Public Key Encryption

UNIVERSITÀ DI PISA UNIVERSITÀ DI PI

A case study

THE RSA CRYPTOSYSTEM

Rivest Shamir Adleman (1978)

Key generation

- 1. Generate two large, distinct primes p, q (100÷200 decimal digits)
- 2. Compute $n = p \times q$ and $\varphi(n) = (p-1) \times (q-1)$
- 3. Select a random number $1 < e < \varphi(n)$ such that $gcd(e, \varphi(n)) = 1$
- 4. Compute the unique integer $1 < d < \varphi$ such that $ed \equiv 1 \mod \varphi$
- 5. (*d*, *n*) is the *private* key
- 6. (*e*, *n*) is the *public* key

At the end of key generation, *p* and *q* must be destroyed

31/05/14

Public Key Encryption

RSA encryption and decryption

3

Encryption. To generate *c* from *m*, Bob should do the following

- 1. Obtain *A*'s *authentic* public key (n, e)
- 2. Represent the message as an integer *m* in the interval [0, *n*-1]
- 3. Compute $c = m^e \mod n$
- 4. Send *c* to *A*

Decryption. To recover *m* from *c*, Alice should do the following

1. Use the private key d to recover $m = c^d \mod n$

RSA consistency

We have to prove that D(d(E(e, m)) = m, i.e., m)

 $c^d \equiv m^{de} \equiv m^{t \cdot \varphi(n)+1} \mod n$, where *t* is some integer \Rightarrow

 $m^{t \cdot \varphi(n)} \cdot m^1 \equiv (m^{\varphi(n)})^t \cdot m^1 \equiv m \mod n$

The proof exploits the Eulero's theorem

 $\forall \text{ integer } n > 1, \forall a \in \mathbb{Z}_n^*, a^{\varphi(n)} \equiv 1 \mod n \text{ where}$ $\mathbb{Z}_n^* = \{ x \mid 1 < x < n, \gcd(x, n) = 1 \}$

31/05/14

Public Key Encryption

Example with artificially small numbers

- Let p = 47 e q = 71
 n = p × q = 3337
 φ= (p-1) × (q-1)= 46 × 70 = 3220
- Let e = 79 ed = 1 mod φ
 79 × d = 1 mod 3220 d = 1019

Encryption Let m = 9666683Divide m into blocks $m_i < n$ $m_1 = 966; m_2 = 668; m_3 = 3$ Compute $c_1 = 966^{79} \mod 3337 = 2276$ $c_2 = 668^{79} \mod 3337 = 2423$ $c_3 = 3^{79} \mod 3337 = 158$ $c = c_1c_2c_3 = 2276 2423 158$ Decryption $m_1 = 2276^{1019} \mod 2227 = 06$

 $m_1 = 2276^{1019} \mod 3337 = 966$ $m_2 = 2423^{1019} \mod 3337 = 668$ $m_3 = 158^{1019} \mod 3337 = 3$ $m = 966 \ 668 \ 3$

5

UNIVERSITÀ DI PISA

RSA

- RSA algorithms for key generation, encryption and decryption are easy
- · They involve the following operations
 - Discrete exponentiation
 - Generation of large primes
 - Solving diophantine equations

31/05/14

Public Key Encryption

Modular ops - complexity

7

Bit complexity of basic operations in Z_n

- Let **n** be on **k** bits (**n** < **2**^k)
- Let **a** and **b** be two integers in **Z**_n (on k-bits)
 - Addition a + b can be done in time O(k)
 - Subtraction a b can be can be done in time O(k)
 - Multiplication a × b can be done in O(k²)
 - Division a = q × b + r can be done in time O(k²)
 - Inverse a⁻¹ can be done in O(k²)
 - Modular exponentiation a^k can be done in O(k³)

How to encrypt/decrypt efficiently

- RSA requires *modular exponentiation* **c**^d **mod n**
 - Let *n* have *k* bits in its binary representation, *k* = *log n* + 1
- Grade-school algorithm requires (d-1) modular multiplications
 - d is as large as n which is exponentially large with respect to k
 - The grade-school algorithm is inefficient
- Square-and-multiply algorithm requires up to 2k multiplications thus the algorithm can be done in O(k³)

