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Digital signatures

Digital signatures

• Provide integrity in the public-key setting 

• Analogous to message authentication 

codes (MACs) but some key differences…
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Communication model
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(pk, sk)  G()

σ = S(sk, m)TRUE ?=? V(pk, σ, m)

“Alice”, pk

“Alice”

pk

m, σ

Security

• DEF (informal). Even after observing 

signatures on multiple messages, an 

attacker should be unable to forge a valid 

signature on a new message
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Prototypical application
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(pk, sk)
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patch, σ

Patch distribution (Microsoft, 

Adobe)

Comparison to MACs
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Comparison to MACs
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k

k1

k2

k3

ti = MAC(ki, patch)

patch, t1, t2, t3,…

Patch distribution (Microsoft, 

Adobe)

Comparison to MACs

• Single shared key k

– A client may forge the tag

– Unfeasible if clients are not trusted

• Point-to-point key ki

– Computing and network overhead

– Prohibitive key management overhead

– Unmanageable!
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Comparison to MACs

• Public verifiability

– DS: anyone can verify the signature

– MAC: Only a holder of the key can verify a 

MAC tag

• Transferability

– DS can forward a signature to someone else

– MAC cannot

• Non-repudiability
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Non-repudiation

• Signer cannot (easily) deny issuing a 
signature
– Crucial for legal application

– Judge can verify signature using a copy of pK

• MACs cannot provide this functionality
– Without access to the key, no way to verify a tag

– Even if receiver leaks key to judge, how can the 
judge verify the key is correct?

– Even if the key is correct, receiver could have 
generated the tag!
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Informal properties

• DEF. A digital signature is a number dependent 

on some secret known only to the signer and, 

additionally, on the content of the message 

being signed

• Property. A digital signature must be verifiable

– If a dispute arises an unbiased third party must be 

able to solve the dispute equitably, without requiring 

access to the signer's secret
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Digital signature scheme

• A signature scheme is defined by three PPT 
algorithms (G, S, V):

• Key generation algorithm G takes as input 1n and 
outputs (pk, sk)

• Signature generation algorithm S takes as input a 
private key sk and a message m and outputs a 
signature σ = S(sk, M)

• Signature verification algorithm V takes as input a 
public key pk, a signature σ and (optionally) a 
message m and outputs True o False 

• Consistency. For all m and (pk, sk), V(pk, [m], S(sk, 
m)) = TRUE
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Security model

• Threat model

– Adaptive chosen-message attack

• Assume the attacker can induce the sender to sign 

messages of the attacker’s choice

– The attacker gets the public key

• Security goal

– Existential unforgeability

• Attacker should be unable to forge valid signature 

on any message not signed by the sender
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THE RSA SIGNATURE 

SCHEME

Digital signatures
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Plain RSA

• Key generation

– (e, n) public key;  (d, n) private key

• Same algorithm ad PKE

• Signing operation

– σ = md mod n

• Verification operation

– m == σe mod n
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Properties

• Computational aspects

– The same considerations as PKE

– The re-blocking problem

• Security

– Algorithmic attacks

– Existential forgery

– Malleability
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The re-blocking problem

• The problem (theoretical)
• If Alice wants to send a secret and signed message to 

Bob then it must be nA < nB

• Possible solutions
• Reordering: the operation with the smaller modulus is 

performed first
– CONS: The preferred order is always to sign first and 

encrypt later

• Two moduli for every entity
– Every entity has two moduli

– Moduli for signing (e.g., t-bits) is always smaller of all 
possible moduli for encryption (e.g., t+1-bits)
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Algorithmic attacks

• The verifier must have the correct public 

key

• Attempt to break RSA by computing d

– The most general attack tries to factor 

modulus n

– The modulus must be sufficient large (1024 

bits or more are recommended)
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Existential forgery

• Generate a valid signature for a random 

message x

– Given Alice’s public key (n, e)

– Choose a signature σ

– Compute x = σe mod n

– Output x, σ

– Message m is random and may have no 

application meaning. However, this property is 

undesirable
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Malleability

• Goal. Combine two signatures to obtain a 

third (existential forgery)

• Attack

– Given σ1 = m1
d mod n

– Given σ2 = m2
d mod n

– Output σ3 = (σ1σ2) mod n that is a valid 

signature of m3 = (m1m2) mod n

• PROOF.

