Analysis and design of cryptographic protocols

UNIVERSITÀ DI PISA UNIVERSITÀ DI PI

Main topics

- The BAN logic
- Design principles
- Case studies
 - Needham-Schroeder \Rightarrow Kerberos
 - Otway-Rees
 - SSL (an old version)
 - GSM

The problem

Security protocols are three-line programs that people still manage to get wrong.

Roger M. Needham

SNCS

Ban logic

The BAN logic

- After its inventors: Burrows, Abadi, Needham
- Belief and action
- The logic cannot prove that a protocol is wrong
- However, if you cannot prove a protocol correct, then consider that protocol with great suspicion

Formalism

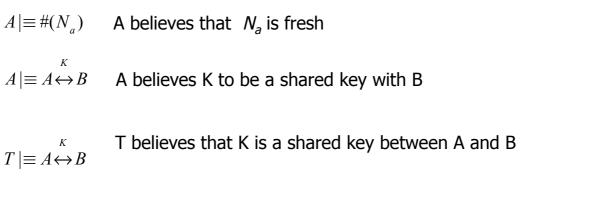
- $P \equiv X$ **P believes X**. P behaves as if X were true
- $P \triangleleft X$ P sees X:
- $P \sim X$ P once said X:
- $P \Rightarrow \chi$ P controls X.
- #(X) X is fresh

SNCS

Ban logic

5

Formalism



 $\stackrel{\kappa}{\mapsto} P$ K is P's public key

 $\langle \pmb{\mathcal{X}}
angle_{\pmb{\mathcal{Y}}} \pmb{\mathsf{X}}$ is a combined with $\pmb{\mathsf{Y}}$

 $\{X\}_{\kappa}$ X has been encrypted with K

Examples

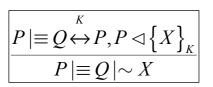
A believes T an authority on generating session keys $A \mid \equiv T \Longrightarrow A \stackrel{\kappa}{\longleftrightarrow} B$

 $A \mid \equiv T \Rightarrow \# \left(A \stackrel{\kappa}{\leftrightarrow} B \right)$ A believes that T is competent in generating fresh session keys

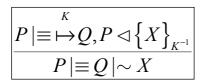
SNCS

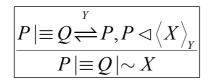
Ban logic

Preliminaries


7

- BAN logic considers two epochs: the present and the past
 - The present begins with the start of the protocol
- Beliefs achieved in the present are stable for all the protocol duration
- If P says X then P believes X
- Beliefs of the past may not hold in the present


Ban logic


Postulates: message meaning rule

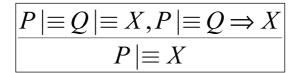
If *K* is a shared key between *P* and *Q*, a $\overset{\bullet}{P}$ sees a message encrypted by *K* containing *X* (and P did not send that message), then *P* believes that *X* was sent by *Q*

If *K* is *Q*'s public key, and *P* sees a message signed by con K^{-1} containing *X*, then *P* believes that *X* was sent by *Q*

If Y is a shared secrete between P and Q, and P sees a message where Y is combined with X (and P did not send the message), then P believes that X was sent by Q

SNCS

Ban logic



$P \mid \equiv \#(X), P \mid \equiv Q \mid \sim X$
$P \mid \equiv Q \mid \equiv X$

- If P believes Q said X and P believes X is *fresh*, then P believes Q believes X (now, in this protocol execution)
- If P believes X was sent by Q, and P believes X is *fresh*, then P believes Q has sent X in this protocol execution instance

Postulates: jurisdiction rule

- If P believes Q believes X and P believes Q is an authority on X, then P believes X too
- If P believes Q says X and P trusts Q on X, then P believes X too

SNCS

Ban logic

11

Altri postulati

$P \mid \equiv X, P \mid \equiv Y$	$P \mid \equiv (X, Y)$	$P \mid \equiv Q \mid \equiv (X, Y)$	$P \mid \equiv Q \mid \sim (X, Y)$
$P \mid \equiv (X, Y)$	$P \mid \equiv X, P \mid \equiv Y$	$P \mid \equiv Q \mid \equiv X$	$P \mid \equiv Q \mid \sim X$

