
Public Key Encryption

THE RSA CRYPTOSYSTEM
A case study

Public Key Encryption 2 31/05/14

Rivest Shamir Adleman (1978)

Key generation
1.  Generate two large, distinct primes p, q (100÷200 decimal digits)
2.  Compute n = p × q and φ(n) = (p-1)×(q-1)
3.  Select a random number 1 < e < φ(n) such that gcd(e, φ(n)) = 1
4.  Compute the unique integer 1 < d < φ such that ed ≡1 mod φ
5.  (d, n) is the private key
6.  (e, n) is the public key

At the end of key generation, p and q must be destroyed

Public Key Encryption 3 31/05/14

RSA encryption and decryption

Encryption. To generate c from m, Bob should do the following
1.  Obtain A's authentic public key (n, e)
2.  Represent the message as an integer m in the interval

[0, n-1]
3.  Compute c = me mod n
4.  Send c to A

Decryption. To recover m from c, Alice should do the following
1.  Use the private key d to recover m = cd mod n

Public Key Encryption 4 31/05/14

RSA consistency

We have to prove that D(d(E(e, m)) = m, i.e.,

 cd ≡ mde ≡ mt!φ(n)+1 mod n, where t is some integer �

 mt·φ(n) ·m1 ≡ (mφ(n))t ·m1 ≡ m mod n

The proof exploits the Eulero’s theorem

 �integer n > 1, �a � Zn
*, aφ(n) � 1 mod n where

 Zn
* = { x | 1 < x < n, gcd(x, n) = 1}

Public Key Encryption 5 31/05/14

Example with artificially small
numbers

Public Key Encryption 6

Key generation
!  Let p = 47 e q = 71

 n = p × q = 3337
 φ= (p-1) × (q-1)= 46 × 70 = 3220

!  Let e = 79
 ed = 1 mod φ
 79 × d = 1 mod 3220
 d = 1019

Encryption
Let m = 9666683
Divide m into blocks mi < n
m1 = 966; m2 = 668; m3 = 3
Compute
c1 = 96679 mod 3337 = 2276
c2 = 66879 mod 3337 = 2423
c3 = 379 mod 3337 = 158
c = c1c2c3 = 2276 2423 158

Decryption
m1 = 22761019 mod 3337 = 966
m2 = 24231019 mod 3337 = 668
m3 = 1581019 mod 3337 = 3
m = 966 668 3

31/05/14

RSA

•  RSA algorithms for key generation, encryption
and decryption are easy

•  They involve the following operations
–  Discrete exponentiation
–  Generation of large primes
–  Solving diophantine equations

31/05/14 Public Key Encryption 7

Modular ops - complexity

Bit complexity of basic operations in Zn

•  Let n be on k bits (n < 2k)
•  Let a and b be two integers in Zn (on k-bits)

– Addition a + b can be done in time O(k)
– Subtraction a – b can be can be done in time O(k)
– Multiplication a × b can be done in O(k2)
– Division a = q × b + r can be done in time O(k2)
–  Inverse a-1 can be done in O(k2)
– Modular exponentiation ak can be done in O(k3)

31/05/14 Public Key Encryption 8

How to encrypt/decrypt
efficiently

•  RSA requires modular exponentiation cd mod n
–  Let n have k bits in its binary representation, k = log n + 1

•  Grade-school algorithm requires (d-1) modular
multiplications

–  d is as large as n which is exponentially large with respect to k
–  The grade-school algorithm is inefficient

•  Square-and-multiply algorithm requires up to 2k
multiplications thus the algorithm can be done in O(k3)

31/05/14 Public Key Encryption 9

How to encrypt/decrypt
efficiently

•  RSA requires modular exponentiation ax mod n
–  Let n have k bits in its binary representation, k = log n + 1

•  Grade-school algorithm requires (x-1) modular
multiplications

–  If x is as large as n, which is exponentially large with respect to
k ! the grade-school algorithm is inefficient

•  Square-and-multiply algorithm requires up to 2k
multiplications thus the algorithm can be done in O(k3)

