Digital signatures

Digital signatures

- Provide integrity in the public-key setting
- Analogous to message authentication codes (MACs) but some key differences...

Communication model

Security

- DEF (informal). Even after observing signatures on multiple messages, an attacker should be unable to forge a valid signature on a new message

Prototypical application

Comparison to MACs

Comparison to MACs

Comparison to MACs

- Single shared key k
- A client may forge the tag
- Unfeasible if clients are not trusted
- Point-to-point key k_{i}
- Computing and network overhead
- Prohibitive key management overhead
- Unmanageable!

Comparison to MACs

- Public verifiability
- DS: anyone can verify the signature
- MAC: Only a holder of the key can verify a MAC tag
- Transferability
- DS can forward a signature to someone else
- MAC cannot
- Non-repudiability

Non-repudiation

- Signer cannot (easily) deny issuing a signature
- Crucial for legal application
- Judge can verify signature using a copy of pK
- MACs cannot provide this functionality
- Without access to the key, no way to verify a tag
- Even if receiver leaks key to judge, how can the judge verify the key is correct?
- Even if the key is correct, receiver could have generated the tag!

Informal properties

- DEF. A digital signature is a number dependent on some secret known only to the signer and, additionally, on the content of the message being signed
- Property. A digital signature must be verifiable
- If a dispute arises an unbiased third party must be able to solve the dispute equitably, without requiring access to the signer's secret

Digital signature scheme

- A signature scheme is defined by three PPT algorithms (G, S, V):
- Key generation algorithm G takes as input 1^{n} and outputs (pk, sk)
- Signature generation algorithm S takes as input a private key sk and a message m and outputs a signature $\sigma=S(s k, M)$
- Signature verification algorithm V takes as input a public key pk, a signature σ and (optionally) a message m and outputs True o False
- Consistency. For all mand (pk, sk), V(pk, [m], S(sk, $\mathrm{m})$) = TRUE

Security model

- Threat model
- Adaptive chosen-message attack
- Assume the attacker can induce the sender to sign messages of the attacker's choice
- The attacker gets the public key
- Security goal
- Existential unforgeability
- Attacker should be unable to forge valid signature on any message not signed by the sender

THE RSA SIGNATURE SCHEME

Plain RSA

- Key generation
- (e, n) public key; (d, n) private key
- Same algorithm ad PKE
- Signing operation
$-\sigma=m^{d} \bmod n$
- Verification operation
$-m==\sigma^{e} \bmod n$

Properties

- Computational aspects
- The same considerations as PKE
- The re-blocking problem
- Security
- Algorithmic attacks
- Existential forgery
- Malleability

The re-blocking problem

- The problem (theoretical)
- If Alice wants to send a secret and signed message to Bob then it must be $\mathrm{n}_{\mathrm{A}}<\mathrm{n}_{\mathrm{B}}$
- Possible solutions
- Reordering: the operation with the smaller modulus is performed first
- CONS: The preferred order is always to sign first and encrypt later
- Two moduli for every entity
- Every entity has two moduli
- Moduli for signing (e.g., t-bits) is always smaller of all possible moduli for encryption (e.g., $t+1$-bits)

Algorithmic attacks

- The verifier must have the correct public key
- Attempt to break RSA by computing d
- The most general attack tries to factor modulus n
- The modulus must be sufficient large (1024 bits or more are recommended)

Existential forgery

- Generate a valid signature for a random message x
- Given Alice's public key (n, e)
- Choose a signature σ
- Compute $x=\sigma^{e} \bmod n$
- Output x, σ
- Message m is random and may have no application meaning. However, this property is undesirable

Malleability

- Goal. Combine two signatures to obtain a third (existential forgery)
- Attack
- Given $\sigma_{1}=m_{1}{ }^{d} \bmod n$
- Given $\sigma_{2}=m_{2}{ }^{d} \bmod n$
- Output $\sigma_{3}=\left(\sigma_{1} \bullet \sigma_{2}\right) \bmod n$ that is a valid signature of $m_{3}=\left(m_{1} \bullet m_{2}\right) \bmod n$
- PROOF.