 $\frac{P \mid \equiv \#(X)}{P \mid \equiv \#(X,Y)}$

$$\frac{P \triangleleft (X,Y)}{P \triangleleft X} \qquad \qquad \frac{P \triangleleft \langle X \rangle_{Y}}{P \triangleleft X} \\
\frac{P \mid \equiv Q \stackrel{\kappa}{\leftrightarrow} P, \quad P \triangleleft \{X\}_{\kappa}}{P \triangleleft X} \qquad \qquad \frac{P \mid \equiv \stackrel{\kappa}{\mapsto} P, \quad P \triangleleft \{X\}_{\kappa}}{P \triangleleft X} \qquad \qquad \frac{P \mid \equiv \stackrel{\kappa}{\mapsto} Q, \quad P \triangleleft \{X\}_{\kappa^{-1}}}{P \triangleleft X}$$

$$\frac{P \mid \equiv R \stackrel{\kappa}{\longleftrightarrow} R'}{P \mid \equiv R' \stackrel{\kappa}{\longleftrightarrow} R} \quad \frac{P \mid \equiv Q \mid \equiv R \stackrel{\kappa}{\longleftrightarrow} R'}{P \mid \equiv Q \mid \equiv R' \stackrel{\kappa}{\longleftrightarrow} R} \quad \frac{P \mid \equiv R \stackrel{\kappa}{\rightleftharpoons} R'}{P \mid \equiv R' \stackrel{\kappa}{\rightleftharpoons} R} \quad \frac{P \mid \equiv Q \mid \equiv R \stackrel{\kappa}{\rightleftharpoons} R'}{P \mid \equiv Q \mid \equiv R' \stackrel{\kappa}{\rightleftharpoons} R}$$

Protocollo idealizzato

Each protocol step is represented as

 $A \rightarrow B$: messaggio

For example:

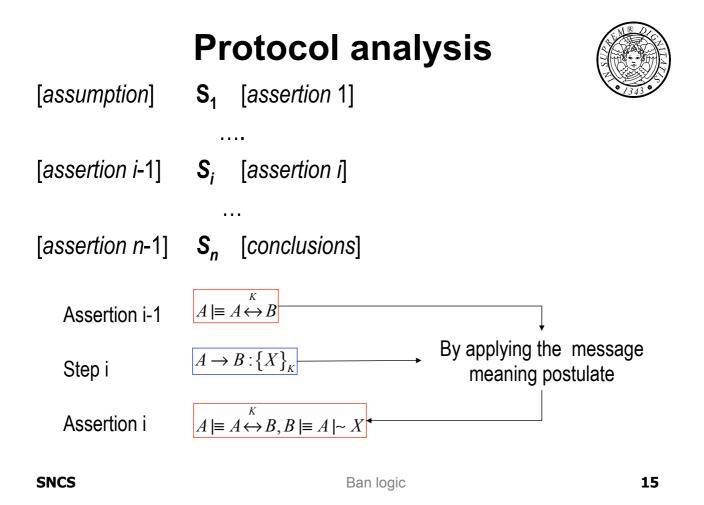
 $A \to B : \left\{A, K_{ab}\right\}_{K_{bs}}$

This notations is ambiguous. Thus the protocol is **idealized**

$$A \to B : \left\{ A \stackrel{K_{ab}}{\longleftrightarrow} B \right\}_{K_{bs}}$$

The resulting specification is more clear and you can desume the formula

$$B \lhd A \stackrel{K_{ab}}{\longleftrightarrow} B$$


SNCS

Ban logic

Protocol analysis

- Protocol analysis consists in the following steps
 - 1. Derive the idealized protocol from the real one
 - 2. Determine assumptions
 - 3. Apply postulates to each protocol step and determine beliefs achieved by principals at the step
 - 4. Draw conclusions