31/05/14 Public Key Encryption 10

How to encrypt and decrypt
efficiently

31/05/14 Public Key Encryption 11

Exponentiation by repeated squaring and multiplication: me mod n requires
at most log2(e) multiplications and log2(e) squares
Let ek-1, ek-2, …, e2, e1, e0, where k = log2 e, the binary representation of e

memodn =m
ek−12

k−1+ek−2 2
k−2+!+e2 2

2+e12+e0()modn ≡

mek−12
k−1

mek−2 2
k−2

!me2 2
2

me12me0 modn ≡

mek−12
k−2

mek−2 2
k−3

!me2 2me1()2me0 modn ≡

mek−12
k−3

mek−2 2
k−4

!me2()2me1⎛
⎝⎜

⎞
⎠⎟

2

me0 modn ≡

mek−1()2mek−2⎛
⎝⎜

⎞
⎠⎟
2

!me2
⎛

⎝
⎜

⎞

⎠
⎟

2

me1
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2

me0 modn

c ← 1
for (i = k-1; i >= 0; i --) {

 c ← c2 mod n;
 if (ei == 1)
 c ← c × m mod n;

}
•  always k square operations

•  at most k modular multiplications
(equal to the number of 1 in the
binary representation of e)

Square and multiply

31/05/14 Public Key Encryption 12

Exponentiation by repeated squaring and multiplication: ax mod n requires
at most log2(x) multiplications and log2(x) squares
Let xk-1, xk-2, …, x2, x1, x0, where k = log2 x, the binary representation of x

ax modn = a
xk−12k−1+xk−2 2k−2+!+x2 22+x12+x0() modn ≡

axk−12k−1

axk−2 2k−2

!ax2 22

ax12ax0 modn ≡

axk−12k−2

axk−2 2k−3

!ax2 2ax1()2

ax0 modn ≡

axk−12k−3

axk−2 2k−4

!ax2()2

ax1
⎛
⎝⎜

⎞
⎠⎟

2

ax0 modn ≡

...

axk−1()2
axk−2⎛

⎝
⎞
⎠

2

!ax2
⎛

⎝⎜
⎞

⎠⎟

2

ax1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2

ax0 modn

c ← 1
for (i = k-1; i >= 0; i --) {

 c ← c2 mod n;
 if (xi == 1)
 c ← c × a mod n;

}
•  always k square operations

•  at most k modular multiplications
(equal to the number of 1 in the
binary representation of e)

Fast encryption with short
public exponent

•  RSA ops with public key exponent e can be
speeded-up
–  Encryption
–  Digital signature verification

•  The public key e can be chosen to be a very small
value
–  e = 3 #MUL + #SQ = 2
–  e = 17 #MUL + #SQ = 5
–  e = 216+1 #MUL + #SQ = 17
–  RSA is still secure

•  There is no easy way to accelerate RSA when the
private exponent d is involved

31/05/14 Public Key Encryption 13

How to find a large prime

31/05/14 Public Key Encryption 14

repeat
 p ← randomOdd(x);

until isPrime(p);

! Primality tests do not try to factor the number under test
•  probabilistic primality test (Solovay-Strassen, Miller-Rabin)

polynomial in log n
•  true primality test (O(n12) in 2002))

!  FACT. On average (ln x)/2 odd numbers
must be tested before a prime p < x can be
found

On computing the public
exponent

•  Solution of d · e ≡ 1 mod φ(n) with gcd(e, φ(n))
≡ 1 can be done by means of the Extended
Euclidean Algorithm (EEA)
–  Exponent d can be generated efficiently (polytime)
–  Condition gcd(e, φ(n)) ≡ 1

31/05/14 Public Key Encryption 15

RSA one-way function

•  One-way function y = f(x)
–  y = f(x) is easy
–  x = f-1(y) is hard

•  RSA one-way function
–  Multiplication is easy
–  Factoring is hard

31/05/14 Public Key Encryption 16

Security of RSA

The RSA Problem (RSAP)
•  DEFINITION. The RSA Problem (RSAP):

recovering plaintext m from ciphertext c, given the
public key (n, e)

RSA VS FACTORING
•  FACT. RSAP ≤P FACTORING

–  FACTORING is at least as difficult as RSAP or,
equivalently, RSAP is not harder than FACTORING

–  It is widely believed that RSAP and Factoring are
computationally equivalent, although no proof of
this is known.