31/05/14

Public Key Encryption

How to encrypt/decrypt efficiently

- RSA requires modular exponentiation a^x mod n
 Let n have k bits in its binary representation, k = log n + 1
- Grade-school algorithm requires (x-1) modular multiplications
 - If *x* is as large as *n*, which is exponentially large with respect to
 k → the grade-school algorithm is inefficient
- Square-and-multiply algorithm requires up to 2k multiplications thus the algorithm can be done in O(k³)

How to encrypt and decrypt efficiently

Exponentiation by repeated squaring and multiplication: *m^e* mod *n* requires at most log₂(e) multiplications and log₂(e) squares

Let e_{k-1} , e_{k-2} , ..., e_2 , e_1 , e_0 , where $k = \log_2 e$, the binary representation of e

31/05/14

Public Key Encryption

Square and multiply

11

Exponentiation by repeated squaring and multiplication: **a**^x **mod n** requires at most $\log_2(x)$ multiplications and $\log_2(x)$ squares

Let $x_{k-1}, x_{k-2}, \dots, x_2, x_1, x_0$, where $k = \log_2 x$, the binary representation of x

$$\begin{aligned}
a^{x} \mod n &= a^{\left(x_{k-1}2^{k-1}+x_{k-2}2^{k-2}+\dots+x_{2}2^{2}+x_{1}2+x_{0}\right)} \mod n \equiv \\
a^{x_{k-1}2^{k-1}}a^{x_{k-2}2^{k-2}}\dots a^{x_{2}2^{2}}a^{x_{1}2}a^{x_{0}} \mod n \equiv \\
\left(a^{x_{k-1}2^{k-2}}a^{x_{k-2}2^{k-3}}\dots a^{x_{2}2}a^{x_{1}}\right)^{2}a^{x_{0}} \mod n \equiv \\
\left(\left(a^{x_{k-1}2^{k-3}}a^{x_{k-2}2^{k-4}}\dots a^{x_{2}}\right)^{2}a^{x_{1}}\right)^{2}a^{x_{0}} \mod n \equiv \\
\dots \\
\left(\left(\left(a^{x_{k-1}}\right)^{2}a^{x_{k-2}}\right)^{2}\dots a^{x_{2}}\right)^{2}a^{x_{1}}\right)^{2}a^{x_{0}} \mod n = \\
\dots \\
\left(\left(\left(a^{x_{k-1}}\right)^{2}a^{x_{k-2}}\right)^{2}\dots a^{x_{2}}\right)^{2}a^{x_{1}}\right)^{2}a^{x_{0}} \mod n
\end{aligned}$$

Fast encryption with short public exponent

- RSA ops with public key exponent e can be speeded-up
 - Encryption
 - Digital signature verification
- The public key e can be chosen to be a very small value
 - e = 3 #MUL + #SQ = 2
 - e = 17 #MUL + #SQ = 5
 - e = 2¹⁶+1 #MUL + #SQ = 17
 - RSA is still secure
- There is no easy way to accelerate RSA when the private exponent *d* is involved

31/05/14

Public Key Encryption

UNIVERSITÀ DI PISA

13

How to find a large prime

repeat

 $p \leftarrow randomOdd(x);$ until isPrime(p); FACT. On average (ln x)/2 odd numbers must be tested before a prime p < x can be found

- Primality tests do not try to factor the number under test
 - probabilistic primality test (Solovay-Strassen, Miller-Rabin) polynomial in log n
 - true primality test (O(n¹²) in 2002))

On computing the public exponent

- Solution of d · e ≡ 1 mod φ(n) with gcd(e, φ(n))
 ≡ 1 can be done by means of the Extended
 Euclidean Algorithm (EEA)
 - Exponent **d** can be generated efficiently (polytime)
 - Condition gcd(e, $\phi(n)$) = 1

31/05/14

Public Key Encryption

RSA one-way function

- One-way function y = f(x)
 - -y = f(x) is easy
 - $-x = f^{-1}(y)$ is hard
- RSA one-way function
 - Multiplication is easy
 - Factoring is hard

Security of RSA

The RSA Problem (RSAP)

• **DEFINITION. The RSA Problem** (**RSAP**): recovering plaintext *m* from ciphertext *c*, given the public key (*n*, *e*)

RSA VS FACTORING

• FACT. RSAP \leq_{P} FACTORING

- FACTORING is at least as difficult as RSAP or, equivalently, RSAP is not harder than FACTORING
- It is widely believed that RSAP and Factoring are computationally equivalent, although no proof of this is known.