$$
-\sigma_{3}{ }^{e}=\left(\sigma_{1} \bullet \sigma_{2}\right)^{\mathrm{e}}=\sigma_{1}{ }^{\mathrm{e}} \bullet \sigma_{2}{ }^{\mathrm{e}}=\mathrm{m}_{1} \bullet \mathrm{~m}_{2} \bmod \mathrm{n}
$$

RSA Padding

- Because of existential forgery and malleability, plain RSA is never used
- Padding scheme allows only certain message formats
- It must be difficult to choose a signature whose corresponding message has that format
- Padding schemes
- Probabilistic Signature Scheme (PSS) in PKCS\#1
- Full Domain Hash (RSA-FDH)
- ISO/IEC 9776

Probabilistic Signature Standard (PSS)

- The message is encoded before signing
- M = message
- EM = encoded message
- Salt : random value
- MGF: mask generation function
- bc, padding ${ }_{1}$, padding ${ }_{2}$: fixed values
- $s=E M^{d} \bmod n$
- PROS
- Verifiable secure
- Salting makes EM probabilistic

THE ELGAMAL SIGNATURE SCHEME

Elgamal in a nutshell

- Invented in 1985
- Based on difficulty of discrete logarithm
- Digital signature operations are different from the cipher operations

Key generation

- Choose a large prime p
- Choose a primitive element α if $Z_{p}{ }^{*}$
- Choose a random number d in $\{2,3, \ldots, \mathrm{p}$ 2\}
- Compute $\beta=\alpha^{d} \bmod p$
- Let (p, α, β) be the public key and d the private key

Signature generation

- Digital signature of message x
- Choose an ephemeral key ke in \{0, 1, 2, p2\} such that $\operatorname{gcd}(\mathrm{ke}, \mathrm{p}-1)=1$
- Compute the signature parameters
$-r=a^{k e} \bmod p$
$-s=(x-d \bullet r) k e^{-1} \bmod p-1$
$-(r, s)$ is the digital signature
- Send $\mathrm{x},(\mathrm{r}, \mathrm{s})$

Signature verification

- Upon verification of $x,(r, s)$
- Compute $t=\beta^{\text {ror }}{ }^{\text {s }}$
- If $t=\alpha^{\mathrm{x}} \bmod \mathrm{p} \rightarrow$ valid signature; otherwise invalid signature

Proof

1. Let $\beta^{r \bullet} r^{s}=\left(\alpha^{d}\right)^{r}\left(\alpha^{k e}\right)^{s}=\alpha^{d \bullet++k e \cdot s} \bmod p$
2. If $\beta^{r \bullet} \cdot{ }^{s}=\alpha^{\mathrm{x}} \bmod p$ then $\alpha^{x}=a^{d \cdot r+k e \cdot s} \bmod p$
3. According to Fermat's little theorem Eq. 2 holds if $x=d \bullet r+k e \cdot s \bmod p-1$
4. From which the construction of parameter $s=(x-d \cdot r) k e^{-1} \bmod p-1$

Computational aspects

- Key generation
- Generation of a large prime (1024 bits)
- True random generator for the private key
- Exponentiation by square-and-multiply
- Signature generation
$-|s|=|r|=|p|$ thus $|x,(r, s)|=3|x|$ (msg expansion)
- One exponentiation by square-and-multiply
- One inverse ke^{-1} mod p by extended Eulero algorithm (precomputation)
- Signature verification
- Two exponentiations by square-and-multiply
- One multiplication

Security aspects

- The verifier must have the correct public key
- The DLP must be intractable
- Ephemeral key cannot be reused
- If ke is reused the adversary can compute the private key d and impersonate the signer
- Existential forgery for a random message x unless it is hashed