Objectives of a protocol

Objectives depend on the context

Typical objectives

often

also

 $A \models A \stackrel{\kappa}{\leftrightarrow} B \qquad B \models A \stackrel{\kappa}{\leftrightarrow} B$ $A \models B \models A \stackrel{\kappa}{\leftrightarrow} B \qquad B \models A \stackrel{\kappa}{\leftrightarrow} B$ $A \models \# \left(A \stackrel{\kappa}{\leftrightarrow} B \right) \qquad B \models \# \left(A \stackrel{\kappa}{\leftrightarrow} B \right)$

(key authentication) (key confirmation)

(key freshness)

Interaction with a certification authority

$$A \models a^{e_b} B$$

Real protocol

 $\begin{array}{lll} M1 & A \to T & A, B, N_a \\ M2 & T \to A & E_{K_a} \left(N_a, B, K_{ab}, E_{K_b} \left(K_{ab}, A \right) \right) \\ M3 & A \to B & E_{K_b} \left(K_{ab}, A \right) \\ M4 & B \to A & E_{K_{ab}} \left(N_b \right) \\ M5 & A \to B & E_{K_{ab}} \left(N_b - 1 \right) \\ \end{array}$

SNCS

Ban logic

17

Needham-Schroeder (1978)

Inplicit statement, not explicitly derived from the real protocol . The idealized protocol may contain implicit statements $M2 \quad T \to A \quad \left\{ N_a, \left(\begin{matrix} K_{ab} \\ K \leftrightarrow B \end{matrix} \right), \# \left(\begin{matrix} K_{ab} \\ K \leftrightarrow B \end{matrix} \right), \left\{ \begin{matrix} K_{ab} \\ A \leftrightarrow B \end{matrix} \right\}_{K_b} \right\}_{K_b} \right\}_{K_a}$ $M3 \quad A \to B \quad \left\{ \begin{matrix} A \\ K \leftrightarrow B \end{matrix} \right\}_{K_b} \right\}_{K_b} \text{ from } B$ $M4 \quad B \to A \quad \left\{ N_b, A \overset{K_{ab}}{\leftrightarrow} B \right\}_{K_{ab}} \text{ from } A$

Needham-Schroeder

$$M2 \quad T \to A \quad \left\{ N_a, \left(\begin{matrix} K_{ab} \\ A \leftrightarrow B \end{matrix} \right), \# \left(\begin{matrix} K_{ab} \\ A \leftrightarrow B \end{matrix} \right), \left\{ A \leftrightarrow B \end{matrix} \right\}_{K_b} \right\}_{K_b} \right\}_{K_a} \quad \begin{array}{l} \text{After receiving } N_a, T \text{ so} \\ K_{ab} \text{ is "good" to talk to } Bob \end{array}$$

 $M3 \quad A \to B \quad \left\{ \begin{matrix} K_{ab} \\ A \leftrightarrow B \end{matrix} \right\}_{K_{ab}} T \text{ said } K_{ab} \text{ is good to talk to } Alice$

$$M4 \quad B \to A \quad \left\{ N_b, A \stackrel{K_{ab}}{\leftrightarrow} B \right\}_{K_{ab}} \text{ from } B$$

$$M5 \quad A \to B \quad \left\{ N_b, A \stackrel{K_{ab}}{\leftrightarrow} B \right\}_{K_{ab}} \text{ from } A$$

After receiving K_{ab} , B has said K_{ab} is

good to talk to A

After receiving N_b , A has said K_{ab} is good to talk to *Bob*

Principle 1. We have to specify the meaning of each message; specification must depend on the message contents; it must be possible to write a sentence describing such a meaning