31/05/14

Public Key Encryption

RSA vs Factoring

- THM. Computing the decryption exponent *d* from the public key (*n*, *e*) is computationally equivalent to factoring *n*
 - If the adversary could somehow factor *n*, then he could subsequently compute the private key *d* efficiently
 - If the adversary could somehow compute *d*, then it could subsequently factor *n* efficiently

Factoring

• FACTORING.

- Given n > 0, find its prime factorization; that is, write $n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$ where p_i are pairwise distinct primes and each $e_i \ge 1$,

Primality testing vs. factoring

 Deciding whether an integer is composite or prime seems to be, in general, much easier than the factoring problem

Factoring algorithms

- Brute force
- Special purpose
- General purpose
- Elliptic Curve
- Factoring on Quantum Computer (for the moment only theorethical)

31/05/14

Public Key Encryption

Factoring algorithms

Brute Force

- Unfeasible if n large and p len = q len

General purpose

- The running time depends solely on the size of n
 - Quadratic sieve
 - · General number field sieve

• Special purpose

- The running time depens on certain properties
 - · Trial division
 - Pollard's rho algorithm
 - Pollard's p -1 algorithm

Elliptic curve algorithm

Running times

 Trial division:
 $O(\sqrt{n})$

 Quadratic sieve:
 $O(e^{(\sqrt{\ln(n) \cdot \ln\ln(n)})})$

 General number field sieve:
 $O(e^{(1.923 \times \sqrt[3]{\ln(n) \cdot (\ln\ln(n))^2})})$

 BUDGE/ Key Encryption
 21

RSAP and e-th root

- A possible way to decrypt c = m^e mod n is to compute the e-th root of c
- **THM**. Computing the *e*-th root is a computationally easy problem iff *n* is prime
- **THM**. If *n* is composite the problem of computing the *e*-th root is *equivalent* to factoring

Security of RSA

- Factoring vs totally breaking RSA
 - A possible way to completely break RSA is to obtain $\boldsymbol{\phi}$
- **THM**. Knowing φ is computationally equivalent to factoring
 - PROOF.
 - 1. Given p and q, s.t. n = pq, computing φ is immediate.
 - 2. Let φ be given.
 - a. From $\varphi(n) = (p-1)(q-1) = n (p+q) + 1$, determine $x_1 = (p+q)$.
 - b. From $(p-q)^2 = (p+q)^2 4n$, determine $x_2 = (p-q)$.
 - c. Finally, p = (x1 + x2)/2 and q = (x1 x2)/2.

31/05/14

Public Key Encryption

UNIVERSITÀ DI PISA

23

• A possible way to completely break RSA is an exhaustive attack to the private key *d*

Security of RSA

 This attack could be more difficult than factoring because (according to the choice for *e*) *d* can be much greater than *p* and *q*.

RSA: low exponent attack

RSA in practice - padding

- We have described "schoolbook RSA"
- · RSA implementation may be insecure
 - RSA is deterministic
 - PT values x = 0, x = 1 produce CT equal to 0 and 1
 - Small PT might be subject to attacks
 - RSA is malleable
- · Padding is a possible solution
 - Optimal Asymmetric Encryption Padding (OAEP)
 - Public Key Cryptography Standard #1 (PKCS #1)

Public Key Encryption

RSA is malleable

- RSA malleability is based on the homo-morphic property of RSA
- Attack
 - The attacker replaces CT = y mod n by CT' = s^e•y mod n, with s some integer
 - The receiver decrypts CT': $(s^{e} \cdot y)^d = s^{ed} \cdot x^{ed} = s \cdot x \mod n$
 - By operating on the CT the adversary manages to multiply PT by s
 - **EX**. Let *x* be an amount of money. If *s* = 2 then the adversary doubles the amount
 - Possible solution: introduce redundancy: ex. x || x

