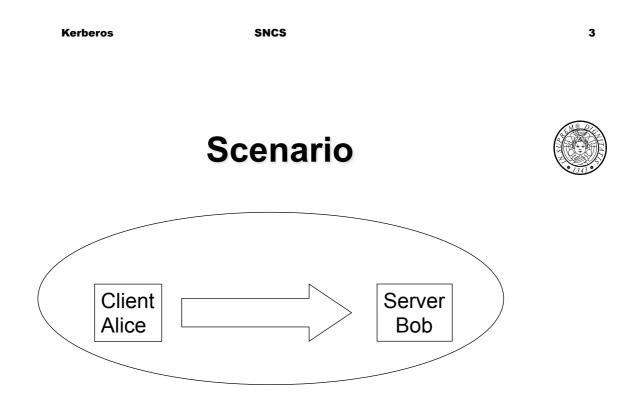
Kerberos

Kerberos



- Kerberos is based on the Needham-Schroeder protocol (1978)
- Kerberos was developed at MIT in1980
- Kerberos V4 and Kerberos V5 (RFC 1510)
- Kerberos if part of OSF DCE and Windows 2K (e later)
- In Windows 2000, Kerberos has replaced the Windows NT domain authentication mechanism

Roadmap

- The simplified architecture
- The complete architecture
 - Pre-authentication
 - Delegation
 - proxiable tickets
 - forwardable tickets
 - Realms

- Server only allows authorized accesses
- Server authenticates service requests

Client authentication

- Server trust workstation for user authentication. The server applies a policy base on UID (closed system)
- 2. Similar to point 1 but the server authenticates the WSs (closed system)
- 3. Server requires the user to provide a proof of idenity for each service request, and vice versa (open system)

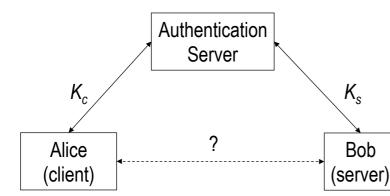
Kerberos

SNCS

Objectives

5

Security


Eavesdropping and spoofing must be non possible for an outsider

Availability

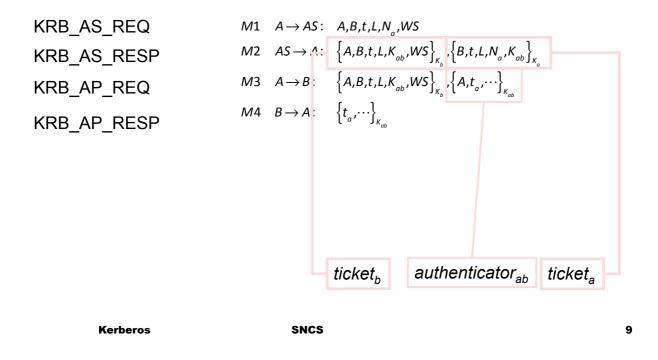
- If Kerberos is unavailable all the services become unavailable
- Transparency
 - The authentication process must be transparent but password typing
- Scalability
 - Kerberos must handle a large number of servers and users

Kerberos: architettura di base

 $K_c \in K_s$ (*master key*) sono segreti condivisi tra AS e client e server, rispettivamente (ad esempio derivati da password)

Obiettivo primario: autenticazione mutua di client e server

Obiettivi secondari:


- · Stabilire una chiave condivisa tra client e server
- Provare al server che il client è attivo e viceversa

```
• ...
```

Kerberos SNCS 7 The basic idea AS Alice Bob credentials ticket_a, ticket_b authenticator_{ab}, ticket_b • **ticket**_a = $E_{Ka}(A | |K_{ab}| | ...);$ • **ticket**_b = $E_{Kb}(A | |K_{ab}| | ...);$ • authenticator_{ab} = $E_{Kab}(t_a | | ...)$ SNCS 8 Kerberos

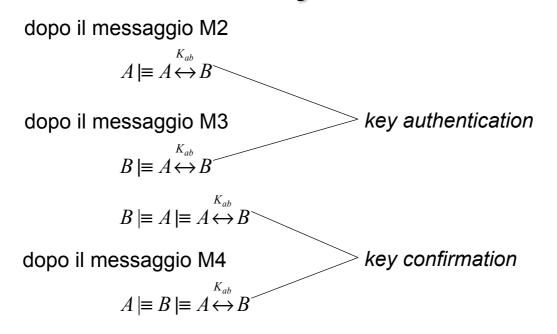
Kerberos V (simpl.)

