Public Key Encryption

A case study

THE RSA CRYPTOSYSTEM

Rivest Shamir Adleman (1978)

Key generation

1. Generate two large, distinct primes $p, q(100 \div 200$ decimal digits)
2. Compute $n=p \times q$ and $\varphi(n)=(p-1) \times(q-1)$
3. Select a random number $1<e<\varphi(n)$ such that $\operatorname{gcd}(e, \varphi(n))=1$
4. Compute the unique integer $1<d<\varphi$ such that $e d \equiv 1 \bmod \varphi$
5. (d, n) is the private key
6. (e, n) is the public key

At the end of key generation, \mathbf{p} and \mathbf{q} must be destroyed

RSA encryption and decryption

Encryption. To generate c from m, Bob should do the following

1. Obtain A's authentic public key (n, e)
2. Represent the message as an integer m in the interval [0, $n-1]$
3. Compute $\boldsymbol{c}=\boldsymbol{m}^{e} \bmod \boldsymbol{n}$
4. Send c to A

Decryption. To recover m from c, Alice should do the following

1. Use the private key d to recover $\boldsymbol{m}=\boldsymbol{c}^{d} \bmod \boldsymbol{n}$

RSA consistency

We have to prove that $D(d(E(e, m))=m$, i.e.,

$$
\begin{aligned}
& c^{d} \equiv m^{d e} \equiv m^{\bullet \bullet(n)+1} \bmod n \text {, where } t \text { is some integer } \Rightarrow \\
& m^{t \cdot \varphi(n)} \cdot m^{1} \equiv\left(m^{\varphi(n)}\right)^{t} \cdot m^{1} \equiv m \bmod n
\end{aligned}
$$

The proof exploits the Eulero's theorem
\forall integer $n>1, \forall a \in \mathbb{Z}_{n}{ }^{*}, a^{\varphi(n)} \equiv 1 \bmod n$ where

$$
\mathbb{Z}_{n}^{*}=\{x \mid 1<x<n, \operatorname{gcd}(x, n)=1\}
$$

Example with artificially small numbers

Key generation

- Let $p=47$ e $q=71$
$n=p \times q=3337$
$\varphi=(p-1) \times(q-1)=46 \times 70=3220$
- Let $e=79$
$e d=1 \bmod \varphi$
$79 \times d=1 \bmod 3220$
$d=1019$

Encryption

Let $m=9666683$
Divide m into blocks $m_{i}<n$
$m_{1}=966 ; m_{2}=668 ; m_{3}=3$
Compute
$c_{1}=966^{79} \bmod 3337=2276$
$c_{2}=668{ }^{79} \bmod 3337=2423$
$c_{3}=3^{79} \bmod 3337=158$
$c=c_{1} c_{2} c_{3}=22762423158$

Decryption

$m_{1}=2276^{1019} \bmod 3337=966$
$m_{2}=2423^{1019} \bmod 3337=668$
$m_{3}=1588^{1019} \bmod 3337=3$
$m=9666683$

RSA

- RSA algorithms for key generation, encryption and decryption are easy
- They involve the following operations
- Discrete exponentiation
- Generation of large primes
- Solving diophantine equations

Modular ops - complexity

Bit complexity of basic operations in Z_{n}

- Let \mathbf{n} be on \mathbf{k} bits ($\mathbf{n}<2^{\mathbf{k}}$)
- Let \mathbf{a} and \mathbf{b} be two integers in \mathbf{Z}_{n} (on k-bits)
- Addition a + b can be done in time $\mathbf{O (k)}$
- Subtraction a - b can be can be done in time $\mathbf{0}(\mathbf{k})$
- Multiplication $\mathrm{a} \times \mathrm{b}$ can be done in $\mathbf{O}\left(\mathrm{k}^{2}\right)$
- Division $\mathbf{a}=\mathbf{q} \times \mathbf{b}+\mathbf{r}$ can be done in time $\mathbf{O}\left(\mathbf{k}^{2}\right)$
- Inverse a^{-1} can be done in $\mathbf{O}\left(\mathrm{k}^{2}\right)$
- Modular exponentiation a^{k} can be done in $\mathbf{O}\left(\mathbf{k}^{\mathbf{3}}\right)$

