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Rivest Shamir Adleman (1978) 

Key generation 
1.  Generate two large, distinct primes p, q (100÷200 decimal digits) 
2.  Compute n = p × q and φ(n) = (p-1)×(q-1) 
3.  Select a random number 1 < e < φ(n) such that gcd(e, φ(n)) = 1 
4.  Compute the unique integer 1 < d < φ such that ed ≡1 mod φ 
5.  (d, n) is the private key 
6.  (e, n) is the public key 
 
At the end of key generation, p and q must be destroyed 
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RSA encryption and decryption 

Encryption. To generate c from m, Bob should do the following 
1.  Obtain A's authentic public key (n, e) 
2.  Represent the message as an integer m in the interval 

[0, n-1]  
3.  Compute c = me mod n 
4.  Send c to A 

Decryption. To recover m from c, Alice should do the following 
1.  Use the private key d to recover m = cd mod n 
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RSA consistency 

We have to prove that D(d(E(e, m)) = m, i.e.,   

 cd ≡ mde ≡ mt!φ(n)+1 mod n, where t is some integer � 

 mt·φ(n) ·m1 ≡ (mφ(n))t ·m1 ≡ m mod n 

The proof exploits the Eulero’s theorem 

 �integer n > 1, �a � Zn
*, aφ(n) � 1 mod n where 

  Zn
* = { x | 1 < x < n, gcd(x, n) = 1} 
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Example with artificially small 
numbers 
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Key generation 
!  Let p = 47 e q = 71 

 n = p × q = 3337 
 φ= (p-1) × (q-1)= 46 × 70 = 3220 

!  Let e = 79 
 ed = 1 mod φ  
 79 × d = 1 mod 3220  
 d = 1019 

Encryption 
Let m = 9666683 
Divide m into blocks mi < n 
m1 = 966; m2 = 668; m3 = 3 
Compute 
c1 = 96679 mod 3337 = 2276 
c2 = 66879 mod 3337 = 2423 
c3 = 379 mod 3337 = 158 
c = c1c2c3 = 2276 2423 158 

Decryption 
m1 = 22761019 mod 3337 = 966 
m2 = 24231019 mod 3337 = 668 
m3 = 1581019 mod 3337 = 3 
m = 966 668 3 
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RSA  

•  RSA algorithms for key generation, encryption 
and decryption are easy 

•  They involve the following operations 
–  Discrete exponentiation 
–  Generation of large primes 
–  Solving diophantine equations 
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Modular ops - complexity 

Bit complexity of basic operations in Zn 

•  Let n be on k bits (n < 2k) 
•  Let a and b be two integers in Zn (on k-bits) 

– Addition a + b can be done in time O(k) 
– Subtraction a – b can be can be done in time O(k) 
– Multiplication a × b can be done in O(k2) 
– Division a = q × b + r can be done in time O(k2) 
–  Inverse a-1 can be done in O(k2) 
– Modular exponentiation ak can be done in O(k3) 
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How to encrypt/decrypt 
efficiently 

•  RSA requires modular exponentiation cd mod n 
–  Let n have k bits in its binary representation, k = log n + 1 

•  Grade-school algorithm requires (d-1) modular 
multiplications 

–  d is as large as n which is exponentially large with respect to k 
–  The grade-school algorithm is inefficient 

•  Square-and-multiply algorithm requires up to 2k 
multiplications thus the algorithm can be done in O(k3) 
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How to encrypt/decrypt 
efficiently 

•  RSA requires modular exponentiation ax mod n 
–  Let n have k bits in its binary representation, k = log n + 1 

•  Grade-school algorithm requires (x-1) modular 
multiplications 

–  If x is as large as n, which is exponentially large with respect to 
k ! the grade-school algorithm is inefficient 

•  Square-and-multiply algorithm requires up to 2k 
multiplications thus the algorithm can be done in O(k3) 
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How to encrypt and decrypt 
efficiently 
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Exponentiation by repeated squaring and multiplication: me mod n requires 
at most log2(e) multiplications and log2(e) squares 
Let ek-1, ek-2, …, e2, e1, e0, where k = log2 e,  the binary representation of e 

memodn =m
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me0 modn

c ← 1 
for (i = k-1; i >= 0; i --) { 

  c ← c2 mod n; 
 if (ei == 1) 
   c ← c × m mod n; 

} 
•  always k square operations 

•  at most k modular multiplications 
(equal to the number of 1 in the 
binary representation of e) 