KRB_AS_REQ	<i>M</i> 1	$A \rightarrow AS$:	A,B,t,L,N _a ,WS
KRB_AS_RESP	М2	$AS \rightarrow A$:	$\left\{A,B,t,L,K_{ab},WS\right\}_{K_b},\left\{B,t,L,N_a,K_{ab}\right\}_{K_a}$
KRB_AP_REQ	М3	$A \rightarrow B$:	$\{A, B, t, L, K_{ab}, WS\}_{K_b}, \{A, t_a, subkey_a\}_{K_{ab}}$
KRB_AP_RESP	<i>M</i> 4	$B \rightarrow A$:	$\{t_a, subkey_b\}_{K_{ab}}$

- *L* Validity interval of the ticket. Alice reuses the ticket for multiple authentications to Bob without interacting with AS so avoiding messages M1 and M2
- The **timestamp** t_a is generated by Alice. *Bob* verifies the freshness. For each authentication, Alice generates a new authenticator using the same K_{ab} but a different t_a
- The work station identifier **WS** allows the server to control which computers can use the ticket
- The subkey_a e subkey_b can be used for the service fulfillment.

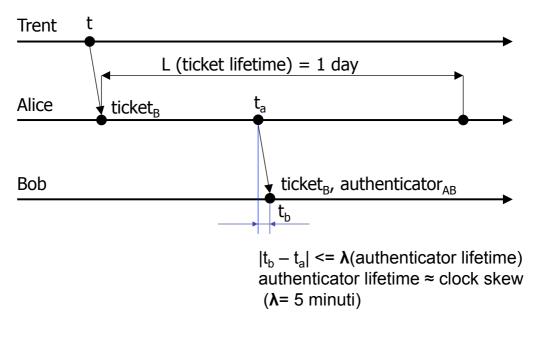
Analysis

Assumptions


 $A \models A \stackrel{K_a}{\leftrightarrow} AS \qquad B \models B \stackrel{K_b}{\leftrightarrow} AS$ $AS \models A \stackrel{K_a}{\leftrightarrow} AS \qquad AS \models B \stackrel{K_b}{\leftrightarrow} AS$ $AS \models A \stackrel{K_a}{\leftrightarrow} AS \qquad AS \models B \stackrel{K_b}{\leftrightarrow} AS$ $AS \models A \stackrel{K_{ab}}{\leftrightarrow} B \qquad AS \models B \stackrel{K_b}{\leftrightarrow} AS$ $AS \models A \stackrel{K_{ab}}{\leftrightarrow} B \qquad B \models (AS \Rightarrow A \stackrel{K_{ab}}{\leftrightarrow} B)$ $B \models (AS \Rightarrow A \stackrel{K_{ab}}{\leftrightarrow} B) \qquad B \models (AS \Rightarrow A \stackrel{K_{ab}}{\leftrightarrow} B)$ Idealized protocol

 $A \models \#(t)$

 $B \models \#(t) \quad B \models \#(t_a)$


Kerberos

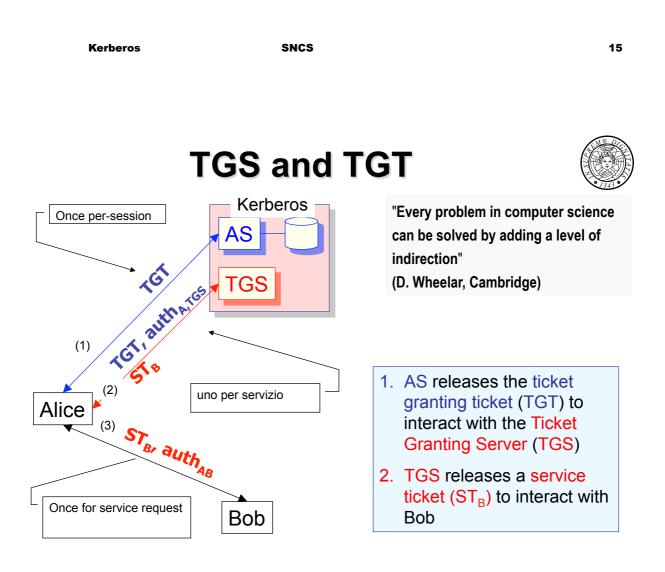
Analysis

Lifetime and authenticator

Kerberos

SNCS

Comments



- Kerberos requires synchronized clocks
- In Kerberos 5, λ = 5 minutes:
 - Authenticator may be replayed in that window
- If Ka and Kb derive from a pwd, then they are as secure as the pawd