How to encrypt/decrypt efficiently

- RSA requires modular exponentiation $\boldsymbol{c}^{d} \bmod \boldsymbol{n}$
- Let \boldsymbol{n} have \boldsymbol{k} bits in its binary representation, $\boldsymbol{k}=\log \boldsymbol{n}+1$
- Grade-school algorithm requires (d-1) modular multiplications
- \boldsymbol{d} is as large as \mathbf{n} which is exponentially large with respect to \boldsymbol{k}
- The grade-school algorithm is inefficient
- Square-and-multiply algorithm requires up to $\mathbf{2 k}$ multiplications thus the algorithm can be done in $\mathbf{O}\left(\boldsymbol{k}^{3}\right)$

How to encrypt/decrypt efficiently

- RSA requires modular exponentiation $a^{x} \bmod n$
- Let \boldsymbol{n} have \boldsymbol{k} bits in its binary representation, $\boldsymbol{k}=\log \boldsymbol{n}+\boldsymbol{1}$
- Grade-school algorithm requires (x-1) modular multiplications
- If \boldsymbol{x} is as large as \mathbf{n}, which is exponentially large with respect to $\boldsymbol{k} \boldsymbol{\rightarrow}$ the grade-school algorithm is inefficient
- Square-and-multiply algorithm requires up to $\mathbf{2 k}$ multiplications thus the algorithm can be done in $\mathbf{O}\left(\boldsymbol{k}^{3}\right)$

How to encrypt and decrypt efficiently

Exponentiation by repeated squaring and multiplication: $\boldsymbol{m}^{e} \bmod n$ requires at most $\log _{2}(e)$ multiplications and $\log _{2}(e)$ squares
Let $\mathbf{e}_{k-1}, \mathbf{e}_{k-2}, \ldots, e_{2}, \mathbf{e}_{1}, \mathbf{e}_{0}$, where $\boldsymbol{k}=\log _{2} \mathbf{e}$, the binary representation of \mathbf{e}

$$
\begin{aligned}
& m^{e} \bmod n=m^{\left(e_{k-1} e^{k-1}+e_{k-2} 2^{k-2}+\cdots+e_{2} 2^{2}+e_{1} 2+e_{0}\right)} \bmod n \equiv \\
& m^{e_{k-1} 1^{k-1}} m^{e_{k-2} 2^{k-2}} \cdots m^{e_{2} 2^{2}} m^{e_{1} 2} m^{e_{0}} \bmod n \equiv \\
& \left(m^{e_{k-1} 2^{k-2}} m^{e_{k-2} 2^{k-3}} \cdots m^{e_{2} 2} m^{e_{1}}\right)^{2} m^{e_{0}} \bmod n \equiv \\
& \left(\left(m^{e_{k-1} 2^{k-3}} m^{e_{k-2} 2^{k-4}} \cdots m^{e_{2}}\right)^{2} m^{e_{1}}\right)^{2} m^{e_{0}} \bmod n \equiv \\
& \left(\left(\left(\left(m^{e_{k-1}}\right)^{2} m^{e_{k-2}}\right)^{2} \cdots m^{e_{2}}\right)^{2} m^{e_{1}} m^{e_{0}} \bmod n\right. \\
& \left(\left({ }^{2}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
c \leftarrow 1 \\
\text { for }(\mathrm{i}=\mathrm{k}-1 ; \mathrm{i}>=0 ; i--)\{ \\
c \leftarrow c^{2} \bmod n ; \\
\text { if }\left(e_{i}==1\right) \\
\quad c \leftarrow c \times m \bmod n ; \\
\}
\end{array} \\
& \text { - always } k \text { square operations } \\
& \text { a a most } k \text { modular multiplications } \\
& \begin{array}{l}
\text { (equal to the number of } 1 \text { in the } \\
\text { binary representation of } e)
\end{array}
\end{aligned}
$$