The Digital Signature Algorithm (DSA)

- The Elgamal scheme is rarely used in practice
- DSA is a more popular variant
- It's a federal US government standard for digital signatures (DSS)
- It was proposed by NIST
- Advantages w.r.t. Elgamal
- Signature is only 320 bits
- Some attacks against to Elgamal are not applicable to DSA

Elliptic Curve DSA (ECDSA)

- ECDSA was standardized in US by ANSI in 1998
- Pros
- ECC allow 160-256-bit lengths which provide security equivalent to 1024-3072-bit RSA/DL
- Cons
- Finding EC with good cryptographic properties in nontrivial
- Standardize curves by NIST or Brainpool consortium

HASH FUNCTIONS

Properties

- Hash functions properties
- Pre-image resistance
- Second pre-image resistance
- Collision resistance
- These properties are crucial for digital signatures security

Pre-image resistance

- Digital signature scheme based on (schoolbook) RSA
- (n, d) is a Alice's private key;
- (n, e) is a Alice's public key
$-\sigma=(h(m))^{d}(\bmod n)$
- THM - If $h()$ is not pre-image resistant => existential forgery
- Select z < n
- Compute $y=z^{e}(\bmod n)$
- Find m^{\prime} such that $h\left(m^{\prime}\right)=y$
- Claims that z is the digital signature of m^{\prime}

2nd preimage resistance

- Let (G, S, V) be a signature scheme
- A trusted third party chooses a message x that Alice signs producing $s=S\left(d_{A}, h(x)\right)$
- If $h()$ is not 2nd-preimage resistant, an adversary (e.g. Alice herself) can claim that Alice has signed x^{\prime} instead of x
- Adversary determines a 2nd-preimage x^{\prime} of x
- Adversary claims that Alice has signed x^{\prime} instead of x

Collision resistance

- Let $(\mathrm{G}, \mathrm{S}, \mathrm{V})$ be a signature scheme
- If $h()$ is not collision resistant, Alice (an untrusted party) can
- choose x and x^{\prime} so that $h(x)=h\left(x^{\prime}\right)$
- compute $s=S\left(d_{A}, h(x)\right)$
- Issue (m, s) to Bob
- later claim that she actually issued (x^{\prime}, s)

NON-REPUDIATION VS
 AUTHENTICATION

Non-repudiation vs authentication

- DEF. Non-repudiation prevents a signer from signing a document and subsequently being able to successfully deny having done so.
- Non-repudiation vs authentication of origin
- Authentication (based on symmetric cryptography) allows a party to convince itself or a mutually trusted party of the integrity/authenticity of a given message at a given time t0
- Non-repudiation (based on public-key cryptography) allows a party to convince others at any time t1 \geq t0 of the integrity/authenticity of a given message at time t0

Dig sig vs non-repudiation

- Alice's digital signature for a given message depends on the message and a secret known to Alice only (the private key)
- Bob verifies the digital signature by means of another, different value: the public key

Dig sig vs non-repudiation

- Data origin authentication as provided by a digital signature is valid only while the secrecy of the signer's private key is maintained
- A threat that must be addressed is a signer who intentionally discloses his private key, and thereafter claims that a previously valid signature was forged
- This threat may be addressed by
- Prevent direct access to the key
- Use of a trusted timestamp agent
- Use of a trusted notary agent

Trusted timestamping service

- Trent certifies that digital signature s exists at time t_{0}
- If Bob's priv-key is compromised at $t_{1}>t_{0}$, then s is valid

Trusted Notary Service

- TNS generalize the TTS
- Trent certifies that a certain statement σ on the digital signature s (is true at t_{0}
- s exists at t_{0}
- s is valid at t_{0}
- Trent may certify the existence of a certain document doc
- $\mathrm{s}=\mathrm{S}\left(\right.$ privK $_{\mathrm{T}}, \mathrm{H}($ doc) || timestamp)
- Document doc remains secret
- Trent is trusted to verify the statement before issuing it