– σ3
e = (σ1σ2)

e = σ1
e
σ2

e = m1m2 mod n
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RSA Padding

• Because of existential forgery and 
malleability, plain RSA is never used

• Padding scheme allows only certain message 
formats
– It must be difficult to choose a signature whose 

corresponding message has that format

• Padding schemes
– Probabilistic Signature Scheme (PSS) in PKCS#1

– Full Domain Hash (RSA-FDH)

– ISO/IEC 9776 
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Probabilistic Signature 

Standard (PSS)
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• The message is encoded before signing
• M = message

• EM = encoded message

• Salt : random value

• MGF: mask generation function

• bc, padding1, padding2: fixed values

• s = EMd mod n

• PROS
– Verifiable secure

– Salting makes EM probabilistic
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THE ELGAMAL SIGNATURE 

SCHEME

Digital signatures
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Elgamal in a nutshell

• Invented in 1985

• Based on difficulty of discrete logarithm

• Digital signature operations are different 

from the cipher operations
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Key generation

• Choose a large prime p

• Choose a primitive element α if Zp
*

• Choose a random number d in {2, 3,…,p -

2}

• Compute β = αd mod p

• Let (p, α, β) be the public key and d the 

private key
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Signature generation

• Digital signature of message x

• Choose an ephemeral key ke in {0, 1, 2, p-

2} such that gcd(ke, p – 1) = 1

• Compute the signature parameters

– r = αke mod p

– s = (x – dr)ke-1 mod p – 1

– (r, s) is the digital signature

• Send x, (r, s)
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Signature verification

• Upon verification of x, (r, s)

• Compute t = βr
rs

• If t = αx mod p  valid signature; 

otherwise invalid signature
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Proof

1. Let βr
rs = (αd)r(αke)s = αdr+kes mod p

2. If βr
rs = αx mod p then 

αx = αdr+kes mod p

3. According to Fermat’s little theorem Eq.2 

holds if x = dr+kes mod p – 1

4. From which the construction of parameter

s = (x – dr)ke-1 mod p – 1
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Computational aspects

• Key generation
– Generation of a large prime (1024 bits)

– True random generator for the private key

– Exponentiation by square-and-multiply

• Signature generation
– | s | = | r | = | p | thus |x, (r, s)| = 3 | x | (msg expansion)

– One exponentiation by square-and-multiply

– One inverse ke-1 mod p by extended Eulero algorithm (pre-
computation)

• Signature verification
– Two exponentiations by square-and-multiply

– One multiplication
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Security aspects

• The verifier must have the correct public 

key

• The DLP must be intractable

• Ephemeral key cannot be reused

– If ke is reused the adversary can compute the 

private key d and impersonate the signer

• Existential forgery for a random message 

x unless it is hashed
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The Digital Signature Algorithm 

(DSA)

• The Elgamal scheme is rarely used in 
practice

• DSA is a more popular variant 
– It’s a federal US government standard for digital 

signatures (DSS)

– It was proposed by NIST 

• Advantages w.r.t. Elgamal
– Signature is only 320 bits

– Some attacks against to Elgamal are not 
applicable to DSA
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Elliptic Curve DSA (ECDSA)

• ECDSA was standardized in US by ANSI in 
1998

• Pros
– ECC allow 160-256-bit lengths which provide 

security equivalent to 1024-3072-bit RSA/DL

• Cons
– Finding EC with good cryptographic properties in 

nontrivial

– Standardize curves by NIST or Brainpool
consortium
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HASH FUNCTIONS

Digital Signatures
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Properties

• Hash functions properties 

– Pre-image resistance

– Second pre-image resistance

– Collision resistance

• These properties are crucial for digital 

signatures security

9 maggio 2018 Digital signatures 34



Applied cryptography 5/9/2018

Digital Signatures 18

Pre-image resistance

• Digital signature scheme based on (school-
book) RSA
– (n, d) is a Alice’s private key; 

– (n, e) is a Alice’s public key

– s = (h(m))d (mod n)

• THM - If h() is not pre-image resistant => 
existential forgery 
– Select z < n

– Compute y = ze (mod n)

– Find m' such that  h(m') = y

– Claims that z is the digital signature of m'
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2nd preimage resistance