31/05/14

Public Key Encryption

RSA – Homomorphic property

27

- Let m_1 and m_2 two plaintext messages
- Let c_1 and c_2 their respective encryptions
- Observe that

 $(m_1m_2)^e \equiv m_1^e m_2^e \equiv c_1c_2 \pmod{n}$

 In other words, the CT of the product m₁m₂ is the product of CTs c₁c₂ mod n

RSA in practice - PKCS #1

- Parameters
 - M = message
 - | M | = message len in bytes
 - k = | n | modulus len in bytes
 - | H | = hash function output len in bytes
 - L = optional label ("" by default)

31/05/14

Public Key Encryption

RSA in practice - PKCS #1

29

- Padding
 - 1. Generate a string PS = 00...0; PS len = k |M| 2|H| 2(PS len may be zero)
 - 2. *DB* = Hash(*L*) || *PS* || 0x01 || *M*
 - 3. seed = random(); seed len = | H |
 - 4. $dbMask = MGF(seed, k |H| 1)^{(*)}$
 - 5. maskedDB = DB **xor** dbMask
 - 6. seedMask = MGF(maskedDB, | H |)
 - 7. maskedSeed = seed **xor** seedMask
 - 8. EM = 0x00 || maskedSeed || maskedDB (**)

^(*) MGF mask generation function (e.g., SHA-1) ^(**) EM is the padded message

RSA in practice

- RSA is substantially slower than symmetric encryption
 - RSA is used for the transport of symmetric-keys and for the encryption of small quantities

Recommended size of the modulus

- 512 bit: marginal security
- 768 bit: recommended
- 1024 bit: long-term security

31/05/14

Public Key Encryption

UNIVERSITÀ DI PISA

31

RSA in practice

Selecting primes p and q

- *p* and *q* should be selected so that factoring
 n = *pq* is computationally infeasible, therefore
- *p* and *q* should be *sufficiently large* and about the *same bitlenght* (to avoid the elliptic curve factoring algorithm)
- p q should be not too small

RSA in practice

- Exponent e should be small or with a small number of 1's
 - e = 3

[1 modular multiplication + 1 modular squaring] subject to small encryption exponent attack

- e = 2¹⁶ + 1 (Fermat's number)
 [1 modular multiplication + 16 modular squarings]
 resistant to small encryption exponent attacks
- Decryption exponent *d* should be roughly the same size as *n*
 - Otherwise, if *d* is small, it could be possible to obtain *d* from the public information (*n*, *e*) or from a brute force attack

31/05/14

Public Key Encryption

33

Public Key Encryption

A, c (e, bid) Auctioneer's public key = (n, e) Auctioneer's public key = (n, e) Auctioneer's public key = (n, e)

The adversary encrypts all possible bids (e.g, 2^{32}) until he finds a **b** such that *E*(e, b) = *c*

Thus, the adversary sends a bid containing the minimal offer to win the auction: b' = b + 1

Salting is a solution: $r \leftarrow random(); c \leftarrow E(e, r || bid)$

31/05/14

Public Key Encryption

Homomorphic property of RSA

- Let m₁ and m₂ two plaintext messages
- Let c₁ and c₂ their respective encryptions
- Observe that

 $(m_1m_2)^e \equiv m_1^e m_2^e \equiv c_1c_2 \pmod{n}$

 In other words, the ciphertext of the product m₁m₂ is the product of ciphertexts c₁c₂ mod n

An adaptive chosen-ciphertext attack

- Bob decrypts ciphertext except a given ciphertext c
- Mr Lou Cipher wants to determine the ciphertext corresponding to *c*
- Mr Lou Cipher selects x at random, s.t. gcd(x, n) = 1, and sends Bob the quantity $\overline{c} = cx^e \mod n$
- Bob decrypts it, producing $\overline{m} = (\overline{c})^d = c^d x^{ed} = mx \pmod{n}$
- Mr Lou Cipher determine *m* by computing $m = \overline{m}x^{-1} \mod n$

