::string& name)

Exercise #4 – C++ Strings

• export_TMP_envvar() contains vulnerabilities

• Mount the following attack:

1. Cause an abnormal program termination (segmentation fault) with
a single call of set_TMP_envvar() and export_TMP_envvar()
• Correct the flaw

Exercise #5 – Unsigned Integers

• Allocates a C string of length <num1>+<num2>, in which the first <num1>
chars are <fillchar1>, and the following <num2> chars are <fillchar2>

• Example:

create_string(3, 4, 'a', 'b') -> "aaabbbb"

• Returns a pointer to the string on success, NULL on failure

char* create_string(size_t num1, size_t num2, char fillchar1, char fillchar2)

Exercise #5 – Unsigned Integers

• create_string() contains vulnerabilities

• Mount the following attack:

1. Cause an out-of-bound write (segmentation fault) with a single call
• Correct the flaw

Exercise #6 – Unsigned Integers

• Allocates an array of <num> integers, all with value <fillint>

• Returns a pointer to the array on success, NULL on failure

int* create_int_array(size_t num, int fillint)

Exercise #6 – Unsigned Integers

• create_int_array() contains vulnerabilities

• Mount the following attack:

1. Cause an out-of-bound write (segmentation fault) with a single call
• Correct the flaw

Exercise #7 – Signed Integers

• Prints on standard output the content of the file «secret_information.txt»,
only if <privilege> >= 100

• The <privilege> argument is a signed integer representing the user’s privilege

• Negative privileges are meaningful

• The main program repeatedly:
• asks user for his/her privilege,

• replaces it with 99 if the user inserted >= 100,

• and then calls show_secret_information()

void show_secret_information(int privilege)

Exercise #7 – Signed Integers

• show_secret_information() contains vulnerabilities

• Mount the following attack:

1. Gain unauthorized access to the secret information
• Correct the flaw

Exercise #8 – Signed Integers

• Allocates a C string of length <num1>*<num2>, in which all the characters are
<fillchar1>, except the 1st, the <num2>-th, the 2<num2>-th, and so on, which
are <fillchar2>

• Example:

create_string2(3, 4, 'a', 'b') -> "baaabaaabaaa"

• Returns a pointer to the string on success, NULL on failure

char* create_string2(int num1, int num2, char fillchar1, char fillchar2)

Exercise #8 – Signed Integers

• create_string2() contains vulnerabilities

• Mount the following attack:

1. Cause an out-of-bound write (segmentation fault) with a single call
in several ways
• Correct the flaw