• Let (G, S, V) be a signature scheme

• A trusted third party chooses a message x

that Alice signs producing s = S(dA, h(x))

• If h() is not 2nd-preimage resistant, an 

adversary (e.g. Alice herself) can claim that 

Alice has signed x’ instead of x

– Adversary determines a 2nd-preimage x' of x

– Adversary claims that Alice has signed x' instead 

of x
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Collision resistance

• Let (G, S, V) be a signature scheme

• If h() is not collision resistant, Alice (an 

untrusted party) can 

– choose x and x' so that h(x) = h(x’)

– compute s = S(dA, h(x))

– Issue (m, s) to Bob

– later claim that she actually issued (x', s)
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NON-REPUDIATION VS 

AUTHENTICATION

Digital signatures
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Non-repudiation vs

authentication
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• DEF. Non-repudiation prevents a signer from 
signing a document and subsequently being able 
to successfully deny having done so.

• Non-repudiation vs authentication of origin

– Authentication (based on symmetric cryptography) 
allows a party to convince itself or a mutually trusted 
party of the integrity/authenticity of a given message 
at a given time t0

– Non-repudiation (based on public-key cryptography)  
allows a party to convince others at any time t1 ≥ t0 of 
the integrity/authenticity of a given message at time t0

Dig sig vs non-repudiation

• Alice’s digital signature for a given 

message depends on the message and a 

secret known to Alice only (the private key)

• Bob verifies the digital signature by means 

of another, different value: the public key

9 maggio 2018 Digital signatures 40



Applied cryptography 5/9/2018

Digital Signatures 21

Dig sig vs non-repudiation
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• Data origin authentication as provided by a digital 
signature is valid only while the secrecy of the 
signer’s private key is maintained 

• A threat that must be addressed is a signer who 
intentionally discloses his private key, and 
thereafter claims that a previously valid signature 
was forged

• This threat may be addressed by
– Prevent direct access to the key

– Use of a trusted timestamp agent

– Use of a trusted notary agent

Trusted timestamping service

s = SB(privKB, m)

m, s

s

ST(privKT, s||t0)

 Trent certifies that digital signature s exists at time t0

 If Bob’s priv-key is compromised at  t1 > t0, then s is 

valid

TrentBob

Alice
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Trusted Notary Service

• TNS generalize the TTS
– Trent certifies that a certain statement σ on the digital

signature s (is true at t0
• s exists at t0
• s is valid at t0

– Trent may certify the existence of a certain document 
doc

• s = S(privKT, H(doc) || timestamp)

• Document doc remains secret

• Trent is trusted to verify the statement before 
issuing it
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SOME ADVANCED CONCEPTS

Digital signatures

9 maggio 2018 Digital signatures 44



Applied cryptography 5/9/2018

Digital Signatures 23

Classification

• Dig sig with message recovery 
• does not require the original message as input to 

the verification algorithm. In this case, the original 

message is recovered from the signature itself

• Examples: RSA, Rabin, Nyberg-Rueppel

• Dig sig with appendix 
• requires the original message as input to the 

verification algorithm

• uses hash functions

• Examples: ElGamal, DSA, DSS, Schnorr
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RSA-based dig sig

• Digital signature with message recovery
– Redundancy function

• A suitable redundancy function is necessary in order to 
avoid existential forgery

• IOS/IEC 9796 (1991) defines a mapping that takes a k-
bit integer and maps it into a 2k-bits integer

• Digital signature scheme with appendix
– MD5 (128 bit)

– PKCS#1 specifies a redundancy function 
mapping 128-bit integer to a k-bit integer, where k 
is the modulus size (k>512, k = 768, 1024)
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Dig sig with message recovery 

(1)

• Definitions
• M is the message space

• MS is the signing space

• S is the signature space

• Key generation
• A selects a private key dA defining a signing 

algorithm SA which is a one-to-one mapping SA: 
MS →S

• A defines the corresponding public key defining 
the verification algorithm VA such that VA× SA is 
identity map on MS. 
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Dig sig with message recovery 

(2)

Digital signatures

The signing process

M

MS

S

R SA

m m* s

MR

• Compute m* = R(m), R is a redundancy function (invertible)

• Compute s = SA(m*)
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Dig sig with message recovery 

(3)

9 maggio 2018 Digital signatures

• Obtain authentic public key VA

• Compute m* = V(s) 

