Public Key Encryption

THE RSA CRYPTOSYSTEM



Rivest Shamir Adleman (1978)

Key generation

Generate two large, distinct primes p, g (100+200 decimal digits)
Compute n=p x g and ¢p(n) = (p-1)x(g-1)

Select a random number 1 < e < ¢(n) such that gcd(e, (n)) = 1
Compute the unique integer 1 < d < ¢p such that ed =1 mod ¢

(d, n) is the private key

(e, n) is the public key

A o o

At the end of key generation, p and q must be destroyed

RSA encryption and decryption

Encryption. To generate ¢ from m, Bob should do the following
1. Obtain A's authentic public key (n, e)

2. Represent the message as an integer m in the interval
[0, n-1]

3. Compute ¢ =memod n
4. Sendcto A

Decryption. To recover m from c, Alice should do the following
1. Use the private key d to recover m = ¢?mod n



RSA consistency

We have to prove that D(d(E(e, m)) =m, i.e.,
¢? = mee = mt*e(*" mod n, where t is some integer =
mt-eM-m1= (meM)t-m' = mmod n

The proof exploits the Eulero’s theorem
Vintegern>1, Va € Z,_, a®" =1 mod n where

Z, ={x|1<x<n,gcd(x,n) =1}

Example with artificially small

numbers
Key generation Encryption
» Letp=47eq=71 Let m = 9666683
n=pxq=3337 Divide m into blocks m; < n
@=(p-1) x (g-1)=46 x 70=3220 m, = 966; m, = 668; m; = 3
= Lete=79 Compute
ed=1mod ¢ ¢, = 9667° mod 3337 = 2276
79 x d =1 mod 3220 ¢, = 6687° mod 3337 = 2423
d=1019 c; = 37 mod 3337 = 158
C = €4C,C5 = 2276 2423 158
Decryption

m, = 2276'9"® mod 3337 = 966
m, = 2423'91% mod 3337 = 668
my = 158101 mod 3337 = 3

m = 966 668 3



RSA
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« RSA algorithms for key generation, encryption
and decryption are easy

« They involve the following operations
— Discrete exponentiation
— Generation of large primes
— Solving diophantine equations

Modular ops - complexity

UNIVERSITA DI PISA

Bit complexity of basic operations in Z,
* Letnbe on k bits (n < 2¥)

* Letaand b be two integers in Z, (on k-bits)
— Addition a + b can be done in time O(k)
— Subtraction a — b can be can be done in time O(k)
— Multiplication a x b can be done in O(k?)
— Division a=q x b +r can be done in time O(k?)
— Inverse a' can be done in O(k?)
— Modular exponentiation a* can be done in O(k?)



How to encrypt/decrypt
efficiently

« RSA requires modular exponentiation ¢® mod n
— Let n have k bits in its binary representation, k= log n + 1

* Grade-school algorithm requires (d-1) modular
multiplications

— dis as large as n which is exponentially large with respect to k
— The grade-school algorithm is inefficient

 Square-and-multiply algorithm requires up to 2k
multiplications thus the algorithm can be done in O(k3)

How to encrypt/decrypt
efficiently

» RSA requires modular exponentiation a mod n
— Let n have k bits in its binary representation, k= log n + 1

 Grade-school algorithm requires (x-1) modular
multiplications
— If xis as large as n, which is exponentially large with respect to
k =» the grade-school algorithm is inefficient

 Square-and-multiply algorithm requires up to 2k
multiplications thus the algorithm can be done in O(k3)



How to encrypt and decrypt (
efficiently

Exponentiation by repeated squaring and multiplication: m® mod n requires
at most log,(e) multiplications and log,(e) squares

Let €15 €4.0) -y €95 €4, €, Where k =log, e, the binary representation of e

e, 21e, 2821 4o, 2216246
memodn:m( e = ")modnz c—1
m‘:"k712k—1rnesz_2 .. .m6222m612m60 modn = for (| = k'1, | >= 0, | “) {
2 .
2 C <« c°modn
(mek12 mek—Z2 . .m922me1) meo modn = if (e __ ) !
==
o k3 o ok AT 2 o C(_memOdn,
(mk1 m- ---mZ) m”" | m°modn= }
) 2 2 + always k square operations
(mek—1)2 mé=21..m®=2 | m*| m®modn + at most k modular multiplications
(equal to the number of 1 in the
binary representation of e)
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Square and multiply