SNCS

Ban logic

19

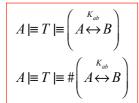
Needham-Schroeder

Assumptions

$A \models A \stackrel{K_a}{\longleftrightarrow} T$	$B \models B \stackrel{K_b}{\longleftrightarrow} T$
$T \models A \stackrel{K_a}{\longleftrightarrow} T$	$T \models B \stackrel{K_b}{\longleftrightarrow} T$
$T \models A \stackrel{K_{ab}}{\longleftrightarrow} B$	
$A \models \left(T \Longrightarrow A \stackrel{K_{ab}}{\longleftrightarrow} B \right)$	$B \models \left(T \Longrightarrow A \stackrel{K_{ab}}{\longleftrightarrow} B \right)$
$A \models \left(T \Longrightarrow \# \left(A \stackrel{K_{ab}}{\longleftrightarrow} B \right) \right)$	
$A \models \#(N_a)$	$B \models \#(N_b)$
$T \models \# \left(A \stackrel{K_{ab}}{\longleftrightarrow} B \right)$	$B \models \# \left(A \stackrel{K_{ab}}{\longleftrightarrow} B \right)$
· · · · · · · · · · · · · · · · · · ·	

Objectives

$$A \models A \stackrel{K_{ab}}{\leftrightarrow} B$$
$$B \models A \stackrel{K_{ab}}{\leftrightarrow} B$$
$$A \models B \models A \stackrel{K_{ab}}{\leftrightarrow} B$$
$$B \models A \models B \not\models A \stackrel{K_{ab}}{\leftrightarrow} B$$

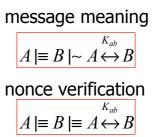

Principle 2. Designer must know the trust relationships upon which the protocol is based. He/she must know why they are necessary. Such reasons must be made explicit.

Needham-Schroeder After M3 After M4

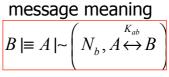
message meaning e nonce verification

After M2

jurisdiction rule


message meaning K_{ab} $B \models T \models A \leftrightarrow B$ nonce verification Kab $B \models T \models A \leftrightarrow B$

jurisdiction rule K_{ab}


 $A \models$ $A \stackrel{\Lambda_{ab}}{\leftrightarrow} B$ $A \models \#$

 $B \models A \leftrightarrow B$

Principle 3. A key may have been used recently to encrypt a nonce but it may be old or compromised. The recent use of a key does not make it more secure

Dopo M5

nonce verification $B \models A \models A \leftrightarrow B$

M2

M1

M3

B

SNCS

Ban logic

21

Otway-Rees protocol

Real protocol

M1.
$$A \rightarrow B$$
: $M, A, B, E_{K_A}(N_A, M, A, B)$
M2. $B \rightarrow T$: $M, A, B, E_{K_A}(N_A, M, A, B), E_{K_B}(N_B, M, A, B)$
M3. $T \rightarrow B$: $M, E_{K_A}(N_A, K_{ab}), E_{K_B}(N_B, K_{ab})$
M4. $B \rightarrow A$: $M, E_{K_A}(N_A, K_{ab})$

Idealized protocol

M1.
$$A \rightarrow B$$
: $\{N_A, M, A, B\}_{K_a}$
M2. $B \rightarrow T$: $\{N_A, M, A, B\}_{K_a}, \{N_B, M, A, B\}_{K_b}$
M3. $T \rightarrow B$: $\{N_a, A \stackrel{K_{ab}}{\leftrightarrow} B, B \mid \sim M\}_{K_a}, \{N_b, A \stackrel{K_{ab}}{\leftrightarrow} B, A \mid \sim M\}_{K_b}$
M4. $B \rightarrow A$: $\{N_b, A \stackrel{K_{ab}}{\leftrightarrow} B, A \mid \sim M\}_{K_a}$

Otway-Rees

The protocol presents two strange features

- *N_a* ed *N_b* are nonces. They are supposed to prove freshness. Then, why are they encrypted in messages M1 and M2?
- Why do we need *M* in addition to N_a and N_b?
 - Actually it disappears after M2