SOME ADVANCED CONCEPTS

Classification

- Dig sig with message recovery
- does not require the original message as input to the verification algorithm. In this case, the original message is recovered from the signature itself
- Examples: RSA, Rabin, Nyberg-Rueppel
- Dig sig with appendix
- requires the original message as input to the verification algorithm
- uses hash functions
- Examples: EIGamal, DSA, DSS, Schnorr

RSA-based dig sig

- Digital signature with message recovery - Redundancy function
- A suitable redundancy function is necessary in order to avoid existential forgery
- IOS/IEC 9796 (1991) defines a mapping that takes a kbit integer and maps it into a 2k-bits integer
- Digital signature scheme with appendix - MD5 (128 bit)
- PKCS\#1 specifies a redundancy function mapping 128-bit integer to a k-bit integer, where k is the modulus size $(k>512, k=768,1024)$

Dig sig with message recovery (1)

- Definitions
- \mathbf{M} is the message space
- $\mathbf{M}_{\mathbf{S}}$ is the signing space
- \mathbf{S} is the signature space

- Key generation

- A selects a private key \boldsymbol{d}_{A} defining a signing algorithm S_{A} which is a one-to-one mapping S_{A} : $\mathrm{M}_{\mathrm{S}} \rightarrow \mathrm{S}$
- A defines the corresponding public key defining the verification algorithm V_{A} such that $\mathrm{V}_{A} \times \mathrm{S}_{A}$ is identity map on M_{s}.

Dig sig with message recovery (2)

The signing process

- Compute $m^{*}=R(m), R$ is a redundancy function (invertible)
- Compute $s=S_{A}\left(m^{*}\right)$

Dig sig with message recovery

 (3)

- Obtain authentic public key V_{A}
- Compute $m^{*}=V(s)$
- Verify if $m^{*} \in M_{S}$ (if not, reject the signature)
- Recover the message $m=R^{-1}\left(m^{*}\right)$

Dig sig with message recovery (4)

- Properties of S_{A} and V_{A}
- (efficiency) S_{A} should be efficient to compute
- (efficiency) V_{A} should be efficient to compute
- (security) It should be computationally infeasible for an entity other than A to find an $s \in S$ such that $V_{A}(s) \in M_{S}$

Dig sig with message recovery (5)

- The redundancy function
- R and R^{-1} are publicly known
- Selecting an appropriate R is critical to the security of the system
- A bad redundancy function may lead to existential forgery
- Let us suppose that MR \equiv MS
- R and SA are bijections, therefore M and S have the same number of elements
- Therefore, for all $s \in S, V A(s) \in M R$. Hence, it is "easy" to find an m for which s is the signature, $m=R^{-1}(V A(s)$)
$-s$ is a valid signature for m (existential forgery)
- Plain RSA dig sig suffers from existential forgery

Dig signatures with message recovery (6)

- A good redundancy function although too redundant
- Example
- $M=\left\{m: m \in\{0,1\}^{n}\right\}, M_{S}=\left\{m: m \in\{0,1\}^{2 n}\right\}$
- $R: M \rightarrow M_{S}, R(m)=m \| m$ (concatenation)
- $M_{R} \subseteq M_{S}$
- When n is large, $\left|\mathrm{M}_{\mathrm{R}}\right| /\left|\mathrm{M}_{\mathrm{S}}\right|=(1 / 2)^{\mathrm{n}}$ is small.