31/05/14 Public Key Encryption 17

RSA vs Factoring

•  THM. Computing the decryption exponent d
from the public key (n, e) is computationally
equivalent to factoring n
–  If the adversary could somehow factor n, then he

could subsequently compute the private key d
efficiently

–  If the adversary could somehow compute d, then it
could subsequently factor n efficiently

31/05/14 Public Key Encryption 18

Factoring
•  FACTORING.

–  Given n > 0, find its prime factorization; that is, write
 where pi are pairwise distinct primes and each ei ≥1,

•  Primality testing vs. factoring
–  Deciding whether an integer is composite or prime seems to be, in

general, much easier than the factoring problem

•  Factoring algorithms
–  Brute force
–  Special purpose
–  General purpose
–  Elliptic Curve
–  Factoring on Quantum Computer (for the moment only theorethical)

31/05/14 Public Key Encryption 19

n = p1
e1p2

e2!pk
ek

Public Key Encryption 20

Factoring algorithms

31/05/14

•  Brute Force
–  Unfeasible if n large and p len = q len

•  General purpose
–  The running time depends solely on the size of n

•  Quadratic sieve
•  General number field sieve

•  Special purpose
–  The running time depens on certain properties

•  Trial division
•  Pollard's rho algorithm
•  Pollard's p -1 algorithm

•  Elliptic curve algorithm

Public Key Encryption 21

Running times

Trial division: ()O n

Quadratic sieve: () ()()()•ln lnlnn nO e

General number field sieve:
() ()()⎛ ⎞× •⎜ ⎟⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

231.923 ln lnlnn n
O e

31/05/14

Security of RSA

RSAP and e-th root
•  A possible way to decrypt c = me mod n is to compute the

e-th root of c

•  THM. Computing the e-th root is a computationally
easy problem iff n is prime

•  THM. If n is composite the problem of computing
the e-th root is equivalent to factoring

31/05/14 Public Key Encryption 22

Security of RSA

•  Factoring vs totally breaking RSA
•  A possible way to completely break RSA is to obtain φ

•  THM. Knowing φ is computationally equivalent to
factoring
•  PROOF.

1.  Given p and q, s.t. n =pq, computing φ is immediate.
2.  Let φ be given.

a.  From φ(n) = (p-1)(q-1) = n – (p+q) + 1, determine x1 = (p+q).
b.  From (p – q)2 = (p + q)2 – 4n, determine x2 = (p – q).
c.  Finally, p = (x1 + x2)/2 and q = (x1 – x2)/2.

31/05/14 Public Key Encryption 23

Security of RSA

•  A possible way to completely break RSA is an
exhaustive attack to the private key d

•  This attack could be more difficult than factoring
because (according to the choice for e) d can be
much greater than p and q.

31/05/14 Public Key Encryption 24

RSA: low exponent attack

31/05/14 Public Key Encryption 25

1 1

2 2

3 3

mod
mod
mod

x c n
x c n
x c n

≡⎧
⎪ ≡⎨
⎪ ≡⎩

(n1, 3)

(n2, 3)

(n3, 3)

ci = m3 mod ni

c1

c2

c3

•  If n1, n2 ed n3 are pairwise coprime,
use CRT to find x = m3 mod n1n2n3

•  As m < ni by RSA encryption
definition then m3 < n1n2n3, then x =
m3

•  Thus an eavesdropper recovers m by
computing the integer cube root of x
(non modular!)