SNCS

Ban logic

23

Ban logic

Protocollo di Otway-Rees

Ipotesi

$$A \models A \stackrel{K_a}{\leftrightarrow} T \qquad B \models A \stackrel{K_b}{\leftrightarrow} T$$
$$T \models A \stackrel{K_a}{\leftrightarrow} T \qquad T \models A \stackrel{K_b}{\leftrightarrow} T$$
$$T \models A \stackrel{K_a}{\leftrightarrow} B$$
$$A \models \left(T \Rightarrow A \stackrel{K}{\leftrightarrow} B\right) \qquad B \models \left(T \Rightarrow A \stackrel{K}{\leftrightarrow} B\right)$$
$$A \models \left(T \Rightarrow B \mid \sim M\right) \qquad B \models \left(T \Rightarrow A \mid \sim M\right)$$
$$A \models \# (N_a) \qquad B \models \# (N_b)$$
$$A \models \# (M)$$

Risultati $A \models A \stackrel{K_{ab}}{\leftrightarrow} B$ $B \models A \stackrel{K_{ab}}{\leftrightarrow} B$ $A \models B \models M$ $B \models A \mid \sim M$

SNCS

Ban logic

Protocollo di Otway-Rees

 $T \models A \mid \sim (N_{a}, M, A, B) \quad T \models B \mid \sim (N_{b}, M, A, B)$ After M3 $B \models T \mid \sim \left(N_{b}, A \leftrightarrow B, A \mid \sim M\right)$ $B \models T \mid = \left(N_{b}, A \leftrightarrow B, A \mid \sim M\right)$ $B \models A \leftrightarrow B, \quad B \mid = A \mid \sim M$ $A \models T \mid \sim \left(N_{a}, A \leftrightarrow B, B \mid \sim M\right)$ Given Bob's trust in T about keys and its capability to relay, then $<math display="block">A \models T \mid \approx \left(N_{a}, A \leftrightarrow B, B \mid \sim M\right)$ $Given Alice's belief in N_{a}, then$ $<math display="block">A \models T \mid = \left(N_{a}, A \leftrightarrow B, B \mid \sim M\right)$ Given Alice's trust in T about keys and its capability to relay and given Alice's belief in M freshness.

Otway-Rees

- Nonces N_a and N_b are for freshness but also to link messages M1 and M2 to messages M3 and M4, respectively
 - Nonce N_a (N_b) is a reference to Alice (Bob) within *M*, or equivalently,
 - nonce N_a (N_b) is another name for Alice (Bob) in M
- In M1 (M2), encryption is not for secrecy but to indissolubly link Alice (Bob), N_a (N_b) and M together

Principle 4. Properties required to nonces must be clear. What it is fine to guarantee freshness might not be to guarantee an association between parts

Principles 5. The reason why encryption is used must be clear

SNCS

Ban logic

27

Otway-Rees modified

 If nonces have to guarantee freshness only, then messages M1 and M2 could be modified as follows

M1. $A \rightarrow B$: $M, A, B, N_A, E_{K_A}(M, A, B)$ M2. $B \rightarrow T$: $M, A, B, N_A, E_{K_A}(M, A, B), N_B, E_{K_B}(M, A, B)$

- M1 and M3 (M2 and M4) are not linked anymore
- The resulting protocol is subject to a man-in-the-middle attack
 - An adversary may impersonate Bob (Alice) with respect to Alice (Bob)

The Attack

middle attack

to Alice (Bob)

SNCS

SNCS

· Let us suppose that Carol (the adversary) has already carried out a protocol instance with

Alice

Ban logic

· An adversary may impersonate Bob (Alice) with respect

holds an "old" ciphertext E_{Ka}(M', A, C)

Otway-Rees modified

M2. $C \rightarrow T$: $M', A, C, N_a, E_{K_A}(M', A, C), N_c, E_{K_c}(M', A, C)$

M1. $A \rightarrow B[C]$: $M, A, B, N_a, E_{K_a}(M, A, B)$

M4. $[C]B \rightarrow A: E_{K_a}(N_a, K_{ab})$

M3. $T \rightarrow C$: $M', E_{K_a}(N_a, K_{ab}), E_{K_c}(N_c, K_{ab})$

Otway-Rees modified

Protocollo di Otway-Rees "migliorato"