Square and multiply 
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Exponentiation by repeated squaring and multiplication: ax mod n requires 
at most log2(x) multiplications and log2(x) squares 
Let xk-1, xk-2, …, x2, x1, x0, where k = log2 x,  the binary representation of x 
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c ← 1 
for (i = k-1; i >= 0; i --) { 

  c ← c2 mod n; 
 if (xi == 1) 
   c ← c × a mod n; 

} 
•  always k square operations 

•  at most k modular multiplications 
(equal to the number of 1 in the 
binary representation of e) 



Fast encryption with short 
public exponent 

•  RSA ops with public key exponent e can be 
speeded-up 
–  Encryption 
–  Digital signature verification 

•  The public key e can be chosen to be a very small 
value 
–  e = 3   #MUL + #SQ = 2 
–  e = 17   #MUL + #SQ = 5 
–  e = 216+1  #MUL + #SQ = 17 
–  RSA is still secure 

•  There is no easy way to accelerate RSA when the 
private exponent d is involved 
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How to find a large prime 
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repeat 
 p ← randomOdd(x); 

until isPrime(p); 

! Primality tests do not try to factor the number under test 
•  probabilistic primality test (Solovay-Strassen, Miller-Rabin) 

polynomial in log n 
•  true primality test (O(n12) in 2002)) 

!  FACT. On average (ln x)/2 odd numbers 
must be tested before a prime p < x can be 
found 



On computing the public 
exponent 

•  Solution of d · e ≡ 1 mod φ(n) with gcd(e, φ(n)) 
≡ 1 can be done by means of the Extended 
Euclidean Algorithm (EEA)  
–  Exponent d can be generated efficiently (polytime) 
–  Condition gcd(e, φ(n)) ≡ 1   
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RSA one-way function 

•  One-way function y = f(x) 
–  y = f(x) is easy 
–  x = f-1(y) is hard 

•  RSA one-way function 
–  Multiplication is easy 
–  Factoring is hard 
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Security of RSA 

The RSA Problem (RSAP) 
•  DEFINITION. The RSA Problem (RSAP): 

recovering plaintext m from ciphertext c, given the 
public key (n, e) 

RSA VS FACTORING 
•  FACT. RSAP ≤P FACTORING 

–  FACTORING is at least as difficult as RSAP or, 
equivalently, RSAP is not harder than FACTORING 

–  It is widely believed that RSAP and Factoring are 
computationally equivalent, although no proof of 
this is known. 
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RSA vs Factoring 

•  THM. Computing the decryption exponent d 
from the public key (n, e) is computationally 
equivalent to factoring n 
–  If the adversary could somehow factor n, then he 

could subsequently compute the private key d 
efficiently 

–  If the adversary could somehow compute d, then it 
could subsequently factor n efficiently 
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Factoring 
•  FACTORING.  

–  Given n > 0, find its prime factorization; that is, write         
 where pi are pairwise distinct primes and each ei ≥1,  

•   Primality testing vs. factoring 
–  Deciding whether an integer is composite or prime seems to be, in 

general, much easier than the factoring problem 

•  Factoring algorithms 
–  Brute force 
–  Special purpose 
–  General purpose 
–  Elliptic Curve 
–  Factoring on Quantum Computer (for the moment only theorethical) 
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n = p1
e1p2

e2!pk
ek
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Factoring algorithms 
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•  Brute Force 
–  Unfeasible if n large and p len = q len 

•  General purpose 
–  The running time depends solely on the size of n 

•  Quadratic sieve 
•  General number field sieve  

•  Special purpose 
–  The running time depens on certain properties 

•  Trial division 
•  Pollard's rho algorithm 
•  Pollard's p -1 algorithm 

•  Elliptic curve algorithm 
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Running times 

Trial division: ( )O n

Quadratic sieve: ( ) ( )( )( )•ln lnlnn nO e

General number field sieve: 
( ) ( )( )⎛ ⎞× •⎜ ⎟⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

231.923 ln lnlnn n
O e
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Security of RSA 

RSAP and e-th root 
•  A possible way to decrypt c = me mod n is to compute the 

e-th root of c 

•  THM. Computing the e-th root is a computationally 
easy problem iff n is prime 

•  THM. If n is composite the problem of computing 
the e-th root is equivalent to factoring 
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Security of RSA 

•  Factoring vs totally breaking RSA 
•  A possible way to completely break RSA is to obtain φ 

•  THM. Knowing φ is computationally equivalent to 
factoring 
•  PROOF. 