Complete architecture

- A user uses quite a few services
- The user has to authenticate to each service
- Two approaches
 - The user inputs the pwd for each new authentication and then deleted soon (little usable)
 - The WS stores the pwd for a long period (little secure)

Ticket Granting Service

Phase 1

Alice inteacts with **AS** and receives a **TGT**, *ticket granting ticket*, a ticket for server **TGS**

Phase 2

Alice interacts with TGS and receives ST_b , *service ticket,* a ticket for server **B**

Phase 3

Alice uses $\mathbf{ST}_{\mathbf{b}}$ to authenticate and to get authenticated to Bob

Kerbe	eros

SNCS

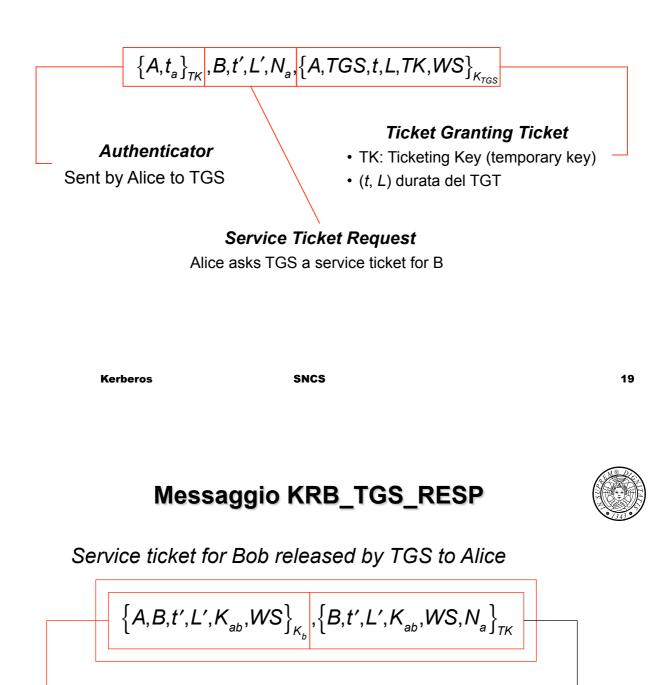
Interacting with TGS

Phase 2: msg KRB_TGS_REQ

Alice asks TGS a service ticket for B

 $\{A, t_a\}_{TK}, B, t', L', N_a, \{A, TGS, t, L, TK, WS\}_{K_{TGS}}$

Phase 2: msg KRB_TGS_RESP


TGS releases Alice a service ticket for B

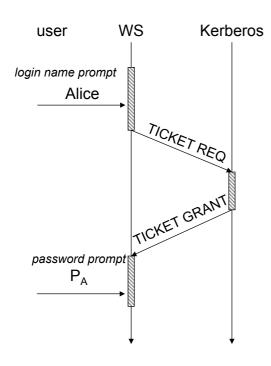
 $\left\{A,B,t',L',K_{ab},WS\right\}_{K},\left\{B,t',L',K_{ab},WS,N_{a}\right\}_{TK}$