RSA in practice - padding

•  We have described “schoolbook RSA”
•  RSA implementation may be insecure

–  RSA is deterministic
–  PT values x = 0, x = 1 produce CT equal to 0 and 1
–  Small PT might be subject to attacks
–  RSA is malleable

•  Padding is a possible solution
–  Optimal Asymmetric Encryption Padding (OAEP)
–  Public Key Cryptography Standard #1 (PKCS #1)

31/05/14 Public Key Encryption 26

RSA is malleable

•  RSA malleability is based on the homo-morphic
property of RSA

•  Attack
•  The attacker replaces CT = y mod n by

CT’ = se"y mod n, with s some integer
•  The receiver decrypts CT’: (se"y)d = sed"xed = s"x mod n
•  By operating on the CT the adversary manages to multiply

PT by s
•  EX. Let x be an amount of money. If s = 2 then the adversary

doubles the amount
•  Possible solution: introduce redundancy: ex. x || x

31/05/14 Public Key Encryption 27

RSA – Homomorphic property

31/05/14 Public Key Encryption 28

•  Let m1 and m2 two plaintext messages
•  Let c1 and c2 their respective encryptions
•  Observe that

() ()≡ ≡1 2 1 2 1 2 mod
e e emm m m c c n

!  In other words, the CT of the product m1m2 is the
product of CTs c1c2 mod n

RSA in practice - PKCS #1

•  Parameters
–  M = message
–  | M | = message len in bytes
–  k = | n | modulus len in bytes
–  | H | = hash function output len in bytes
–  L = optional label (“” by default)

31/05/14 Public Key Encryption 29

RSA in practice - PKCS #1
•  Padding

1.  Generate a string PS = 00…0; PS len = k – | M | - 2 |H| -
2 (PS len may be zero)

2.  DB = Hash(L) || PS || 0x01 || M
3.  seed = random(); seed len = | H |
4.  dbMask = MGF (seed, k - | H | - 1) (*)
5.  maskedDB = DB xor dbMask
6.  seedMask = MGF(maskedDB, | H |)
7.  maskedSeed = seed xor seedMask
8.  EM = 0x00 || maskedSeed || maskedDB (**)

(*) MGF mask generation function (e.g., SHA-1)
(**) EM is the padded message

31/05/14 Public Key Encryption 30

RSA in practice

•  RSA is substantially slower than symmetric
encryption

–  RSA is used for the transport of symmetric-keys and
for the encryption of small quantities

•  Recommended size of the modulus
–  512 bit: marginal security
–  768 bit: recommended
–  1024 bit: long-term security

31/05/14 Public Key Encryption 31

RSA in practice

Selecting primes p and q

– p and q should be selected so that factoring
n = pq is computationally infeasible, therefore

– p and q should be sufficiently large and
about the same bitlenght (to avoid the elliptic
curve factoring algorithm)

– p - q should be not too small

31/05/14 Public Key Encryption 32

RSA in practice
•  Exponent e should be small or with a small number

of 1's
–  e = 3

[1 modular multiplication + 1 modular squaring]
subject to small encryption exponent attack

–  e = 216 + 1 (Fermat's number)
[1 modular multiplication + 16 modular squarings]
resistant to small encryption exponent attacks

•  Decryption exponent d should be roughly the same
size as n

–  Otherwise, if d is small, it could be possible to obtain d
from the public information (n, e) or from a brute force
attack

31/05/14 Public Key Encryption 33

Common modulus attack

31/05/14 Public Key Encryption 34

n

(n, e1) (n, e5) (n, e2) (n, e3) (n, e4)

• Mr Lou Cipher can efficiently
factor n from d5 and then

• compute all di

Chosen-plaintext attack

31/05/14 Public Key Encryption 35

The adversary encrypts all possible bids (e.g, 232) until he finds
a b such that E(e, b) = c

Thus, the adversary sends a bid containing the minimal offer to
win the auction: b’ = b + 1

Salting is a solution: r ← random(); c←E(e, r || bid)

A, c←E(e, bid) Auctioneer’s public key = (n, e)

Homomorphic property of RSA

31/05/14 Public Key Encryption 36

•  Let m1 and m2 two plaintext messages
•  Let c1 and c2 their respective encryptions
•  Observe that

() ()≡ ≡1 2 1 2 1 2 mod
e e emm m m c c n

!  In other words, the ciphertext of the product
m1m2 is the product of ciphertexts c1c2 mod n