1.  Given p and q, s.t. n =pq, computing φ is immediate. 
2.  Let φ be given.   

a.  From φ(n) = (p-1)(q-1) = n – (p+q) + 1, determine x1 = (p+q).  
b.  From (p – q)2 = (p + q)2 – 4n, determine x2 = (p – q). 
c.  Finally, p = (x1 + x2)/2 and q = (x1 – x2)/2. 
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Security of RSA 

•  A possible way to completely break RSA is an 
exhaustive attack to the private key d 

•  This attack could be more difficult than factoring 
because (according to the choice for e)  d can be 
much greater than p and q. 
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RSA: low exponent attack 
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ci = m3 mod ni 

c1 

c2 
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•  If n1, n2 ed n3 are pairwise coprime, 
use CRT to find x = m3 mod n1n2n3 

•  As m < ni by RSA encryption 
definition then m3 < n1n2n3, then x = 
m3 

•  Thus an eavesdropper recovers m by 
computing the integer cube root of x 
(non modular!) 

RSA in practice - padding 

•  We have described “schoolbook RSA” 
•  RSA implementation may be insecure 

–  RSA is deterministic 
–  PT values x = 0, x = 1 produce CT equal to 0 and 1 
–  Small PT might be subject to attacks 
–  RSA is malleable 

•  Padding is a possible solution 
–  Optimal Asymmetric Encryption Padding (OAEP) 
–  Public Key Cryptography Standard #1 (PKCS #1) 
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RSA is malleable 

•  RSA malleability is based on the homo-morphic 
property of RSA 

•  Attack 
•  The attacker replaces CT = y mod n by  

CT’ = se"y mod n, with s some integer 
•  The receiver decrypts CT’: (se"y)d = sed"xed = s"x mod n 
•  By operating on the CT the adversary manages to multiply 

PT by s 
•  EX. Let x be an amount of money. If s = 2 then the adversary 

doubles the amount 
•  Possible solution: introduce redundancy: ex. x || x 

31/05/14 Public Key Encryption 27 

RSA – Homomorphic property  
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•  Let m1 and m2 two plaintext messages 
•  Let c1 and c2 their respective encryptions 
•  Observe that 

( ) ( )≡ ≡1 2 1 2 1 2 mod
e e emm m m c c n

!  In other words, the CT of the product m1m2 is the 
product of CTs c1c2 mod n 



RSA in practice - PKCS #1 

•  Parameters 
–  M = message 
–  | M | = message len in bytes 
–  k = | n | modulus len in bytes 
–  | H | = hash function output len in bytes 
–  L = optional label (“” by default) 
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RSA in practice - PKCS #1 
•  Padding 

1.  Generate a string PS = 00…0; PS len = k – | M | - 2 |H|  - 
2 (PS len may be zero) 

2.  DB = Hash(L) || PS || 0x01 || M 
3.  seed = random(); seed len = | H | 
4.  dbMask  = MGF (seed, k - | H | - 1) (*) 
5.  maskedDB = DB xor dbMask 
6.  seedMask = MGF(maskedDB, | H |) 
7.  maskedSeed = seed xor seedMask 
8.  EM = 0x00 || maskedSeed || maskedDB (**) 
 

(*) MGF mask generation function (e.g., SHA-1) 
(**) EM is the padded message 
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RSA in practice 

•  RSA is substantially slower than symmetric 
encryption 

–  RSA is used for the transport of symmetric-keys and 
for the encryption of small quantities 

•  Recommended size of the modulus 
–  512 bit: marginal security 
–  768 bit: recommended  
–  1024 bit: long-term security 
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RSA in practice 

Selecting primes p and q 

– p and q should be selected so that factoring  
n = pq is computationally infeasible, therefore 

– p and q should be sufficiently large and 
about the same bitlenght (to avoid the elliptic 
curve factoring algorithm) 

– p - q should be not too small 
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RSA in practice 
•  Exponent e should be small or with a small number 

of 1's 
–  e = 3  

[1 modular multiplication + 1 modular squaring] 
subject to small encryption exponent attack 

–  e = 216 + 1   (Fermat's number)  
[1 modular multiplication + 16 modular squarings] 
resistant to small encryption exponent attacks 

•  Decryption exponent d should be roughly the same 
size as n 

–  Otherwise, if d is small, it could be possible to obtain d 
from the public information (n, e) or from a brute force 
attack 
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Common modulus attack 
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n 

(n, e1) (n, e5) (n, e2) (n, e3) (n, e4) 

• Mr Lou Cipher can efficiently 
factor n from d5 and then 

• compute all di 



Chosen-plaintext attack 

31/05/14 Public Key Encryption 35 

      