 If we need to insert references to Alice and Bob in M3 and M4, then the protocol can ben modified as follows

> M1. $A \rightarrow B$: A, B, N_a M2. $B \rightarrow T$: A, B, N_a, N_b M3. $T \rightarrow B$: $E_{K_A}(N_a, A, B, K_{ab}), E_{K_B}(N_b, A, B, K_{ab})$ M4. $B \rightarrow A$: $E_{K_A}(N_a, A, B, K_{ab})$

Principle 6. If an identifier is necessary to complete the meaning of a message, it is prudent to explicitly mention such an identifier in the message

SSL (old version)

SNCS

Ban logic

31

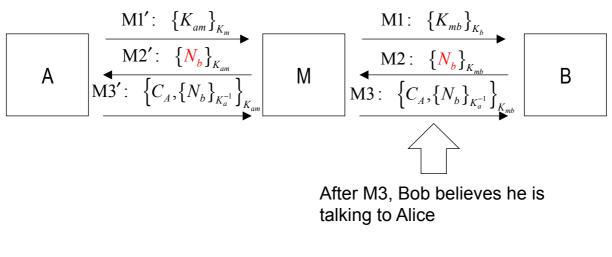
Protocol objectives:

- establish a shared key K_{ab}
- mutual authentication

M1.	$A \rightarrow B$:	$\left\{K_{ab}\right\}_{K_b}$
M2.	$B \rightarrow A$:	$\left\{N_b ight\}_{K_{ab}}$
M3.	$A \rightarrow B$:	$\left\{C_{A}, \left\{N_{b}\right\}_{K_{a}^{-1}}\right\}_{K_{ab}}$

M1: Bob sees key K_{ab}

M2: After receiving it, Bob says he saw K_{ab}


M3: After receiving it, Alice says she saw N_b

In the protocol there is no link between A and key K_{ab}

SSL (old version)

Adversary Mallet plays an MIM attack and impersonates *A* with respect to *B*

SNCS

Ban logic

SSL (old versione)

33

The attack may be avoided by modifying M3 as follows

M3 $A \rightarrow B$: $\left\{ C_A, \left\{ A, B, K_{ab}, N_b \right\}_{K_a^{-1}} \right\}_{K_{ab}}$

after receiving N_b , Alice says that K_{ab} is a good key to communicate with Bob

Important

It's necessary to introduce identifiers A and B in message M3 because, otherwise, the attack would be still possible by setting *K_{am}* = *K_{bm}*

Sign encrypted data

Principle 7.

- If an entity signs an encrypted message, it is not possible to infer that such an entity knows the message contents
- In contrast, if an entity signs a message and the encrypts it, then it is possible to infer that the entity knows the message contents

Esempio: X.509

$$A \rightarrow B$$
: $A, \left\{T_a, N_a, B, X_a, \left\{Y_a\right\}_{K_b}\right\}_{K_a^{-1}}$

The message contains no proof that the sender (Alice) knows Y_a

SNCS

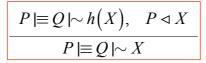
Ban logic

On hash functions

For efficiency, we sign the hash of a message rather than the message itself

$$A \to B: \{X\}_{K_b}, \{h(X)\}_{K_a^{-1}}$$

- The message does not contain any proof that the signer Alice actually knows X
- However, the signer Alice expects that the receiver Bob behaves as if the sender Bob knew the message
- Therefore, unless the signer Alice is unwary*, signing the hash is equivalent to sign the message


* Metaphore: a manager who signs without reading

Postulates for hash functions

The postulate can be generalized to composite messages

$$P \models Q \models h(X_1, \dots, X_n), \quad P \triangleleft X_1, \dots, P \triangleleft X_n$$
$$P \models Q \models Q \models (X_1, \dots, X_n)$$