An adaptive chosen-ciphertext
attack

31/05/14 Public Key Encryption 37

modec cx n=

!  Bob decrypts ciphertext except a given
ciphertext c

!  Mr Lou Cipher wants to determine the
ciphertext corresponding to c

•  Mr Lou Cipher selects x at random, s.t. gcd(x, n) =1, and
sends Bob the quantity

c

•  Bob decrypts it, producing () ()modd d edm c c x mx n= = =

•  Mr Lou Cipher determine m by computing 1modm mx n−=

The attack can be contrasted by imposing structural constraints on m

Hybrid systems

•  An asymmetric cipher is subject to the
chosen-plaintex attack

•  An asymmetric cipher is three orders of
magnitude slower than a symmetric cipher

therefore

•  An asymmetric cipher is often used in
conjunction with a symmetric one so producing
an hybrid system

31/05/14 Public Key Encryption 38

Hybrid systems

31/05/14 Public Key Encryption 39

E eb,Kab(),E kab,file()

•  File file is encrypted with a symmetric cipher

•  Session key is encrypted with an asymmetric cipher

•  Alice needs an authentic copy of Bob’s public key

Alice confidentially sends Bob a file file

OTHER PUBLIC KEY CRYPTO-
SYSTEMS

Public-key encryption

31/05/14 Public Key Encryption 40

Other asymmetric
cryptosystems

Discrete Logarithm Systems
•  Let p be a prime, q a prime divisor of p–1 and g�[1, p–1]

has order q
•  Let x be the private key selected at random from [1, q–1]
•  Let y be the corresponding public key y = gx mod p

•  Discrete Logarithm Problem (DLP)
•  Given (p, q, g) and y, determine x

31/05/14 Public Key Encryption 41

ElGamal encryption scheme

•  Encryption
–  select k randomly
–  c1 = gk mod p, c2 = m × yk mod p
–  send (c1, c2) to recipient

•  Decryption
–  c1

x = gkx mod p = yk mod p
–  m = c2 × y–k mod p

•  Security
–  An adversary needs yk mod p. The task of calculating yk mod p from

(g, p, q) and y is equivalent to DHP and thus based on DLP in Zp

31/05/14 Public Key Encryption 42

ElGamal in practice

•  Prime p and generator g can be common system-wide
•  Prime p size

–  512-bit: marginal
–  768-bit: recommended
–  1024-bit or larger: long-term

•  Efficiency
–  Encryption requires two modular exponentiations
–  Message expansion by a factor of 2

•  Security
–  Different random integers k must be used for different messages

31/05/14 Public Key Encryption 43

Ellyptic Curve Cryptography

•  Let p and �Fp

•  Let E be an elliptic curve defined by
y2 = x3 + ax + b (mod p) where a, b �Fp and 4a3+27b2=0

•  Example. E: y2 = x3 + 2x + 4 (mod p)

•  The set of points E(Fp) with point at infinity ∞forms an
additive Abelian group

31/05/14 Public Key Encryption 44

45

Elliptic curves

31/05/14 Public Key Encryption 45

Geometrical approach

Gianluca Dini (Univ. of Pisa) Security in WSN

Public Key Cryptography Cryptography in WSN

46

Elliptic Cryptography (ECC)

•  Algebric Approach
!  Elliptic curves defined on finite field define an Abelian finite

field

•  Elliptic curve discrete logarithm problem
!  Given points G and Q such that Q=kG, find the integer k
!  No sub-exponential algorithm to solve it is known

•  ECC keys are smaller than RSA ones

Gianluca Dini (Univ. of Pisa) Security in WSN December 20, 2009
31/05/14 Public Key Encryption 46

Ellyptic Curve Cryptography

•  Let P have order n then the cyclic subgroup generated by P
is G = <P, 2P,…, (n – 1)P>

•  p, E, P and n are the public parameters

•  Private key d is selected at random in [1, n–1]

•  Public key is Q =dP

31/05/14 Public Key Encryption 47

Ellyptic Curve Cryptography

•  Encryption
–  A message m is represented as a point M
–  C1 = kP; C2 = M + kQ
–  send (C1; C2) to recipient

•  Decryption
–  dC1 = d(kP) = kQ
–  M = C2 – dC1

•  Security
–  The task of computing kQ from the domain parameters, Q, and C1=kP,

is the ECDHP

31/05/14 Public Key Encryption 48

Public Key Encryption 49

Comparison among crypto-systems

Security level (bits)