  

    

The adversary encrypts all possible bids (e.g, 232) until he finds 
a b such that E(e, b) = c 

Thus, the adversary sends a bid containing the minimal offer to 
win the auction: b’  = b + 1 

Salting is a solution: r ← random(); c←E(e, r || bid) 

A, c←E(e, bid) Auctioneer’s public key = (n, e) 

Homomorphic property of RSA 
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•  Let m1 and m2 two plaintext messages 
•  Let c1 and c2 their respective encryptions 
•  Observe that 

( ) ( )≡ ≡1 2 1 2 1 2 mod
e e emm m m c c n

!  In other words, the ciphertext of the product 
m1m2 is the product of ciphertexts c1c2 mod n 



An adaptive chosen-ciphertext 
attack 
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modec cx n=

!  Bob decrypts ciphertext except a given 
ciphertext c 

!  Mr Lou Cipher wants to determine the 
ciphertext corresponding to c  

•  Mr Lou Cipher selects x at random, s.t. gcd(x, n) =1, and 
sends Bob the quantity 

c

•  Bob decrypts it, producing ( ) ( )modd d edm c c x mx n= = =

•  Mr Lou Cipher determine m by computing 1modm mx n−=

The attack can be contrasted by imposing structural constraints on m 

Hybrid systems 

•  An asymmetric cipher is subject to the  
chosen-plaintex attack 

•  An asymmetric cipher is three orders of 
magnitude slower than a symmetric cipher 

therefore 

•  An asymmetric cipher is often used in 
conjunction with a symmetric one so producing 
an hybrid system 
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Hybrid systems 
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E eb,Kab( ),E kab,file( )

•  File file is encrypted with a symmetric cipher 

•  Session key is encrypted with an asymmetric cipher 

•  Alice needs an authentic copy of Bob’s public key 

Alice confidentially sends Bob a file file 

OTHER PUBLIC KEY CRYPTO-
SYSTEMS 

Public-key encryption 
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Other asymmetric 
cryptosystems 

Discrete Logarithm Systems 
•  Let p be a prime, q a prime divisor of p–1 and g�[1, p–1] 

has order q 
•  Let x be the private key selected at random from [1, q–1] 
•  Let y be the corresponding public key y = gx mod p 

•  Discrete Logarithm Problem (DLP) 
•  Given (p, q, g) and y, determine x 
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ElGamal encryption scheme 

•  Encryption 
–  select k randomly 
–  c1 = gk mod p, c2 = m × yk mod p 
–  send (c1, c2) to recipient 

•  Decryption 
–  c1

x = gkx mod p = yk mod p 
–  m = c2 × y–k mod p 

•  Security 
–  An adversary needs yk mod p. The task of calculating yk mod p from 

(g, p, q) and y is equivalent to DHP and thus based on DLP in  Zp 
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ElGamal in practice 

•  Prime p and generator g can be common system-wide 
•  Prime p size 

–  512-bit: marginal 
–  768-bit: recommended  
–  1024-bit or larger: long-term 

•  Efficiency 
–  Encryption requires two modular exponentiations  
–  Message expansion by a factor of 2 

•  Security 
–  Different random integers k must be used for different messages 
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Ellyptic Curve Cryptography 

•  Let p and �Fp 

•  Let E be an elliptic curve defined by   
y2 = x3 + ax + b (mod p) where a, b �Fp and 4a3+27b2=0 

•  Example. E: y2 = x3 + 2x + 4 (mod p) 

•  The set of points E(Fp) with point at infinity ∞forms an 
additive Abelian group 
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45 

Elliptic curves 
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Geometrical approach 

 

Gianluca Dini (Univ. of Pisa) Security in WSN 

Public Key Cryptography Cryptography in WSN 

46 

Elliptic Cryptography (ECC) 

•  Algebric Approach 
!  Elliptic curves defined on finite field define an Abelian finite 

field 

•  Elliptic curve discrete logarithm problem 
!  Given points G and Q such that Q=kG, find the integer k 
!  No sub-exponential algorithm to solve it is known 

•  ECC keys are smaller than RSA ones 

Gianluca Dini (Univ. of Pisa) Security in WSN December 20, 2009 
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Ellyptic Curve Cryptography 

•  Let P have order n then the cyclic subgroup generated by P 
is G = <P, 2P,…, (n – 1)P> 

•  p, E, P and n are the public parameters  

•  Private key d is selected at random in [1, n–1] 

