The RSA cryptosystem

Public Key Encryption

RSA in a nutshell

* Rivest-Shamir-Adleman, 1978

— Rivest, R.; Shamir, A.; Adleman, L. (February 1978). "
A Method for Obtaining Digital Signatures and Public-Key
Cryptosystems,” Communications of the ACM 21 (2): 120-126. doi:
10.1145/359340.359342.

* The most widely used asymmetric crypto-system

« Many applications
— Encryption of small pieces (e.g. key transport)
— Digital Signatures

« Underlying one-way function: integer
factorization problem

RSA key generation

Generate two large, distinct primes p, q (100+200 decimal digits)
Compute n=p x g and (n) = (p-1)x(q-1)

Select a random number 1 < e < ¢p(n) such that gcd(e, ¢(n)) =1
Compute the unique integer 1 < d < ¢ such that ed 1 (mod ¢p)
(d, n) is the private key

(e, n) is the public key

A o

At the end of key generation, p and q must be destroyed

RSA encryption and decryption

Encryption. To generate ¢ from m, Bob should do the following
1. Obtain A's authentic public key (n, e)

2. Represent the message as an integer m in the interval
[0, n-1]

3. Compute ¢ =memod n

4. Sendcto A

Decryption. To recover m from c, Alice should do the following
1. Use the private key d to recover m = ¢?mod n

RSA consistency

* We have to prove that D(d(E(e, m)) = m, i.e.,
c? = m (mod n)

« The proof may be based on either the Fermat’s
little theorem or the Eulero’s theorem

07/04/16 The RSA Cryptosystem 5

RSA consistency

Proof based on Fermat’s little theorem

 Fermat’s little theorem

— If pis prime and gcd(p, a) = 1, then a*' =1 (mod p)
* Proof

— Sinceed=1modpthened=1+t(p-1)(q-1)

— Check whether x =y mod (pq) is equivalent to check
whether x =y (mod p) A x=y (mod q)

— me=m (mod p)
m =0 (mod p), so m is a multiple of p so méd =0 =m (mod p)

m#0 gmod P), med = mmtle-Ma-1=m (m(P—1))t(q—1) = m
(1)@= =m (mod p)

— Proof for g proceeds in a similar way

07/04/16 The RSA Cryptosystem 6

RSA consistency

Proof based on Eulero’s theorem

e Eulero’s theorem

— Vintegern>1, Va € 7, a®*"=1 (mod n) where
Z, ={x|1<x<n,gcd(x, n) =1}

* Proof

— We have to prove that D(d(E(e, m)) = m, i.e.,
c? = m9e = mt~*(M*1 (mod n), where tis some
integer @>mteM -m1= (meM)t-m' = m (mod n)

Example with artificially small

numbers
Key generation Encryption
» Letp=47eq=71 Let m = 9666683
n=pxq=3337 Divide m into blocks m; < n
@=(p-1) x (g-1)=46 x 70=3220 m, = 966; m, = 668; m; = 3
= Lete=79 Compute
ed=1mod ¢ ¢, = 9667° mod 3337 = 2276
79 x d =1 mod 3220 ¢, = 6687° mod 3337 = 2423
d=1019 c; = 37 mod 3337 = 158
C = €4C,C5 = 2276 2423 158
Decryption

m, = 2276'9"® mod 3337 = 966
m, = 2423'91% mod 3337 = 668
my = 158101 mod 3337 = 3

m = 966 668 3

RSA

« RSA algorithms for key generation, encryption
and decryption are “easy”

« They involve the following operations
— Discrete exponentiation
— Generation of large primes (see next slide)
— Solving diophantine equations

07/04/16 The RSA Cryptosystem

How to find a large prime

repeat = FACT. On average (In x)/2 odd numbers

p < randomOdd(x); must be tested before a prime p < x can be

until isPrime(p); found

Primality tests do not try to factor the number under test
* probabilistic primality test (Solovay-Strassen, Miller-Rabin)
polynomial in log n
« true primality test (O(n'?) in 2002))