Square and multiply

Exponentiation by repeated squaring and multiplication: $a^{x} \bmod n$ requires at most $\log _{2}(x)$ multiplications and $\log _{2}(x)$ squares
Let $x_{k-1}, x_{k-2}, \ldots, x_{2}, x_{1}, x_{0}$, where $\boldsymbol{k}=\log _{2} x$, the binary representation of \boldsymbol{x}
$a^{x} \bmod n=a^{\left(x_{k-1} 1^{k-1}+x_{k-2} 2^{k-2}+\cdots+x_{2} 2^{2}+x_{1} 2+x_{0}\right)} \bmod n \equiv$
$a^{x_{k-1}} a^{2 k-1} a^{x_{k-2}} a^{2^{k-2}} \cdots a^{x_{2} 2^{2}} a^{x_{1} 2} a^{x_{0}} \bmod n \equiv$
$\left(a^{x_{k-1}} a^{k^{k-2}} a^{x_{k-2}} 2^{2^{k-3}} \cdots a^{x_{2}} a^{x_{1}}\right)^{2} a^{x_{0}} \bmod n \equiv$ $\left(\left(a^{x_{k-1}-2^{k-3}} a^{x_{k-2}} 2^{2^{k-4}} \cdots a^{x_{2}}\right)^{2} a^{x_{1}}\right)^{2} a^{x_{0}} \bmod n \equiv$

$$
\left(\left(\left(\left(a^{x_{k-1}}\right)^{2} a^{x_{k-2}}\right)^{2} \cdots a^{x_{2}}\right)^{2} a^{x_{1}}\right)^{2} a^{x_{0}} \bmod n
$$

```
c}\leftarrow
for (i = k-1; i >= 0; i --) {
    c\leftarrowc}\mp@subsup{c}{}{2}\operatorname{mod}n
    if ( }\mp@subsup{x}{i}{}==1\mathrm{ )
        c\leftarrowc\timesamod n;
}
```

- always \boldsymbol{k} square operations
- at most k modular multiplications (equal to the number of 1 in the binary representation of e)

Fast encryption with short public exponent

- RSA ops with public key exponent e can be speeded-up
- Encryption
- Digital signature verification
- The public key e can be chosen to be a very small value
$-\mathrm{e}=3$
\#MUL + \#SQ $=2$
$-e=17$
\#MUL + \#SQ = 5
$-\mathrm{e}=2^{16+1} \quad \# \mathrm{MUL}+\# \mathrm{SQ}=17$
- RSA is still secure
- There is no easy way to accelerate RSA when the private exponent \boldsymbol{d} is involved

How to find a large prime

UNIVERSITÀ DI PISA

```
repeat
    p\leftarrowrandomOdd(x);
until isPrime(p);
```

- FACT. On average ($\ln x$)/2 odd numbers must be tested before a prime $p<x$ can be found
- Primality tests do not try to factor the number under test
- probabilistic primality test (Solovay-Strassen, Miller-Rabin) polynomial in $\log \mathbf{n}$
- true primality test ($\mathrm{O}\left(\mathrm{n}^{12}\right)$ in 2002))

On computing the public exponent

- Solution of $\mathbf{d} \cdot \mathrm{e} \equiv 1 \bmod \varphi(\mathrm{n})$ with $\operatorname{gcd}(\mathrm{e}, \varphi(\mathrm{n}))$ $\equiv 1$ can be done by means of the Extended Euclidean Algorithm (EEA)
- Exponent d can be generated efficiently (polytime)
- Condition $\operatorname{gcd}(\mathrm{e}, \varphi(\mathrm{n})) \equiv 1$

RSA one-way function

- One-way function $y=f(x)$
$-y=f(x)$ is easy
$-x=f^{-1}(y)$ is hard
- RSA one-way function
- Multiplication is easy
- Factoring is hard

Security of RSA

The RSA Problem (RSAP)

- DEFINITION. The RSA Problem (RSAP): recovering plaintext m from ciphertext c, given the public key (n, e)

RSA VS FACTORING

- FACT. RSAP \leq_{p} FACTORING
- FACTORING is at least as difficult as RSAP or, equivalently, RSAP is not harder than FACTORING
- It is widely believed that RSAP and Factoring are computationally equivalent, although no proof of this is known.