•  Public key is Q =dP 
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Ellyptic Curve Cryptography 

•  Encryption 
–  A message m is represented as a point M 
–  C1 = kP; C2 = M + kQ 
–  send (C1; C2) to recipient 

•  Decryption 
–  dC1 = d(kP) = kQ 
–  M = C2 – dC1 

•  Security 
–  The task of computing kQ from the domain parameters, Q, and C1=kP, 

is the ECDHP 
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Comparison among crypto-systems 

Security level (bits) 

80 
(SKIPJACK) 

112 
(3DES) 

128 
(AES small) 

192 
(AES medium) 

256 
(AES large) 

DL parameter q 

EC parameter n 
160 224 256 384 512 

RSA modulus n 

DL modulus p 
1024 2048 3072 8192 15360 

•  Private key operations are more efficient in EC than in DL or RSA 

•  Public key operations are more efficient in RSA than EC or DL if small exponent e is 
selected for RSA 

PHYSICAL ATTACKS 
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Physical attacks 

•  Embedded systems change the threat model 
–  The adversary may physically attack the system 

•  E.g.: smart meter 
–  The system is even given to the adversary 

•  E.g.: a bank or telco smart card  

–  The adversary physically interfere with the system 
–  Main attacks 

•  Fault injection 
•  Time analysis 
•  Power analysis 
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CRT and RSA optimization 

•  Chinese Remainder Theorem allows us to 
compute RSA more efficiently 

•  Problem: Compute m = cd (mod n) 
1.  Compute m1 = cd (mod p) and m2 = cd (mod q) 
2.  Compute m = a1m1q + a2m2p  

where a1 and a2 are properly computed coefficients 

•  Advantage.  
–  E1 = cd (mod p) = c (d mod p – 1) (mod p), 
–  While d is on k bits, p–1 is on k/2 bits 
–  Thus, multiplication takes O(k2/4) 
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CRT and RSA optimization 
•  Chinese Remainder Theorem allows us to compute RSA 

(decryption, signing) more efficiently 

•  Problem: Compute y = xd (mod n) 
1.  Compute xp = x mod p and xq = x mod q 
2.  Compute yp = xp d mod (p – 1) mod p and yq = xq d mod (q – 1) mod q 
3.  Compute y = apypq + aqyqp where ap and aq are properly (pre-)computed 

coefficients 

•  Advantage.  
–  Computation of yp and yq is the most demanding 
–  It requires #MUL+#SQ = 1.5t, on average 
–  Each squaring/multiplication involves t/2-bit operands # multiplication/

squaring takes O(k2/4) 
–  Thus the total speedup obtained through CRT is a factor of 4. 
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A fault-injection attack 
against CRT-based RSA 

•  Attack intuition: by injecting a fault the adversary is able 
to factorize n 

•  The attack 
–  Cause an hw fault while computing yp which produces y’p 

and thus y’ = apy’pq+ aqyqp  
–  It follows that y – y’ = ap(m’p – mp)q   
–  Thus, gcd(y – y’ , n) = q which can be efficiently computed 

with the Euclide’s algorithm 
•  Practical considerations 

–  causing hw fault: tamper with computing circuitry 
–  countermeasures: checking results (10% slow down) 
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Power Analysis 

Public Key Encryption 55 

•  Power analysis is a side channel 
attack in which the attacker studies the 
power consumption of a cryptographic 
hardware device  

•  smart card, tamper-resistant 
"black box", or integrated circuit  

•  The attack is non-invasive 
•  Simple power analysis (SPA) 

involves visual examination of graphs 
of the current used by a device over 
time.  

•  Variations in power consumption 
occur as the device performs different 
operations. 

 

Power Analysis of RSA 

Key bit = 0 
No multiplication 

Key bit = 1 
multiplication 
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Power Analysis 
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•  Differential power analysis (DPA) 
involves statistically analyzing power 
consumption measurements from a 
cryptosystem.  

–  DPA attacks have signal processing and 
error correction properties which can 
extract secrets from measurements 
which contain too much noise to be 
analyzed using simple power analysis.  



Timing attack 

•  A timing attack is a side channel attack in 
which the attacker attempts to compromise a 
cryptosystem by analyzing the time taken to 
execute cryptographic algorithms 
–  Execution time depends on inputs (e.g., key!) 
–  Precise measurement of time 
–  Attack is application dependent 
–  E.g., square-and-multiply for exp mod n 

•  time depends on number of “1” in the key 
•  Statistical analysis of timings with same key and different 

inputs  
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