80
(SKIPJACK)

112
(3DES)

128
(AES small)

192
(AES medium)

256
(AES large)

DL parameter q

EC parameter n
160 224 256 384 512

RSA modulus n

DL modulus p
1024 2048 3072 8192 15360

•  Private key operations are more efficient in EC than in DL or RSA

•  Public key operations are more efficient in RSA than EC or DL if small exponent e is
selected for RSA

PHYSICAL ATTACKS

Public Key Encryption 50 31/05/14

Physical attacks

•  Embedded systems change the threat model
–  The adversary may physically attack the system

•  E.g.: smart meter
–  The system is even given to the adversary

•  E.g.: a bank or telco smart card

–  The adversary physically interfere with the system
–  Main attacks

•  Fault injection
•  Time analysis
•  Power analysis

31/05/14 Public Key Encryption 51

CRT and RSA optimization

•  Chinese Remainder Theorem allows us to
compute RSA more efficiently

•  Problem: Compute m = cd (mod n)
1.  Compute m1 = cd (mod p) and m2 = cd (mod q)
2.  Compute m = a1m1q + a2m2p

where a1 and a2 are properly computed coefficients

•  Advantage.
–  E1 = cd (mod p) = c (d mod p – 1) (mod p),
–  While d is on k bits, p–1 is on k/2 bits
–  Thus, multiplication takes O(k2/4)

31/05/14 Public Key Encryption 52

CRT and RSA optimization
•  Chinese Remainder Theorem allows us to compute RSA

(decryption, signing) more efficiently

•  Problem: Compute y = xd (mod n)
1.  Compute xp = x mod p and xq = x mod q
2.  Compute yp = xp d mod (p – 1) mod p and yq = xq d mod (q – 1) mod q
3.  Compute y = apypq + aqyqp where ap and aq are properly (pre-)computed

coefficients

•  Advantage.
–  Computation of yp and yq is the most demanding
–  It requires #MUL+#SQ = 1.5t, on average
–  Each squaring/multiplication involves t/2-bit operands # multiplication/

squaring takes O(k2/4)
–  Thus the total speedup obtained through CRT is a factor of 4.

31/05/14 Public Key Encryption 53

A fault-injection attack
against CRT-based RSA

•  Attack intuition: by injecting a fault the adversary is able
to factorize n

•  The attack
–  Cause an hw fault while computing yp which produces y’p

and thus y’ = apy’pq+ aqyqp
–  It follows that y – y’ = ap(m’p – mp)q
–  Thus, gcd(y – y’ , n) = q which can be efficiently computed

with the Euclide’s algorithm
•  Practical considerations

–  causing hw fault: tamper with computing circuitry
–  countermeasures: checking results (10% slow down)

31/05/14 Public Key Encryption 54

Power Analysis

Public Key Encryption 55

•  Power analysis is a side channel
attack in which the attacker studies the
power consumption of a cryptographic
hardware device

•  smart card, tamper-resistant
"black box", or integrated circuit

•  The attack is non-invasive
•  Simple power analysis (SPA)

involves visual examination of graphs
of the current used by a device over
time.

•  Variations in power consumption
occur as the device performs different
operations.

Power Analysis of RSA

Key bit = 0
No multiplication

Key bit = 1
multiplication

31/05/14

Power Analysis

31/05/14 Public Key Encryption 56

•  Differential power analysis (DPA)
involves statistically analyzing power
consumption measurements from a
cryptosystem.

–  DPA attacks have signal processing and
error correction properties which can
extract secrets from measurements
which contain too much noise to be
analyzed using simple power analysis.

Timing attack

•  A timing attack is a side channel attack in
which the attacker attempts to compromise a
cryptosystem by analyzing the time taken to
execute cryptographic algorithms
–  Execution time depends on inputs (e.g., key!)
–  Precise measurement of time
–  Attack is application dependent
–  E.g., square-and-multiply for exp mod n

•  time depends on number of “1” in the key
•  Statistical analysis of timings with same key and different

inputs

31/05/14 Public Key Encryption 57