UNIVERSITA DI PISA

Exponentiation by repeated squaring and multiplication: @ mod n requires
at most log,(x) multiplications and log,(x) squares

Let X;.15 Xp.s -5 Xo5 Xq5 Xo, Where k = log, x, the binary representation of x

k-1 k-2 2
(XHZ X 2" Xy 274 Xy 2+x0)

a‘modn=a modn = C«— 1
a%? %22 . g%% 2929% modn = for (l =k-1;1>=0;1i “) {
2 .
(axk_12kzaxk_22k3 . 'aX228X1 )2 ax0 mOdn _ C <« C mOd n,
- if (x. == 1)
f
2 .
+ always k square operations
) 2 2 + at most k modular multiplications
i V2 X, %, X %, (equal to the number of 1 in the
(a i ) a*?|--a2|a'|a’modn binary representation of e)




Fast encryption with short
public exponent

« RSA ops with pu
speeded-up
— Encryption
— Digital signature

* The public key e
value
—e=3
—e=17
— e = 216+1
— RSA is still sec

blic key exponent e can be

verification
can be chosen to be a very small

#MUL + #SQ = 2
#MUL + #SQ =5
#MUL + #5Q = 17
ure

« There is no easy way to accelerate RSA when the
private exponent d is involved

31/05/14

How to find a large prime

Public Key Encryption 1

repeat
p < randomOdd(x);

until isPrime(p);

= FACT. On average (In x)/2 odd numbers
must be tested before a prime p < x can be

found

= Primality tests do not try to factor the number under test
* probabilistic primality test (Solovay-Strassen, Miller-Rabin)

polynomial in log n

« true primality test (O(n'?) in 2002))
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On computing the public
exponent

UNIVERSITA DI PISA

« Solution of d - e =1 mod ¢@(n) with gcd(e, ¢(n))
= 1 can be done by means of the Extended
Euclidean Algorithm (EEA)

— Exponent d can be generated efficiently (polytime)
— Condition gcd(e, @(n)) = 1

RSA one-way function
* One-way function y = f(x)
— y =f(x) is easy
— x =f(y) is hard
* RSA one-way function

— Multiplication is easy
— Factoring is hard



Security of RSA

The RSA Problem (RSAP)

 DEFINITION. The RSA Problem (RSAP):
recovering plaintext m from ciphertext c, given the
public key (n, e)

RSA VS FACTORING

 FACT. RSAP <, FACTORING

— FACTORING is at least as difficult as RSAP or,
equivalently, RSAP is not harder than FACTORING

— It is widely believed that RSAP and Factoring are
computationally equivalent, although no proof of
this is known.

RSA vs Factoring

 THM. Computing the decryption exponent d
from the public key (n, e) is computationally
equivalent to factoring n

— If the adversary could somehow factor n, then he

could subsequently compute the private key d
efficiently

If the adversary could somehow compute d, then it
could subsequently factor n efficiently



Factoring
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« FACTORING.

— Given n > 0, find its prime factorization; that is, write N = pﬁp? .. -p;k
where p; are pairwise distinct primes and each e; 21,

» Primality testing vs. factoring

— Deciding whether an integer is composite or prime seems to be, in
general, much easier than the factoring problem

* Factoring algorithms
— Brute force
— Special purpose
— General purpose
— Elliptic Curve
— Factoring on Quantum Computer (for the moment only theorethical)

Factoring algorithms

Brute Force
— Unfeasible if n large and p len = g len

General purpose

— The running time depends solely on the size of n
* Quadratic sieve
* General number field sieve

Special purpose

— The running time depens on certain properties
* Trial division
+ Pollard's rho algorithm
» Pollard's p -1 algorithm

Elliptic curve algorithm



Running times

UNILV ERS;T}\ DI PISA
Trial division: O(x/E )

Quadratic sieve: O(e( '”(”)"”'”<”)))

General number field sieve:

o [8(1 923x3In(n)e(Inin(n))? ) }

Security of RSA

UNIVERSITA DI PISA

RSAP and e-th root

A possible way to decrypt ¢ = m® mod n is to compute the
e-th root of ¢

« THM. Computing the e-th root is a computationally
easy problem iff nis prime

« THM. If n is composite the problem of computing
the e-th root is equivalent to factoring



Security of RSA

* Factoring vs totally breaking RSA
* Apossible way to completely break RSA is to obtain @

« THM. Knowing ¢ is computationally equivalent to
factoring

« PROOF.