►Verify if m* ∈ MS (if not, reject the signature)

• Recover the message m = R-1(m*)

M

MS

S

R SA

m m* s

MR

49

The verification process

Dig sig with message recovery 

(4)

• Properties of SA and VA

• (efficiency) SA should be efficient to 

compute

• (efficiency) VA should be efficient to 

compute

• (security) It should be computationally 

infeasible for an entity other than A to find 

an s ∈S such that VA(s) ∈MS
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Dig sig with message 

recovery (5)
• The redundancy function

– R and R-1 are publicly known

– Selecting an appropriate R is critical to the security of the 
system

• A bad redundancy function may lead to existential 
forgery
– Let us suppose that MR ≡ MS

– R and SA are bijections, therefore M and S have the same 
number of elements

– Therefore, for all s ∈ S, VA(s) ∈ MR. Hence, it is “easy” to 
find an m for which s is the signature, m = R-1(VA(s))

– s is a valid signature for m (existential forgery)

– Plain RSA dig sig suffers from existential forgery
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Dig signatures with 

message recovery (6)
• A good redundancy function although 

too redundant

– Example

• M = {m : m ∈ {0, 1}n}, MS = {m : m ∈ {0, 1}2n}

• R: M → MS, R(m) = m||m (concatenation)

• MR ⊆ MS

• When n is large, |MR|/|MS| = (1/2)n is small. 

Therefore, for an adversary it is unlikely to choose 

an s that yields VA(s)∈MR
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Redundancy function for 

RSA
• ISO/IEC 9776 is an international standard 

that defines a redundancy function for 

RSA and Rabin

• Multiplicative property(*) of RSA

– Requirement on R:  a necessary condition

for avoiding existential forgery is that R must 

not satisfy the multiplicative property. 

(*) Homomorphism property
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Dig sig with appendix (1)

• Definitions

• M is the message space

• H is a hash function with domain M

• Mh is the image of h

• S is the signature space

• Key generation

• Alice selects a private key dA which defines a signing algorithm

SA which is a one-to-one mapping SA: Mh → S

• Alice defines the corresponding public key eA defining the 

verification algorithm VA such that VA(m*, s) = true if SA(m*) = 

s and false otherwise, for all m*∈Mh and s ∈ S, where m* = H(m) 

for m ∈ M. 
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Dig sig with appendix (2)

9 maggio 2018 Digital signatures

M Mh S

H
SA

m m* s

Signature generation process
• Compute m* = h(m), s = SA(m*)

• Send (m, s)

55

Dig sig with appendix (3)

• Verification process

– Obtain A’s public key VA

– Compute m* = H(m), u = VA(m*, s)

– Accept the signature iff u == true
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Dig sig with appendix (4)

• Properties of SA and VA

• (efficiency) SA should be efficient to compute

• (efficiency) VA should be efficient to compute

• (security) It should be computationally 

infeasible for an entity other than A to find an 

m ∈ M and an s ∈S such that VA(m*, s) = true, 

where m* = h(m)
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Dig sig with appendix from 

message recovery
• Signature generation

– Compute m* = R(h(m)), s = SA(m*)

– A’s digital signature for m is s

– m, s are made available to anyone who may wish to verify 
the signature

• Signature verification
– Obtain A’s public key VA

– Compute m* = R(h(m)), m’= VA(s), and u = (m’ == m*)

– Accept the signature iff u = true

• Comment
– R is not security critical anymore and can be any one-to-

one mapping
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Hash-and-sign paradigm

• Given

– A signature scheme π = (G, S, V) for “short” 

messages of length n

– Hash function H: {0, 1}*
 {0, 1}n

• Construct a signature scheme π’ = (G, S’, 

V’) for messages of any length 

– S’(sk, m) = S(sk, H(m))

– V’(m, σ) = V(H(m), σ )
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Hash-and-sign paradigm

• THM. If π is secure and H is collision-

resistant then π’ is secure

• Proof (by contradiction)

• Let us assume that the sender authenticates m1, m2,…and

the adversary manages to forge (m’, σ’), m’ ≠ mi, for all i

• Let hi = H(mi). Then, we have two cases

• If H(m’) = hi for some i, then collision in H 

(contradiction)

• If H(m') ≠ hi, for all i, then forgery of π (contradiction)
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