Notice that P may receive X_i from different channels in different moments

SNCS

Ban logic

37

The GSM case

M1.	$C \rightarrow S$:	C
M2.	$C \leftarrow S$:	ρ
M3.	$C \rightarrow S$:	σ

ρ random challenge generated by
 S

$$<\sigma$$
, K> = $h(K_c, \rho)$

Assumptions

$$S \models C \stackrel{K_c}{\leftrightarrow} S \quad C \models S \stackrel{K_c}{\leftrightarrow} C$$
$$S \models \#(\rho)$$

Idealized protocol

M3.
$$C \rightarrow S$$
: $\langle C \stackrel{\kappa}{\leftrightarrow} S, \rho \rangle_{K_c}$

$\frac{\textbf{Results}}{S \models C \models S \leftrightarrow C}$

Predictable nonces

Principle 8. A predictable quantity can be used as a nonce in a challenge-response protocol. In such a case, the nonce must be protected by a replay attack

Example: Alice receives a time stamp from a Time Server

(ex. Alice uses the time stam to synchronize her clock)

M1	$A \rightarrow S$	A, N_{π}	• <i>N_a</i> : predictable nonce
		$\{T_s, N_a\}_{K_{as}}$	• (M2): After receiving N_{ar} S said T_s

Ipotesi	Risultati
$A \mid \equiv S \stackrel{\kappa_{as}}{\longleftrightarrow} A$	$A \mid \equiv S \mid \sim T_s$
$A \mid \equiv S \Longrightarrow T_s$	$A \mid \equiv S \mid \equiv T_s$
$A \mid \equiv \# \left(N_a \right)$	$A \mid \equiv T_s$

SNCS

Predictable nonces

An attack

M predicts the next value of N_a

$$\begin{array}{ll} M1 & M \to S & A, N_a \\ M2 & S \to M & \left\{ T_s, N_a \right\}_{K_{ac}} (S \text{ receives M2 at time } T_s) \end{array}$$

At time $T'_s > T_s$, Alice initiates a protocol instance

M1	$A \rightarrow S[M]$	ΛN		
11/1 1		2 1, 1 v _a		Alice is led to believe that the
<i>M</i> 2	$S[M] \rightarrow A$	$\left\{T_{s}, N_{a}\right\}_{\kappa}$	4	current time is T_s and not T_s
		C A A A A A A A A A A A A A A A A A A A		

Since N_a is predictable then it must be protected

 $\begin{array}{ll} M1 & A \to S & A, \left\{ N_a \right\}_{K_{as}} \\ M2 & S \to A & \left\{ T_s, \left\{ N_a \right\}_{K_{as}} \right\}_{K_{as}} \end{array}$

39

Ban logic

SNCS

Nonce: timestamp

Principle 9. If freshness is guaranteed by time stamp, then the difference between the local clock and that of other machines must be largely smaller than the message validity. Furthermore, the clock synchronization mechanisms is part of the Trusted Computing Base (TCB)

Example

- Kerberos. If the server clock can be set back, then authenticators can be reused
- Kerberos. If the server clock can be set ahead, then it is possible to generate post-dated authenticators

Ban logic

SNCS

Principle 10. The contents of a messafe must allow us to determine: (i) the protocol the message belongs to, (ii) the execution instance of the protocol, (iii) the number of the message within the protocol

On coding messages

Example Needham-Schroeder

It would be more clear

 $\begin{array}{cccc} M4 & B \to A & E_{K_{ab}} \left(N_{b} \right) \\ M5 & A \to B & E_{K_{ab}} \left(N_{b} - 1 \right) \end{array} \end{array} \begin{array}{c} \textbf{N}_{b} - \textbf{1} \text{ distinguishes challenge from} \\ \text{response} \end{array}$

 $M4 \quad B \to A \quad E_{K_{ab}} (\text{N-S Message 4}, N_b)$

 $M5 \quad A \to B \quad E_{K_{ab}} (\text{N-S Message 5}, N_b)$