Messaggio KRB_TGS_REQ

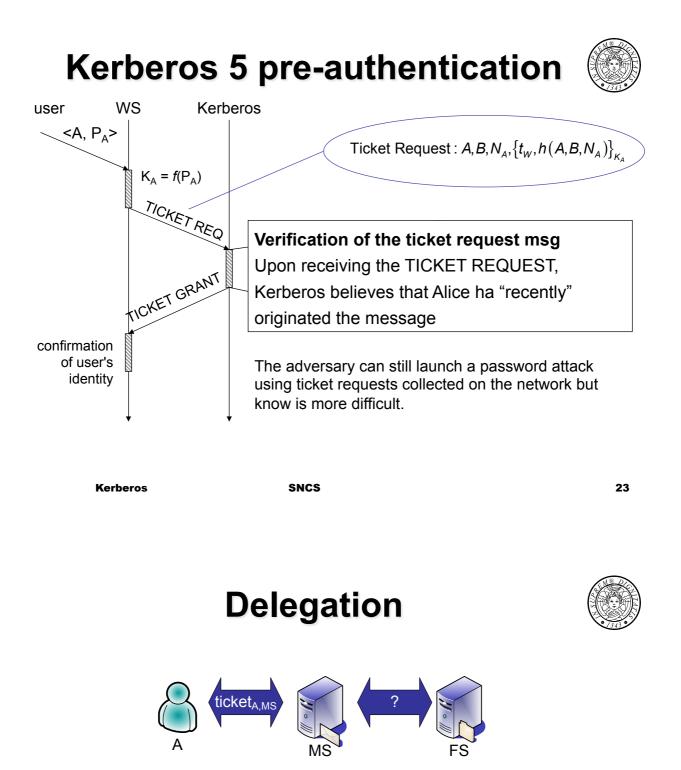
Service Ticket for Bob

Service Ticket for Alice

Authentication


21

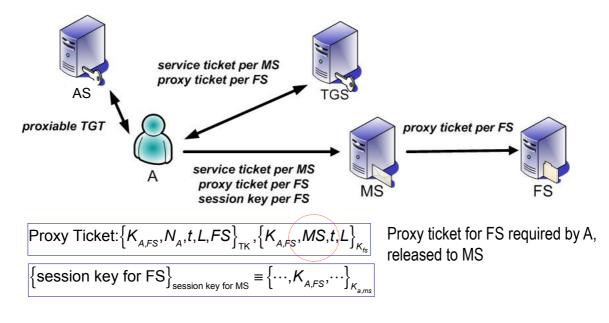
- Kerberos authenticates users w.r.t. network services
- Kerberos does not authenticate users w.r.t. AS
 - Anyone may ask for a ticket on Alice behalf
 - Kerberos guarantees that nobody but Alice can use that ticket
 - An adversary may use this to launch a pwd attack
 - · Guess a pwd and verify the guess by decrypting a ticket
- Kerberos does not help WS to authenticate users (indirect authentication)
 - WS is just a means through which users access services
 - WS are uniform, interchangeable, thin client;


Kerberos

SNCS

Normal authentication

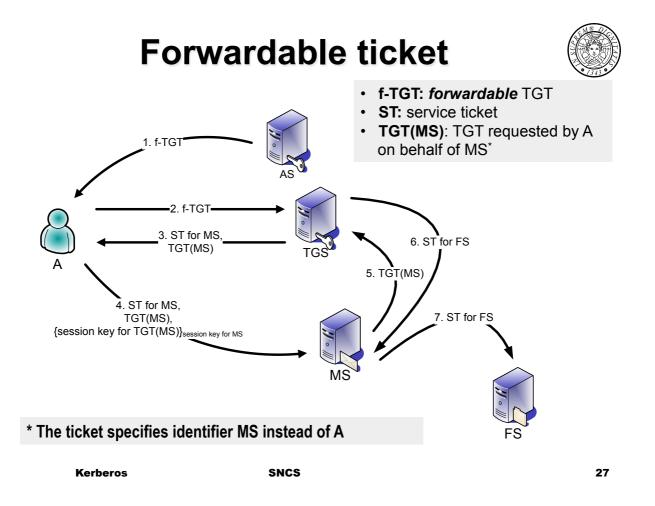
- WS does not authenticate Alice but the ticket is encrypted.
- However, an adversary can collect tickets (on demand) and use them to launch a pwd attack (known plaintext attack)


- Example. Mail Server MS has to interact with File System FS on the *iser behalf* according to the *minimum privilege principle*
- Kerberos provides two mechanisms that allow Alice to delegate MS
 - proxy tickets
 - forwardable TGT

Kerberos

Proxy ticket

PT allows us to request a service ticket linked to an address (WS) different from the requesting one


Kerberos

SNCS

Proxy ticket: cons

- Problem. This solution requires that
 - Alice knows in advance all the proxy tickets she needs or,
 - She is able to negotiate them with MS as needed
- Forwardable tickets make it possible to solve this problem and allow the delegated server MS to ask the necessary tickets

Forwardable ticket

- [...]
- Step 3. TGS returns Alice
 - 1. A *service ticket* for MS {..., K_{a,ms}, ...}_{TK}, {..., K_{a,ms},...}_{Kms}
 - A TGT containing the ticketing key associated to MS instead of Alice

{..., TK',...}_{Ka}, {..., TK', MS,....}_{Ktgs}.