Therefore, for an adversary it is unlikely to choose an s that yields $V_{A}(s) \in M_{R}$

Redundancy function for RSA

- ISO/IEC 9776 is an international standard that defines a redundancy function for RSA and Rabin
- Multiplicative property ${ }^{(*)}$ of RSA
- Requirement on R: a necessary condition for avoiding existential forgery is that \mathbf{R} must not satisfy the multiplicative property.
${ }^{(*)}$ Homomorphism property

Dig sig with appendix (1)

- Definitions
- M is the message space
- H is a hash function with domain M
- M_{h} is the image of h
- S is the signature space
- Key generation
- Alice selects a private key d_{A} which defines a signing algorithm S_{A} which is a one-to-one mapping $S_{A}: M_{h} \rightarrow S$
- Alice defines the corresponding public key \boldsymbol{e}_{A} defining the verification algorithm V_{A} such that $V_{A}\left(m^{*}, s\right)=$ true if $S_{A}\left(m^{*}\right)=$ s and false otherwise, for all $m^{*} \in M_{h}$ and $s \in S$, where $\mathbf{m}^{*}=\mathbf{H}(\mathbf{m})$ for $m \in M$.

Dig sig with appendix (2)

Signature generation process

- Compute $\mathrm{m}^{*}=\mathbf{h}(\mathrm{m}), \mathbf{s}=\mathrm{S}_{\mathrm{A}}\left(\mathrm{m}^{*}\right)$
- Send (m, s)

Dig sig with appendix (3)

- Verification process

- Obtain A's public key V_{A}
- Compute $\mathrm{m}^{*}=\mathbf{H}(\mathrm{m}), \mathbf{u}=\mathrm{V}_{\mathrm{A}}\left(\mathrm{m}^{*}\right.$, s)
- Accept the signature iff $\mathbf{u}==$ true

Dig sig with appendix (4)

- Properties of S_{A} and V_{A}

- (efficiency) S_{A} should be efficient to compute
- (efficiency) V_{A} should be efficient to compute
- (security) It should be computationally infeasible for an entity other than A to find an $m \in M$ and an $s \in S$ such that $V_{A}\left(m^{*}, s\right)=$ true, where $m^{*}=h(m)$

Dig sig with appendix from message recovery

- Signature generation
- Compute $\mathrm{m}^{*}=\mathrm{R}(\mathrm{h}(\mathrm{m})), \mathrm{s}=\mathrm{S}_{\mathrm{A}}\left(\mathrm{m}^{*}\right)$
- A's digital signature for m is s
- m, s are made available to anyone who may wish to verify the signature
- Signature verification
- Obtain A's public key VA
- Compute $\mathrm{m}^{*}=\mathrm{R}(\mathrm{h}(\mathrm{m}))$, $\mathrm{m}^{\prime}=\mathrm{V}_{\mathrm{A}}(\mathrm{s})$, and $\mathrm{u}=\left(\mathrm{m}^{\prime}==\mathrm{m}^{*}\right)$
- Accept the signature iff $u=$ true
- Comment
- R is not security critical anymore and can be any one-toone mapping

Hash-and-sign paradigm

- Given
- A signature scheme $\pi=(G, S, V)$ for "short" messages of length n
- Hash function $\mathrm{H}:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$
- Construct a signature scheme $\pi^{\prime}=\left(G, S^{\prime}\right.$, V^{\prime}) for messages of any length
$-S^{\prime}(s k, m)=S(s k, H(m))$
$-\mathrm{V}^{\prime}(\mathrm{m}, \sigma)=\mathrm{V}(\mathrm{H}(\mathrm{m}), \sigma)$

Hash-and-sign paradigm

- THM. If π is secure and H is collisionresistant then π ' is secure
- Proof (by contradiction)
- Let us assume that the sender authenticates m_{1}, m_{2}, \ldots and the adversary manages to forge ($m^{\prime}, \sigma^{\prime}$), $\mathrm{m}^{\prime} \neq \mathrm{m}_{\mathrm{i}}$, for all i
- Let $h_{i}=H\left(m_{i}\right)$. Then, we have two cases
- If $H\left(m^{\prime}\right)=h_{i}$ for some i, then collision in H (contradiction)
- If $\mathrm{H}\left(\mathrm{m}^{\prime}\right) \neq \mathrm{h}_{\mathrm{i}}$, for all i , then forgery of π (contradiction)