RSA vs Factoring

- THM. Computing the decryption exponent d from the public key ($\boldsymbol{n}, \mathbf{e}$) is computationally equivalent to factoring n
- If the adversary could somehow factor n, then he could subsequently compute the private key d efficiently
- If the adversary could somehow compute \boldsymbol{d}, then it could subsequently factor \boldsymbol{n} efficiently

Factoring

- FACTORING.
- Given $\boldsymbol{n}>\mathbf{0}$, find its prime factorization; that is, write $n=p_{1}^{e_{1}} p_{2}^{\theta_{2}} \cdots p_{k}^{\theta_{k}}$ where p_{i} are pairwise distinct primes and each $\mathbf{e}_{i} \geq 1$,
- Primality testing vs. factoring
- Deciding whether an integer is composite or prime seems to be, in general, much easier than the factoring problem
- Factoring algorithms
- Brute force
- Special purpose
- General purpose
- Elliptic Curve
- Factoring on Quantum Computer (for the moment only theorethical)

Factoring algorithms

- Brute Force
- Unfeasible if n large and p len $=q$ len
- General purpose
- The running time depends solely on the size of n
- Quadratic sieve
- General number field sieve
- Special purpose
- The running time depens on certain properties
- Trial division
- Pollard's rho algorithm
- Pollard's p-1 algorithm

- Elliptic curve algorithm

Running times

Trial division: $\quad O(\sqrt{n})$

Quadratic sieve:

$$
O\left(e^{(\sqrt{\ln (n) \cdot \ln \ln (n)})}\right)
$$

General number field sieve:

Security of RSA

RSAP and e-th root

- A possible way to decrypt $c=m^{e} \bmod n$ is to compute the e-th root of c
- THM. Computing the e-th root is a computationally easy problem iff n is prime
- THM. If n is composite the problem of computing the e-th root is equivalent to factoring

Security of RSA

- Factoring vs totally breaking RSA

- A possible way to completely break RSA is to obtain φ
- THM. Knowing φ is computationally equivalent to factoring
- PROOF.

1. Given p and q, s.t. $n=p q$, computing φ is immediate.
2. Let φ be given.
a. From $\varphi(n)=(p-1)(q-1)=n-(p+q)+1$, determine $x_{1}=(p+q)$.
b. From $(p-q)^{2}=(p+q)^{2}-4 n$, determine $x_{2}=(p-q)$.
c. Finally, $p=(x 1+x 2) / 2$ and $q=(x 1-x 2) / 2$.

Security of RSA

- A possible way to completely break RSA is an exhaustive attack to the private key d
- This attack could be more difficult than factoring because (according to the choice for e) d can be much greater than p and q.

RSA: low exponent attack

RSA in practice - padding

- We have described "schoolbook RSA"
- RSA implementation may be insecure
- RSA is deterministic
- PT values $\mathrm{x}=0, \mathrm{x}=1$ produce CT equal to 0 and 1
- Small PT might be subject to attacks
- RSA is malleable
- Padding is a possible solution
- Optimal Asymmetric Encryption Padding (OAEP)
- Public Key Cryptography Standard \#1 (PKCS \#1)

RSA is malleable

- RSA malleability is based on the homo-morphic property of RSA
- Attack
- The attacker replaces CT = $y \bmod n$ by CT' $=s^{e} \cdot y$ mod n, with s some integer
- The receiver decrypts CT': $\left(s^{e} \cdot y\right)^{d}=s^{e d} \bullet x^{e d}=s^{\bullet} \times \bmod n$
- By operating on the CT the adversary manages to multiply PT by s
- EX. Let x be an amount of money. If $s=2$ then the adversary doubles the amount
- Possible solution: introduce redundancy: ex. x || x

RSA - Homomorphic property

- Let m_{1} and m_{2} two plaintext messages
- Let c_{1} and c_{2} their respective encryptions
- Observe that

$$
\left(m_{1} m_{2}\right)^{e} \equiv m_{1}^{e} m_{2}^{e} \equiv c_{1} c_{2}(\bmod n)
$$

- In other words, the CT of the product $m_{1} m_{2}$ is the product of CTs $c_{1} c_{2} \bmod n$