1. Given p and q, s.t. n =pg, computing ¢ is immediate.

2. Let g be given.
a. Fromo(n) = (p-1)(a-1) = n - (p+q) + 1, determine x, = (p+q).
b. From (p-q)?=(p +q)>-4n, determine x, = (p — q).
c. Finally, p=(x1+x2)/2and q = (x1 —x2)/2.

Security of RSA

« A possible way to completely break RSA is an
exhaustive attack to the private key d
» This attack could be more difficult than factoring

because (according to the choice for €) d can be
much greater than p and q.



RSA: low exponent attack

* If n,, n, ed n, are pairwise coprime,
use CRT to find x = m? mod n,n,n,

* As m <n,by RSA encryption
definition then m? < n,n,n,, then x =
3
m

= * Thus an eavesdropper recovers m b
X =c,modn, pp y

computing the integer cube root of x
x=c,modn,
(non modular!)

X =c, modn,
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RSA in practice - padding

 \We have described “schoolbook RSA”

« RSA implementation may be insecure
— RSA is deterministic
— PT values x = 0, x = 1 produce CT equal to 0 and 1
— Small PT might be subject to attacks
— RSA is malleable

« Padding is a possible solution

— Optimal Asymmetric Encryption Padding (OAEP)
— Public Key Cryptography Standard #1 (PKCS #1)

31/05/14 Public Key Encryption 26



RSA is malleable

* RSA malleability is based on the homo-morphic
property of RSA

o Attack

RSA — Homomorphic property

The attacker replaces CT = y mod n by
CT’ = s®sy mod n, with s some integer

The receiver decrypts CT’: (séey)? = sé%exed = sex mod n

By operating on the CT the adversary manages to multiply
PT by s

EX. Let x be an amount of money. If s = 2 then the adversary
doubles the amount

Possible solution: introduce redundancy: ex. x || x

UNIVERSITA DI PISA

« Let m, and m, two plaintext messages
* Let ¢, and c, their respective encryptions
* Observe that

(m1m2 )e = m1emze = C,C, (mOdn)

= In other words, the CT of the product m;m, is the
product of CTs ¢,c, mod n



RSA in practice - PKCS #1

d 343 L)
UNIVERSITA DI PISA

« Parameters
— M = message
— | M | = message len in bytes
— k =] n | modulus len in bytes
— | H | = hash function output len in bytes
— L = optional label (*" by default)

RSA in practice - PKCS #1

» Padding
1. Generate a string PS=00...0; PSlen=k—-|M|-2|H| -
2 (PS len may be zero)

DB = Hash(L) || PS || 0x01 || M

seed = random(); seed len = | H |

dbMask = MGF (seed, k-|H|-1)0
maskedDB = DB xor dbMask

seedMask = MGF(maskedDB, | H |)
maskedSeed = seed xor seedMask

EM = 0x00 || maskedSeed || maskedDB ()

ONO KN WDN

) MGF mask generation function (e.g., SHA-1)
(") EM is the padded message



RSA in practice

* RSA is substantially slower than symmetric
encryption
— RSA is used for the transport of symmetric-keys and
for the encryption of small quantities
* Recommended size of the modulus
— 512 bit: marginal security
— 768 bit: recommended
— 1024 bit: long-term security

RSA in practice

Selecting primes p and q

— p and g should be selected so that factoring
n = pq is computationally infeasible, therefore

— p and q should be sufficiently large and
about the same bitlenght (to avoid the elliptic
curve factoring algorithm)

— p - q should be not too small



RSA in practice

« Exponent e should be small or with a small number
of 1's
—e=3
[1 modular multiplication + 1 modular squaring]
subject to small encryption exponent attack

—e=21+1 (Fermat's number)
[1 modular multiplication + 16 modular squarings]
resistant to small encryption exponent attacks

» Decryption exponent d should be roughly the same
size as n

— Otherwise, if d is small, it could be possible to obtain d
from the public information (n, e) or from a brute force
attack
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Common modulus attack

NN
Ny

* Mr Lou Cipher can efficiently
n %’% factor n from ds and then

« compute all d,
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L3132
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Auctioneer’s public key = (n, e)

v

%ﬁ

The adversary encrypts all possible bids (e.g, 232) until he finds
a b such that E(e, b) =c