- Step 4. Alice forwards the two tickets to MS together with the ticketing key TK' encrypted by means of con K_{a,ms}
- [...]

The ticketing key is associated to MS _ instead of A

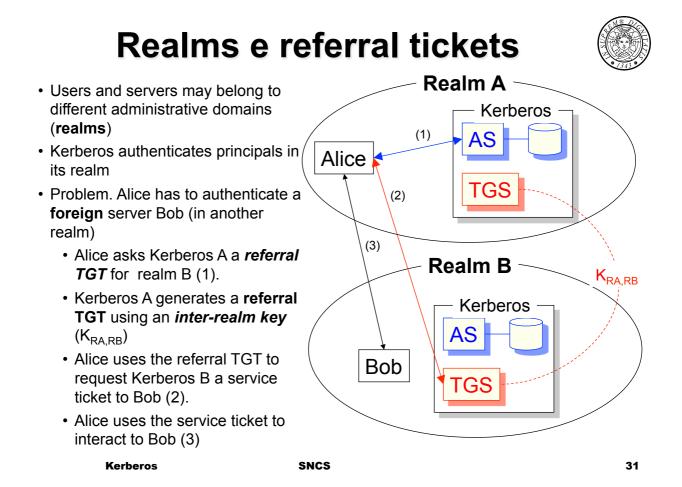
Proxy vs forwardable ticket

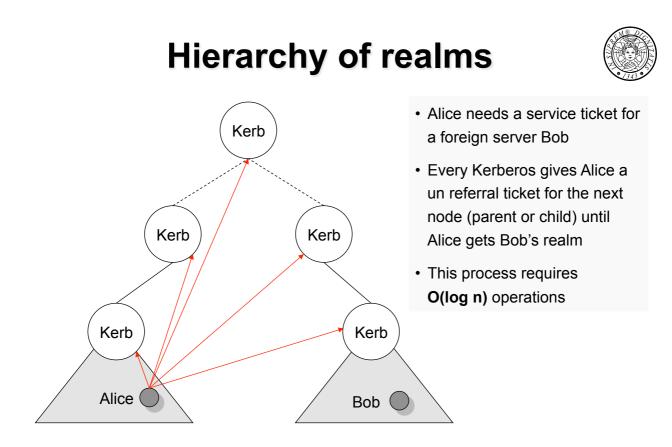
Proxy ticket

- (PRO) The user controls which rights to delegate the server
- (CON) The user needs to know which tickets will be necessary

Forwardable ticket

- (PRO) The server determines which ticket it needs
- (CON) A compromised servers can abuse of all rights


SNCS


Limitations to delegations

- A ticket has a maximum lifetime
- A ticket specifies a maximum number of access rights (capability)

Intrusion tolerance

- Pragmatic approach. Kerberos is subject to intrusions but limits their effects
 - Workstation. Damages are limited to the work station and its users
 - Server. Damages are extended to all server's users
 - A good practice is to distribute servers over multiple machines
 - KDC. The system is complettely broken

Kerberos	SNCS		33
Clock	synchron	ization	
Adversary has an c and the related tick	-	Time server	network time protocol
The second secon	Poss object		•
If the adversary su the clock, then it ca	-		erver

Public-key encryption

Certificates remove the need of shared secrets based on reusable passwords

Procedure PKINIT				
<i>M</i> 1.	$A \rightarrow T$	$S_A(A, B, N_A)$, certificate _A		
М2.	$T \rightarrow A$	$ticket_{B}, E_{e_{A}}(S_{T}(K, N_{A}, L, B))$		

Alice holds $certificate_{\tau}$

W2K encapsulates PKINIT in its Kerberos-based authentication environment

Kerberos

SNCS