RSA in practice - PKCS \#1

UNIVERSITÀ DI PISA

- Parameters
- M = message
- $|\mathrm{M}|$ = message len in bytes
$-\mathrm{k}=|\mathrm{n}|$ modulus len in bytes
- | $\mathrm{H} \mid=$ hash function output len in bytes
- L = optional label ("" by default)

RSA in practice - PKCS \#1

- Padding

1. Generate a string $P S=00 \ldots 0 ; P S$ len $=k-|M|-2|H|-$ 2 ($P S$ len may be zero)
2. $D B=\operatorname{Hash}(L)\|P S\| 0 \times 01| | M$
3. seed $=$ random(); seed len $=|\mathrm{H}|$
4. $d b$ Mask $=$ MGF (seed, $k-|H|-1)^{(*)}$
5. maskedDB $=D B$ xor dbMask
6. seedMask = MGF(maskedDB,|H|)
7. maskedSeed = seed xor seedMask
8. $E M=0 \times 00 \|$ maskedSeed || maskedDB ${ }^{(* *)}$
${ }^{(*)}$ MGF mask generation function (e.g., SHA-1)
${ }^{(*)} E M$ is the padded message

RSA in practice

- RSA is substantially slower than symmetric encryption
- RSA is used for the transport of symmetric-keys and for the encryption of small quantities
- Recommended size of the modulus
- 512 bit: marginal security
- 768 bit: recommended
- 1024 bit: long-term security

RSA in practice

Selecting primes \boldsymbol{p} and \boldsymbol{q}

- p and q should be selected so that factoring $\boldsymbol{n}=\boldsymbol{p q}$ is computationally infeasible, therefore
- p and q should be sufficiently large and about the same bitlenght (to avoid the elliptic curve factoring algorithm)
- p-q should be not too small

RSA in practice

- Exponent e should be small or with a small number of 1 's
$-e=3$
[1 modular multiplication + 1 modular squaring] subject to small encryption exponent attack
$-\mathrm{e}=\mathbf{2}^{16}+\mathbf{1}$ (Fermat's number)
[1 modular multiplication +16 modular squarings] resistant to small encryption exponent attacks
- Decryption exponent d should be roughly the same size as n
- Otherwise, if d is small, it could be possible to obtain d from the public information (n, e) or from a brute force attack

Common modulus attack

Chosen-plaintext attack

The adversary encrypts all possible bids (e.g, 2^{32}) until he finds $\mathbf{a} \mathbf{b}$ such that $E(\mathrm{e}, \mathrm{b})=c$

Thus, the adversary sends a bid containing the minimal offer to win the auction: $b^{\prime}=b+1$

Salting is a solution: $r \leftarrow$ random ()$; c \leftarrow E(e, r \|$ bid $)$

Homomorphic property of RSA

- Let m_{1} and m_{2} two plaintext messages
- Let c_{1} and c_{2} their respective encryptions
- Observe that

$$
\left(m_{1} m_{2}\right)^{e} \equiv m_{1}^{e} m_{2}^{e} \equiv c_{1} c_{2}(\bmod n)
$$

- In other words, the ciphertext of the product $m_{1} m_{2}$ is the product of ciphertexts $c_{1} c_{2} \bmod n$

An adaptive chosen-ciphertext attack

- Bob decrypts ciphertext except a given ciphertext c
- Mr Lou Cipher wants to determine the ciphertext corresponding to c
- Mr Lou Cipher selects x at random, s.t. $\operatorname{gcd}(x, n)=1$, and sends Bob the quantity $\bar{c}=c x^{e} \bmod n$
- Bob decrypts it, producing $\bar{m}=(\bar{c})^{d}=c^{d} x^{e d}=m x(\bmod n)$
- Mr Lou Cipher determine m by computing $m=\bar{m} x^{-1} \bmod n$

The attack can be contrasted by imposing structural constraints on m

Hybrid systems

- An asymmetric cipher is subject to the chosen-plaintex attack
- An asymmetric cipher is three orders of magnitude slower than a symmetric cipher
therefore
- An asymmetric cipher is often used in conjunction with a symmetric one so producing an hybrid system

Hybrid systems

Alice confidentially sends Bob a file file

- File file is encrypted with a symmetric cipher
- Session key is encrypted with an asymmetric cipher
- Alice needs an authentic copy of Bob's public key