Thus, the adversary sends a bid containing the minimal offer to
win the auction: b’ =b + 1

Salting is a solution: r — random(); c—E(e, r || bid)
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Homomorphic property of RSA

« Let m, and m, two plaintext messages
* Let ¢, and c, their respective encryptions
* Observe that

(m1m2 )e =m,"m,” =cc, (mOdn)

» |n other words, the ciphertext of the product
m,m, is the product of ciphertexts c¢,c, mod n

31/05/14 Public Key Encryption 36



An adaptive chosen-ciphertext
attack

» Bob decrypts ciphertext except a given
ciphertext ¢

= Mr Lou Cipher wants to determine the
ciphertext corresponding to ¢

* Mr Lou Cipher selects x at random, s.t. gcd(x, n) =1, and
sends Bob the quantity ¢ =cx*modn

« Bob decrypts it, producing 7 =(¢)" =c’x* =mx(modn)

* Mr Lou Cipher determine m by computing m=mx"' modn

The attack can be contrasted by imposing structural constraints on m

31/05/14 Public Key Encryption 37

Hybrid systems

* An asymmetric cipher is subject to the
chosen-plaintex attack

* An asymmetric cipher is three orders of
magnitude slower than a symmetric cipher

therefore

* An asymmetric cipher is often used in
conjunction with a symmetric one so producing
an hybrid system

31/05/14 Public Key Encryption 38



Hybrid systems
Alice confidentially sends Bob a file file

E(e,.K,,).E(k,, file)

b’ “ab

e File file is encrypted with a symmetric cipher
e Session key is encrypted with an asymmetric cipher

e Alice needs an authentic copy of Bob’s public key

OTHER PUBLIC KEY CRYPTO-
SYSTEMS



Other asymmetric
cryptosystems

UNIVERSITA DI PISA

Discrete Logarithm Systems

 Let p be a prime, g a prime divisor of p—1 and gE[1, p-1]
has order g

* Let x be the private key selected at random from [1, g-1]
* Let y be the corresponding public key y = g¢* mod p

* Discrete Logarithm Problem (DLP)

» Given (p, q, g) and y, determine x

ElGamal encryption scheme

UNIVERSITA DI PISA

* Encryption
— select k randomly
— c1=g*mod p, c,=mx ykmod p
— send (c,, ¢,) to recipient
* Decryption
— ¢*=g"*mod p=ymodp
— m=c,%xy*modp
« Security

— An adversary needs yk mod p. The task of calculating y* mod p from

(9, p, 9) and y is equivalent to DHP and thus based on DLP in Z,



ElGamal in practice

Prime p and generator g can be common system-wide
Prime p size

— 912-bit: marginal

— 768-bit: recommended

— 1024-bit or larger: long-term

Efficiency

— Encryption requires two modular exponentiations

— Message expansion by a factor of 2

Security
— Different random integers k must be used for different messages

Ellyptic Curve Cryptography

* Letpand €F,

* Let E be an elliptic curve defined by
y2=x3+ax +b (mod p) where a, b €F, and 4a>+27b°=0

« Example. E: y? = x3 + 2x + 4 (mod p)

» The set of points E(IF,)) with point at infinity «forms an
additive Abelian group



Public Key Cryptography

Elliptic curves
Geometrical approach

UNIVERSITA DI PISA

P (:2.35,-1.86)
0 (:0.1,0.836)
-R (3.89,5.62)
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R (L11,-2.64)
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2P =R=(-111,2.64).

Fotoboex
¥ P(110)

»? =x}-3x+5
Since yp=0,22 =0,

e I !
- P+EP) =0 P THE
1 P) D s I € *| the point at infinity.

X

y2 =x3-6x+6
45
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Elliptic Cryptography (ECC)

 Algebric Approach

= Elliptic curves defined on finite field define an Abelian finite
field

 Elliptic curve discrete logarithm problem
= Given points G and Q such that Q=kG, find the integer k
* No sub-exponential algorithm to solve it is known

« ECC keys are smaller than RSA ones

31/05/14 Public Key Encryption 46
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Ellyptic Curve Cryptography

