
1



Code with red border means vulnerable code. Code with green border means
corrected code.
This program asks the user for a password with the function IsPasswordOK(), and 
compares it with the correct password. If the password is wrong, it will print «Access 
denied» and abort the program, otherwise it will print «Access granted».
If the user inserts a password of 12 characters or more, the gets() function will write
beyond the last character of the variable <Password>. This is called «buffer 
overflow». What happens in this case is undefined («undefined behavior»). Some 
compilers could check for out-of-bound write and raise a hardware exception (which
will eventually abort the program). However, in the majority of cases, C/C++ 
compilers are focused on producing efficient code, so no out-of-bound check will be 
performed on buffer accesses.

2



In this case, data overflowing the buffer is written in the memory space that happens
to be contiguous to the overflowed buffer, containing other data (variables, etc.). 
Therefore, other data is over-written.

3



4



A non-static variable in C/C++ can be allocated either dinamically (with malloc() or 
new operator) o automatically (by declaring it as a local variable in a function). The 
heap contains all the dynamic variables, while the stack contains all the automatic
variables and the return addresses of the subroutines. Both heap and stack overflows
can read/change the value of other variables. Stack overflow is generally more 
dangerous, because it can directly change the execution sequence by changing the 
return addresses of the subroutines.

5



The figure shows what happens to the stack when the IsPasswordOK() function is
called by the main() function. The blue arrow indicates the current execution point. 
The stack grows upward and shrinks downward. The function call stores in the stack
the possible argument values (in this case: none) and the return address, which is the 
address to the instruction just after the function calling. Then, the function stores in 
the stack its local variables (in this case: <Password>). When the function
IsPasswordOK() returns, the local variables, the return address, and the possible
argument values are removed from the stack, and the execution point starts again
from the return address.

6



If the user inserts a password with a length more than 11 characters, then the return
address will be over-written like in the above example figure. In this case, the 
overflowed data is interpreted as a return address. When the function
IsPasswordOK() returns, the execution tries to jump to such an address. Let us
suppose that such address points to a non-executable part of the memory. This will
result in a «segmentation fault» and an abnormal program termination.

7



Let us suppose that the user inserts the above password. The ASCII characters j◙*! 
correspond to the address 0x6A102A21 (in hexadecimal digits). Such an address is
valid and points to the puts("Access granted") instruction of the main(). When
IsPasswordOK() returns, the execution flow will jump to the instructions
implementing the access-grant branch, so skipping the actual password check. Such
attack is commonly known as «arc injection», because the attacker injects a malicious
«arc» in the program execution flow, from the IsPassword()’s return instruction to the 
puts("Access granted") instruction.

8



Let us suppose that the user inserts the above password. <compiled-program> 
represent the binary instructions of malicious software («malware»). The ASCII 
characters →ÄPŸ correspond to the address 0x1AC4509F in hexadecimal digits. Such
an address is valid and points to the first memory location of the injected malware. 
(Let us suppose by now that the part of the memory which contains the stack is
executable.) When IsPasswordOK() returns, the execution flow will jump to the 
instructions implementing the malware. Such attack is commonly known as «code 
injection», and results in an «arbitrary code execution».

9



To mount a code injection, the attacker must know the exact address of the malware, 
which is not always predictable. To overcome this, the attacker can prepend the 
malware with an arbitrary number of NOP instructions («NOP slide»). The 
overwritten return address need only to jump in the middle of the NOP slide, so it can 
be approximated. Then, the control flow will drop down to the malware code.

10



The injected code can be a shellcode, i.e., a code implementing a (local or remote) 
command shell by which the adversary can execute arbitrary commands on the 
victim machine. This shellcode example (taken from shell-storm.org) is only 194-byte-
long and is suitable for all versions of Windows platforms. Another possibility is to 
inject a «download-and-execute code», which simply downloads in memory a larger
malware from a given Internet location and then executes it. Download-and-execute
codes permit the attacker to execute complex malware even with a short buffer 
overflow.

11



Starting from 2000’s, the major operating systems and compilers adopted a series of 
stack overflow protections, the most common of which are Data Execution
Prevention (DEP), Address Space Layout Randomization (ASLR), and Stack Canaries. 
None of these protections is definitive, because they do not make the attack
impossible, but only more technically challenging. By default, they are active in all the 
modern operating systems and compilers. It is not recommended to disable them.
Hardware-based DEP has a negligible impact on performance.

12



DEP can be cheated with Return-Oriented Programming (ROP) techniques. 

13



14



Without ASLR, when a program gets executed, it is always stored in memory starting
from address 0. This makes ROP easy, since the adversary knows deterministically all
the addresses of the victim code. ASLR decides randomically the first address of the 
program to be executed. This is an additional source of uncertainty from the 
adversarial point of view.

15



16



Stack canaries are a compiler-based protection technique.

17



Stack canaries (and DEP and ASRL as well) do not defend against buffer overflow
itself, but rather against its hardest consequences (e.g., remote code execution). 
Indeed, it is still possible to use a buffer overflow to simply produce an abnormal
termination of a program, thus causing a denial of service. Moreover, stack canaries
does not prevent buffer over-reads, that is overrunning a buffer’s boundary in a read
operation. A buffer over-read can lead to information leaks. Notably, a buffer over-
read in the stack can also leak the value of one or more stack canaries, which could
then be used to mount buffer overflow attacks.
Finally, stack canaries slow down the program performance since they introduce 
operations at the function prologues and epilogues. Some compilers optimize the 
program by avoiding stack canaries in those function that they consider «safe» from 
stack overflow vulnerabilities. A compiler could consider safe a function which does
not declare local arrays, or declares small local arrays. This is sometimes risky.

18



19