OTHER PUBLIC KEY CRYPTOSYSTEMS

Other asymmetric cryptosystems

Discrete Logarithm Systems

- Let p be a prime, q a prime divisor of $p-1$ and $g \in[1, p-1]$ has order q
- Let x be the private key selected at random from [1, q-1]
- Let y be the corresponding public key $y=g^{x} \bmod p$
- Discrete Logarithm Problem (DLP)
- Given (p, q, g) and y, determine x

ElGamal encryption scheme

- Encryption
- select \boldsymbol{k} randomly
$-c 1=g^{k} \bmod p, c_{2}=m \times y^{k} \bmod p$
- send ($\mathbf{c}_{1}, \mathrm{c}_{2}$) to recipient
- Decryption
$-\mathrm{c}_{1}{ }^{x}=g^{k x} \bmod p=y^{k} \bmod p$
$-m=c_{2} \times y^{-k} \bmod p$
- Security
- An adversary needs $y^{\mathbf{k}} \bmod \mathrm{p}$. The task of calculating $\mathrm{y}^{\mathbf{k}} \bmod \mathrm{p}$ from $(\mathrm{g}, \mathrm{p}, \mathrm{q})$ and y is equivalent to DHP and thus based on DLP in \mathbb{Z}_{p}

ElGamal in practice

- Prime p and generator g can be common system-wide
- Prime p size
- 512-bit: marginal
- 768-bit: recommended
- 1024-bit or larger: long-term
- Efficiency
- Encryption requires two modular exponentiations
- Message expansion by a factor of 2
- Security
- Different random integers k must be used for different messages

Ellyptic Curve Cryptography

UNIVERSITÀ DI PISA

- Let p and $\in \mathbb{F}_{p}$
- Let E be an elliptic curve defined by $y^{2}=x^{3}+a x+b(\bmod p)$ where $a, b \in \mathbb{F}_{p}$ and $4 a^{3}+27 b^{2}=0$
- Example. E: $y^{2}=x^{3}+2 x+4(\bmod p)$
- The set of points $E\left(\mathbb{F}_{p}\right)$ with point at infinity \propto forms an additive Abelian group

Elliptic curves

Geometrical approach

Elliptic Cryptography (ECC)

- Algebric Approach
- Elliptic curves defined on finite field define an Abelian finite field
- Elliptic curve discrete logarithm problem
- Given points G and Q such that $Q=k G$, find the integer k
- No sub-exponential algorithm to solve it is known
- ECC keys are smaller than RSA ones

Ellyptic Curve Cryptography

- Let P have order \boldsymbol{n} then the cyclic subgroup generated by \boldsymbol{P} is $G=\langle P, 2 P, \ldots,(n-1) P\rangle$
- p, E, P and n are the public parameters
- Private key \boldsymbol{d} is selected at random in $[1, n-1]$
- Public key is $Q=d P$

Ellyptic Curve Cryptography

- Encryption
- A message m is represented as a point M
$-C_{1}=k P ; C_{2}=M+k Q$
- send ($C_{1} ; C_{2}$) to recipient
- Decryption
$-d C_{1}=d(k P)=k Q$
$-M=C_{2}-d C_{1}$
- Security
- The task of computing $k Q$ from the domain parameters, Q, and $C_{1}=k P$, is the ECDHP

Comparison among crypto-systems

	Security level (bits)				
	80 (SKIPJACK)	112 $(3 D E S)$	128 (AES small)	192 (AES medium)	(AES large)
DL parameter q EC parameter n	160	224	256	384	512
RSA modulus n DL modulus p	1024	2048	3072	8192	15360

- Private key operations are more efficient in EC than in DL or RSA
- Public key operations are more efficient in RSA than EC or DL if small exponent e is selected for RSA

PHYSICAL ATTACKS

Physical attacks

- Embedded systems change the threat model
- The adversary may physically attack the system
- E.g.: smart meter
- The system is even given to the adversary
- E.g.: a bank or telco smart card
- The adversary physically interfere with the system
- Main attacks
- Fault injection
- Time analysis
- Power analysis