07/04/16 The RSA Cryptosystem

On computing the private
exponent d

« Solution of d - e =1 mod ¢@(n) with gcd(e, ¢(n))
= 1 can be done by means of the Extended
Euclidean Algorithm (EEA)

— Exponent d can be computed efficiently (polytime)
— Condition gcd(e, @(n)) = 1

Modular ops - complexity

UNIVERSITA DI PISA

Bit complexity of basic operations in Z,
* Letnbe on k bits (n < 2¥)

* Letaand b be two integers in Z, (on k-bits)
— Addition a + b can be done in time O(k)
— Subtraction a — b can be can be done in time O(k)
— Multiplication a x b can be done in O(k?)
— Division a=q x b +r can be done in time O(k?)
— Inverse a' can be done in O(k?)
— Modular exponentiation a* can be done in O(k?)

How to encrypt/decrypt et
efficiently

« RSA requires modular exponentiation ¢® mod n
— Let n have k bits in its binary representation, k= log n + 1

* Grade-school algorithm requires (d-1) modular
multiplications
— dis as large as n which is exponentially large with respect to k
— The grade-school algorithm is inefficient

 Square-and-multiply algorithm requires up to 2k
multiplications thus the algorithm can be done in O(k3)

How to encrypt/decrypt
efficiently

« RSA requires modular exponentiation a* mod n
— Let n have k bits in its binary representation, k =
logn+1
» Grade-school algorithm requires (x-1) modular
multiplications
— If x is as large as n, which is exponentially large
with respect to k =» the grade-school algorithm is
inefficient
» Square-and-multiply algorithm requires up to
2k multiplications thus the algorithm can be
done in O(k3)

How to encrypt and decrypt

efficiently

UNIVERSITA DI PISA

Exponentiation by repeated squaring and multiplication: m® mod n requires
at most log,(e) multiplications and log,(e) squares

Let €15 €4.0) -y €95 €4, €, Where k =log, e, the binary representation of e

k-1 k-2 2
(eHZ +€ 2" T+ te,2 +e12+e0)

m°modn=m

k-1
€42

modn =
2k—2

m m%22" ...m*>% m*®m% modn =

2k—3

2
k=2 2
(mek1 m°—2< ...m% me1) m®modn =

2
e, 23 e ,2¢* e 2 e [
m** m*2* ..m?| m" | m°modn=

9 2

[((m%)z o)m] e

m® modn

07/04/16 The RSA Cryptosystem

Square and multiply

c 1
for (i=k-1;i>=0;i-){
¢ < ¢2mod n;
if (¢,== 1)
c<—cxmmodn;
}

+ always k square operations

+ at most k modular multiplications
(equal to the number of 1 in the
binary representation of e)

UNIVERSITA DI PISA

Exponentiation by repeated squaring and multiplication: @ mod n requires
at most log,(x) multiplications and log,(x) squares

Let X;.15 Xp.s -5 Xo5 Xq5 Xo, Where k = log, x, the binary representation of x

k-1 k-2 2
(XHZ X 2" Xy 274 Xy 2+x0)

a*modn=a

2k—2

modn =

2k x,2

2
a? gh2? " ...g9%% a%?g" " modn =

x, 2K2 x _ok3 x2x2 X
a~* g+ ...g2°g"| a°modn=

2
x, 2K3 x k4 X. 2 X, X,
a~" a+* ..g2| a'| a*modn=

2

2 2 ?
((aX“) aXMj ..a@2 | a8 | a°*modn

c <+ 1
for (i=k-1;i>=0:i) {
¢ < ¢2mod n;
if (x;== 1)
c < cXamod n;
}

+ always k square operations

» at most kK modular multiplications
(equal to the number of 1 in the
binary representation of e)