The attack can be contrasted by imposing structural constraints on *m*

31/05/14

Public Key Encryption

Hybrid systems

 An asymmetric cipher is three orders of magnitude slower than a symmetric cipher

therefore

 An asymmetric cipher is often used in conjunction with a symmetric one so producing an *hybrid system*

Hybrid systems

Alice confidentially sends Bob a file file

- File *file* is encrypted with a symmetric cipher
- Session key is encrypted with an asymmetric cipher
- Alice needs an *authentic* copy of Bob's public key

31/05/14

Public Key Encryption

39

Public-key encryption

OTHER PUBLIC KEY CRYPTO-SYSTEMS

Other asymmetric cryptosystems

Discrete Logarithm Systems

- Let *p* be a prime, *q* a prime divisor of *p*−1 and *g*∈[1, *p*−1] has order q
- Let *x* be the *private key* selected at random from [1, *q*–1]
- Let y be the corresponding public key $y = g^x \mod p$
- Discrete Logarithm Problem (DLP)
- Given (*p*, *q*, *g*) and *y*, determine *x*

31/05/14

Public Key Encryption

EIGamal encryption scheme

- Encryption
 - select **k** randomly
 - $-c1 = g^k \mod p$, $c_2 = m \times y^k \mod p$
 - send ($\mathbf{c}_1, \mathbf{c}_2$) to recipient
- Decryption
 - $c_1^x = g^{kx} \mod p = y^k \mod p$
 - $-m = c_2 \times y^{-k} \mod p$
- Security
 - An adversary needs $y^k \mod p$. The task of calculating $y^k \mod p$ from (g, p, q) and y is equivalent to DHP and thus *based* on DLP in \mathbb{Z}_p

EIGamal in practice

- Prime *p* and generator *g* can be common system-wide
- Prime *p* size
 - 512-bit: marginal
 - 768-bit: recommended
 - 1024-bit or larger: long-term
- Efficiency
 - Encryption requires two modular exponentiations
 - Message expansion by a factor of 2
- Security
 - Different random integers k must be used for different messages

31/05/14

Public Key Encryption

Ellyptic Curve Cryptography

- Let p and $\in \mathbb{F}_p$
- Let *E* be an elliptic curve defined by $y^2 = x^3 + ax + b \pmod{p}$ where $a, b \in \mathbb{F}_p$ and $4a^3 + 27b^2 = 0$
- Example. E: $y^2 = x^3 + 2x + 4 \pmod{p}$
- The set of points *E*(𝔽_ρ) with *point at infinity* ∞forms an additive Abelian group

Elliptic curves Geometrical approach

Elliptic Cryptography (ECC)

- Algebric Approach
 - Elliptic curves defined on finite field define an Abelian finite field

Elliptic curve discrete logarithm problem

- Given points G and Q such that Q=kG, find the integer k
- No sub-exponential algorithm to solve it is known
- ECC keys are smaller than RSA ones

Ellyptic Curve Cryptography

- Let *P* have order *n* then the cyclic subgroup generated by *P* is *G* = <*P*, 2*P*,..., (*n* 1)*P*>
- **p**, **E**, **P** and n are the public parameters
- Private key *d* is selected at random in [1, *n*–1]
- Public key is **Q** = **dP**

31/05/14

Public Key Encryption

Ellyptic Curve Cryptography

- Encryption
 - A message *m* is represented as a point *M*
 - $C_1 = kP; C_2 = M + kQ$
 - send (C_1 ; C_2) to recipient
- Decryption
 - $dC_1 = d(kP) = kQ$
 - $-M = C_2 dC_1$
- Security
 - The task of computing kQ from the domain parameters, Q, and C₁=kP, is the ECDHP

Comparison among crypto-systems

Security level (bits)					
	80 (SKIPJACK)	112 (3DES)	128 (AES small)	192 (AES medium)	256 (AES large)
DL parameter q	160	224	256	384	512
EC parameter n	100		200	001	012
RSA modulus n	1024	2048	3072	8102	15360
DL modulus p	1024	2040	5072	0192	10000