Let P have order n then the cyclic subgroup generated by P
iSG=<P,2P..., (n-1)P>

p, E, P and n are the public parameters

Private key d is selected at randomin [1, n-1]
Public key is Q =dP

Ellyptic Curve Cryptography

03155/
UNIVERSITA DI PISA

 Encryption
— Amessage mis represented as a point U
— C,=kP; C,=M+ kQ
— send (C4; C,) to recipient
* Decryption
— dC, = d(kP) = kQ
— M=C,-dC,

 Security

— The task of computing kQ from the domain parameters, Q, and C,=kP,
is the ECDHP



Comparison among crypto-systems

Security level (bits)

80 12 128 192 256
(SKIPJACK) (3DES) (AES small) (AES medium) (AES large)

DL parameter q

160 224 256 384 512
EC parametern
RSA modulus n

1024 2048 3072 8192 15360
DL modulus p

* Private key operations are more efficient in EC than in DL or RSA

* Public key operations are more efficient in RSA than EC or DL if small exponent e is
selected for RSA

PHYSICAL ATTACKS




Physical attacks

 Embedded systems change the threat model
— The adversary may physically attack the system
* E.g.: smart meter
— The system is even given to the adversary
» E.g.: a bank or telco smart card
— The adversary physically interfere with the system
— Main attacks
+ Fault injection
* Time analysis
* Power analysis

CRT and RSA optimization

 Chinese Remainder Theorem allows us to
compute RSA more efficiently

* Problem: Compute m = ¢? (mod n)

1. Compute m, = ¢? (mod p) and m, = ¢? (mod q)

2. Compute m =a,m,q + a,m,p

where a, and a, are properly computed coefficients

 Advantage.

— E, = c(mod p) = c ([dmedp-1) (mod p),

— While d is on k bits, p—1 is on k/2 bits

— Thus, multiplication takes O(k2/4)



CRT and RSA optimization

UNIVERSITA DI PISA

Chinese Remainder Theorem allows us to compute RSA
(decryption, signing) more efficiently

Problem: Compute y = x? (mod n)
1. Compute x, = x mod p and x, =x mod q
2. Computey, =x,9md(P-Ymod p and y, = x, 9m°d@-"mod q
3. Computey =ayy,q + a,y,p Where a, and a, are properly (pre-)computed
coefficients

Advantage.
— Computation of y, and y, is the most demanding
— It requires #MUL+#SQ = 1.5¢, on average

— Each squaring/multiplication involves t/2-bit operands =» multiplication/
squaring takes O(k?/4)
— Thus the total speedup obtained through CRT is a factor of 4.

A fault-injection attack g
against CRT-based RSA  ..=.

Attack intuition: by injecting a fault the adversary is able
to factorize n
The attack
— Cause an hw fault while computing y, which produces y’,
and thus y’ = a,y’,q+ ajy,p
— It follows thaty —y’ = a,(m’,— m,)q
— Thus, ged(y —y’, n) = q which can be efficiently computed
with the Euclide’s algorithm
Practical considerations
— causing hw fault: tamper with computing circuitry
— countermeasures: checking results (10% slow down)




Power Analysis

UNIVERSITA DI PISA

Power Analysis of RSA

0 s/ 173 S000K  Swp §F H) 434

* Power analysis is a side channel
attack in which the attacker studies the
power consumption of a cryptographic
hardware device

* smart card, tamper-resistant
"black box", or integrated circuit

* The attack is non-invasive

« Simple power analysis (SPA)
involves visual examination of graphs

Acquirs Merw

of the current used by a device over Shoai | osms
time.
« Variations in power consumption Key bit = 0 Key bit = 1
occur as the device performs different No multiplication multiplication
operations.

Power Analysis

. . . Cryptographic device
 Differential power analysis (DPA) (e.g.. smart card and reader)
involves statistically analyzing power
consumption measurements from a

cryptosystem.

— DPA attacks have signal processing and
error correction properties which can
extract secrets from measurements
which contain too much noise to be
analyzed using simple power analysis.

UNIVERSITA DI PISA

Control,
Cyphertexts

Control,
Waveform

data -‘_,_.;——-&J/__-

Computer

Oscilloscope



Timing attack

3, L)
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* Atiming attack is a side channel attack in
which the attacker attempts to compromise a
cryptosystem by analyzing the time taken to
execute cryptographic algorithms
— Execution time depends on inputs (e.g., key!)

— Precise measurement of time

— Attack is application dependent

— E.qg., square-and-multiply for exp mod n
» time depends on number of “1” in the key

« Statistical analysis of timings with same key and different
inputs