16

Fast encryption with short

public exponent
+ RSA ops with public key exponent e can be speeded-up
— Encryption

— Digital signature verification

« The public key e can be chosen to be a very small value

- e=3 #MUL + #SQ = 2
-e=17 #MUL + #5Q =5
— e =216+1 #MUL + #5Q = 17

— RSA is still secure

» There is no easy way to accelerate RSA when the
private exponent d is involved
— Lend=lenn

RSA one-way function

* One-way function y = f(x)
— y =f(x) is easy
— x =f(y) is hard

* RSA one-way function

— Multiplication is easy
— Factoring is hard

Security of RSA

The RSA Problem (RSAP)

 DEFINITION. The RSA Problem (RSAP):
recovering plaintext m from ciphertext c, given the
public key (n, e)

RSA VS FACTORING

 FACT. RSAP <, FACTORING
— FACTORING is at least as difficult as RSAP or,
equivalently, RSAP is not harder than FACTORING

— It is widely believed that RSAP and Factoring are
computationally equivalent, although no proof of
this is known.

Security of RSA

« THM (FACT 1). Computing the decryption
exponent d from the public key (n, e) is
computationally equivalent to factoring n

a. If the adversary could somehow factor n, then he

could subsequently compute the private key d
efficiently

b. If the adversary could somehow compute d, then it
could subsequently factor n efficiently

Security of RSA

UNIVERSITA DI PISA

RSAP and e-th root

» A possible way to decrypt c = m® mod nis to
compute the modular e-th root of ¢

« THM (FACT 2). Computing the e-th root is a
computationally easy problem iff n is prime

« THM (FACT 3). If nis composite the problem
of computing the e-th root is equivalent to
factoring

07/04/16 The RSA Cryptosystem 21

Security of RSA

« THM (FACT 4). Knowing ¢ is computationally
equivalent to factoring

 PROOF.

1. Given p and q, s.t. n =pqg, computing @ is
immediate.
2. Let ¢ be given.
a. From ¢ = (p-1)(g-1) =n —(p+q) + 1, determine x, = (p
+q).
b. From (p—q)? = (p + q)> — 4n = x,? — 4n, determine x,
=(p—-Qq).
c. Finally, p = (x1 + x2)/2 and q = (x1 — x2)/2.

UNIVERSITA DI PISA

07/04/16 The RSA Cryptosystem 22

Security of RSA

UNIVERSITA DI PISA

« Exhaustive Private Key Search
» This attack could be more difficult than factoring d

» Key d is the same order of magnitude as n thus it is
much greater than p and q

Factoring

d 1342 L)
UNIVERSITA DI PISA

* Primality testing vs. factoring

— (FACT 5) Deciding whether an integer is composite or
prime seems to be, in general, much easier than the
factoring problem

» Factoring algorithms
— Brute force
— Special purpose
— General purpose
— Elliptic Curve

— Factoring on Quantum Computer (for the moment only
theorethical)

Factoring algorithms

UNIVERSITA DI PISA

» Brute Force
— Unfeasible if nlarge and p len = g len

* General purpose

— The running time depends solely on the size of n
* Quadratic sieve
» General number field sieve

« Special purpose
— The running time depends on certain properties
* Trial division
* Pollard's rho algorithm
* Pollard's p -1 algorithm

 Elliptic curve algorithm

Factoring: running times

l‘\'l\’liRSI'l" DI PISA
Trial division: O(Jﬁ)

Quadratic sieve: O(e('”(”)"”'”(”)))

General number field sieve: O

[(1.923><13/In(n)o(lnln(n))2) }
e

RSA in practice

UNIVERSITA DI PISA

Selecting primes p and q

— p and q should be selected so that factoring
n = pq is computationally infeasible, therefore

— p and q should be sufficiently large and
about the same bitlenght (to avoid the elliptic
curve factoring algorithm)

— p - q should be not too small

07/04/16 The RSA Cryptosystem 27

* If n,, n, ed n, are pairwise coprime,
Gy . ? —(n, 3) e CRT to find x = m* mod n,n,n,
K\\f,/! [w * As m < n,by RSA encryption

==

definition then m? < n,n,n,, then x =

¢;= m3mod n, 3

m
@Q (N, 3) ° Thus an eavesdropper recovers m by

% é / computing the integer cube root of x
(non modular!)