CRT and RSA optimization

- Chinese Remainder Theorem allows us to compute RSA more efficiently
- Problem: Compute $\boldsymbol{m}=\boldsymbol{c}^{d}(\bmod n)$

1. Compute $m_{1}=c^{d}(\bmod p)$ and $m_{2}=c^{d}(\bmod q)$
2. Compute $m=a_{1} m_{1} q+a_{2} m_{2} p$ where \mathbf{a}_{1} and $\mathbf{a}_{\mathbf{2}}$ are properly computed coefficients

- Advantage.
$-E_{1}=c^{d}(\bmod p)=c^{(d \bmod p-1)}(\bmod p)$,
- While \boldsymbol{d} is on \boldsymbol{k} bits, $\mathbf{p - 1}$ is on $\mathbf{k} / \mathbf{2}$ bits
- Thus, multiplication takes $\mathbf{O}\left(\mathbf{k}^{2} / 4\right)$

CRT and RSA optimization

UNIVERSITÀ DI PISA

- Chinese Remainder Theorem allows us to compute RSA (decryption, signing) more efficiently
- Problem: Compute $\boldsymbol{y}=\boldsymbol{x}^{d}(\bmod \boldsymbol{n})$

1. Compute $x_{p}=x \bmod p$ and $x_{q}=x \bmod q$
2. Compute $y_{p}=x_{p}{ }^{d \bmod (p-1)} \bmod p$ and $y_{q}=x_{q}{ }^{d \bmod (q-1)} \operatorname{modq}$
3. Compute $\mathbf{y}=\mathbf{a}_{\mathrm{p}} \mathbf{y}_{\mathrm{p}} \mathbf{q}+\mathbf{a}_{\mathrm{q}} \mathbf{y}_{\mathrm{q}} \mathbf{p}$ where \mathbf{a}_{p} and $\mathbf{a}_{\mathbf{q}}$ are properly (pre-)computed coefficients

- Advantage.
- Computation of \mathbf{y}_{p} and \mathbf{y}_{q} is the most demanding
- It requires \#MUL+\#SQ = 1.5t, on average
- Each squaring/multiplication involves $t / 2$-bit operands \rightarrow multiplication/ squaring takes $\mathbf{O}\left(\mathbf{k}^{2} / 4\right)$
- Thus the total speedup obtained through CRT is a factor of 4.

A fault-injection attack against CRT-based RSA

- Attack intuition: by injecting a fault the adversary is able to factorize \mathbf{n}
- The attack
- Cause an hw fault while computing \mathbf{y}_{p} which produces $\mathbf{y}^{\prime}{ }_{p}$ and thus $y^{\prime}=a_{p} y^{\prime}{ }_{p} q^{+} a_{q} y_{q} p$
- It follows that $\mathbf{y}-y^{\prime}=a_{p}\left(m_{p}^{\prime}-m_{p}\right) q$
- Thus, $\mathbf{g c d}(\mathbf{y}-\mathbf{y}, \mathbf{n})=\mathbf{q}$ which can be efficiently computed with the Euclide's algorithm

- Practical considerations

- causing hw fault: tamper with computing circuitry
- countermeasures: checking results (10\% slow down)

Power Analysis

- Power analysis is a side channel attack in which the attacker studies the power consumption of a cryptographic hardware device
- smart card, tamper-resistant "black box", or integrated circuit
- The attack is non-invasive
- Simple power analysis (SPA) involves visual examination of graphs of the current used by a device over time.
- Variations in power consumption occur as the device performs different

> Key bit = 0 No multiplication

Key bit = 1 multiplication operations.

Power Analysis

UNIVERSITA DI PISA

- Differential power analysis (DPA) involves statistically analyzing power consumption measurements from a cryptosystem.
- DPA attacks have signal processing and error correction properties which can extract secrets from measurements which contain too much noise to be analyzed using simple power analysis.

Timing attack

- A timing attack is a side channel attack in which the attacker attempts to compromise a cryptosystem by analyzing the time taken to execute cryptographic algorithms
- Execution time depends on inputs (e.g., key!)
- Precise measurement of time
- Attack is application dependent
- E.g., square-and-multiply for exp mod n
- time depends on number of "1" in the key
- Statistical analysis of timings with same key and different inputs