- · Private key operations are more efficient in EC than in DL or RSA
- Public key operations are more efficient in RSA than EC or DL if small exponent *e* is selected for RSA

Public Key Encryption

49

PHYSICAL ATTACKS

Physical attacks

- · Embedded systems change the threat model
 - The adversary may physically attack the system
 - E.g.: smart meter
 - The system is even given to the adversary
 - E.g.: a bank or telco smart card
 - The adversary physically interfere with the system
 - Main attacks
 - Fault injection
 - Time analysis
 - Power analysis

31/05/14

Public Key Encryption

CRT and RSA optimization

- Chinese Remainder Theorem allows us to compute RSA more efficiently
- **Problem**: Compute $m = c^d \pmod{n}$
 - 1. Compute $m_1 = c^d \pmod{p}$ and $m_2 = c^d \pmod{q}$
 - 2. Compute $m = a_1m_1q + a_2m_2p$ where a_1 and a_2 are properly computed coefficients
- Advantage.
 - $-E_1 = c^d \pmod{p} = c^{(d \mod p 1)} \pmod{p},$
 - While *d* is on *k* bits, *p*-1 is on *k*/2 bits
 - Thus, multiplication takes O(k²/4)

CRT and RSA optimization

- Chinese Remainder Theorem allows us to compute RSA (decryption, signing) more efficiently
- **Problem**: Compute **y** = **x**^d (mod n)
 - 1. Compute $x_p = x \mod p$ and $x_q = x \mod q$
 - 2. Compute $\mathbf{y}_p = \mathbf{x}_p \stackrel{d \mod (p-1)}{\mod p}$ and $\mathbf{y}_q = \mathbf{x}_q \stackrel{d \mod (q-1)}{\mod q}$
 - 3. Compute $\mathbf{y} = \mathbf{a}_p \mathbf{y}_p \mathbf{q} + \mathbf{a}_q \mathbf{y}_q \mathbf{p}$ where \mathbf{a}_p and \mathbf{a}_q are properly (pre-)computed coefficients
- Advantage.
 - Computation of y_p and y_q is the most demanding
 - It requires #MUL+#SQ = 1.5t, on average
 - Each squaring/multiplication involves t/2-bit operands → multiplication/ squaring takes O(k²/4)
 - Thus the total speedup obtained through CRT is a factor of 4.

31/05/14

Public Key Encryption

A fault-injection attack against CRT-based RSA

53

- Attack intuition: by injecting a fault the adversary is able to factorize n
- The attack
 - Cause an **hw fault** while computing y_p which produces y'_p and thus $y' = a_p y'_p q + a_q y_q p$
 - It follows that $\mathbf{y} \mathbf{y}' = \mathbf{a}_{p}(\mathbf{m'}_{p} \mathbf{m}_{p})\mathbf{q}$
 - Thus, gcd(y y', n) = q which can be efficiently computed with the Euclide's algorithm

Practical considerations

- causing hw fault: tamper with computing circuitry
- **countermeasures**: checking results (10% *slow down*)

Power Analysis

- Power analysis is a **side channel** attack in which the attacker studies the power consumption of a cryptographic hardware device
 - smart card, tamper-resistant
 "black box", or integrated circuit
- The attack is non-invasive
- Simple power analysis (SPA) involves visual examination of graphs of the current used by a device over time.
 - Variations in power consumption occur as the device performs different operations.

Power Analysis of RSA

Key bit = 0 No multiplication

Key bit = 1 multiplication

31/05/14

Public Key Encryption

Power Analysis

- **Differential power analysis (DPA)** involves statistically analyzing power consumption measurements from a cryptosystem.
 - DPA attacks have signal processing and error correction properties which can extract secrets from measurements which contain too much noise to be analyzed using simple power analysis.

Timing attack

- A **timing attack** is a **side channel** attack in which the attacker attempts to compromise a cryptosystem by analyzing the time taken to execute cryptographic algorithms
 - Execution time depends on inputs (e.g., key!)
 - Precise measurement of time
 - Attack is application dependent
 - E.g., square-and-multiply for exp mod n
 - time depends on number of "1" in the key
 - Statistical analysis of timings with same key and different inputs

31/05/14

Public Key Encryption