X =c,modn,
x=c, modn,
X =c,modn,

07/04/16 The RSA Cryptosystem 28

RSA in practice - padding

We have described schoolbook/plain RSA

Plain RSA implementation may be insecure

— RSA is deterministic

— PT values x =0, x = 1 produce CT equal to 0 and 1
— Small PT might be subject to attacks

— RSA is malleable

Never use plain RSA

Padding is a possible solution

— Optimal Asymmetric Encryption Padding (OAEP) in
Public Key Cryptography Standard #1 (PKCS #1)

RSA is malleable

« RSA malleability is based on the homo-morphic
property of RSA

« Attack

— The attacker replaces CT = y mod n by
CT = s®*y mod n, with s some integer s.t. gcd(s, n) = 1

— The receiver decrypts CT’: (s¢ey)? = sedexed = sex mod n

— By operating on the CT the adversary manages to multiply
PT by s

— EX. Let x be an amount of money. If s = 2 then the
adversary doubles the amount

— Possible solution: introduce redundancy: ex. x || x

RSA — Homomorphic property

« Let m, and m, two plaintext messages
* Let ¢, and c, their respective encryptions
* Observe that

(m,m,)e =m,m,° = c,c,(modn)

= In other words, the CT of the product m,;m, is the
product of CTs ¢,c, mod n

RSA in practice - PKCS #1

« Parameters
— M = message
— | M | = message len in bytes
— k =] n | modulus len in bytes
— | H | = hash function output len in bytes
— L = optional label (*” by default)

RSA in practice - PKCS #1

* Padding
1. Generate a string PS=00...0; PSlen=k—-|M|-2|H| -2
(PS len may be zero)
DB = Hash(L) || PS || 0x01 || M
seed = random(); seed len = | H |
dbMask = MGF (seed, k-|H|-1)0)
maskedDB = DB xor dbMask
seedMask = MGF(maskedDB, | H |)
maskedSeed = seed xor seedMask
EM = 0x00 || maskedSeed || maskedDB ()

L3132
UNIVERSITA DI PISA

©® NSO O

) MGF mask generation function (e.g., SHA-1)
(") EM is the padded message

07/04/16 The RSA Cryptosystem 33

Common modulus attack

UNIVERSITA DI PISA

)

L
)
)

The server uses a ;
common modulus =
n for all key pairs

|

(N, &) (n, &s)

* Mr Lou Cipher can efficiently factor n
from ds (FACT 1) and then

« compute all d's
07/04/16 The RSA Cryptosystem 34

v

%ﬁ

The adversary encrypts all possible bids (e.g, 232) until he finds
a b such that E(e, b) =c

Thus, the adversary sends a bid containing the minimal offer to
win the auction: b’ =b + 1

Salting is a solution: r — random(); c—E(e, r || bid)

07/04/16 The RSA Cryptosystem 35

An adaptive chosen-ciphertext
attack

» Bob decrypts ciphertext except a given
ciphertext ¢

= Mr Lou Cipher wants to determine the
ciphertext corresponding to ¢

* Mr Lou Cipher selects x at random, s.t. gcd(x, n) =1, and
sends Bob the quantity ¢ =cx*modn

« Bob decrypts it, producing 7 =(¢)" = ¢’x* = mx(modn)

« Mr Lou Cipher determine m by computing m=mx"' modn

The attack can be contrasted by imposing structural constraints on m

07/04/16 The RSA Cryptosystem 36

