The RSA cryptosystem

Public Key Encryption

RSA in a nutshell

- Rivest-Shamir-Adleman, 1978
 - Rivest, R.; Shamir, A.; Adleman, L. (February 1978). " <u>A Method for Obtaining Digital Signatures and Public-Key</u> <u>Cryptosystems</u>," Communications of the ACM 21 (2): 120–126. doi: 10.1145/359340.359342.
- The most widely used asymmetric crypto-system
- Many applications
 - Encryption of small pieces (e.g. key transport)
 - Digital Signatures
- Underlying one-way function: integer factorization problem

RSA key generation

- 1. Generate two large, distinct primes **p**, **q** (100÷200 decimal digits)
- 2. Compute $n = p \times q$ and $\varphi(n) = (p-1) \times (q-1)$
- 3. Select a random number $1 < e < \varphi(n)$ such that $gcd(e, \varphi(n)) = 1$
- 4. Compute the unique integer $1 < d < \varphi$ such that $ed \equiv 1 \pmod{\varphi}$
- 5. (*d*, *n*) is the *private* key
- 6. (e, n) is the *public* key

At the end of key generation, *p* and *q* must be destroyed

07/04/16

The RSA Cryptosystem

RSA encryption and decryption

3

Encryption. To generate *c* from *m*, Bob should do the following

- 1. Obtain *A*'s *authentic* public key (n, e)
- 2. Represent the message as an integer *m* in the interval [0, *n*-1]
- 3. Compute $c = m^e \mod n$
- 4. Send *c* to *A*

Decryption. To recover *m* from *c*, Alice should do the following

1. Use the private key d to recover $m = c^d \mod n$

RSA consistency

- We have to prove that *D(d(E(e, m)) = m*, i.e., *c^d ≡ m* (mod *n*)
- The proof may be based on either the Fermat's little theorem or the Eulero's theorem

07/04/16

The RSA Cryptosystem

RSA consistency Proof based on Fermat's little theorem

5

• Fermat's little theorem

- If p is prime and gcd(p, a) = 1, then $a^{p-1} = 1 \pmod{p}$
- Proof
 - Since $ed = 1 \mod \varphi$ then ed = 1 + t (p 1)(q 1)
 - Check whether x = y mod (pq) is equivalent to check whether x = y (mod p) ∧ x = y (mod q)
 - m^{ed} = m (mod p)
 - m = 0 (mod p), so m is a multiple of p so m^{ed} = 0 = m (mod p)
 - $m \neq 0 \pmod{p}, m^{ed} = m m^{t(p-1)(q-1)} = m (m^{(p-1)})^{t(q-1)} = m (1)^{t(q-1)} = m \pmod{p}$
 - Proof for q proceeds in a similar way

RSA consistency Proof based on Eulero's theorem

7

UNIVERSITÀ DI PISA

- Eulero's theorem
 - $\forall integer n > 1, \forall a ∈ ℤ_n[*], a^{φ(n)} ≡ 1 (mod n) where$ $ℤ_n[*] = { x | 1 < x < n, gcd(x, n) = 1}$
- Proof
 - We have to prove that $D(d(E(e, m)) = m, i.e., c^d \equiv m^{de} \equiv m^{t \cdot \varphi(n)+1} \pmod{n}$, where *t* is some integer $\Rightarrow m^{t \cdot \varphi(n)} \cdot m^1 \equiv (m^{\varphi(n)})^t \cdot m^1 \equiv m \pmod{n}$

07/04/16

The RSA Cryptosystem

Example with artificially small numbers

Key generation

- Let p = 47 e q = 71
 n = p × q = 3337
 φ= (p-1) × (q-1)= 46 × 70 = 3220
- Let e = 79 ed = 1 mod φ
 79 × d = 1 mod 3220 d = 1019

Let m = 9666683Divide m into blocks $m_i < n$ $m_1 = 966; m_2 = 668; m_3 = 3$ Compute $c_1 = 966^{79} \mod 3337 = 2276$ $c_2 = 668^{79} \mod 3337 = 2423$ $c_3 = 3^{79} \mod 3337 = 158$ $c = c_1c_2c_3 = 2276 2423 158$

Decryption

 $m_1 = 2276^{1019} \mod 3337 = 966$ $m_2 = 2423^{1019} \mod 3337 = 668$ $m_3 = 158^{1019} \mod 3337 = 3$ $m = 966 \ 668 \ 3$

RSA

9

UNIVERSITÀ DI PISA

- RSA algorithms for key generation, encryption and decryption are "easy"
- They involve the following operations
 - Discrete exponentiation
 - Generation of large primes (see next slide)
 - Solving diophantine equations

07/04/16

The RSA Cryptosystem

How to find a large prime

repeat

 $p \leftarrow randomOdd(x);$ until isPrime(p); FACT. On average (In *x*)/2 odd numbers must be tested before a prime *p* < *x* can be found

- Primality tests **do not** try to factor the number under test
 - probabilistic primality test (Solovay-Strassen, Miller-Rabin) polynomial in log n
 - true primality test (O(n¹²) in 2002))

On computing the private exponent **d**

11

UNIVERSITÀ DI PISA

- Solution of d · e ≡ 1 mod φ(n) with gcd(e, φ(n))
 ≡ 1 can be done by means of the Extended
 Euclidean Algorithm (EEA)
 - Exponent *d* can be computed efficiently (polytime)
 - Condition gcd(e, $\phi(n)$) = 1

07/04/16

The RSA Cryptosystem

Modular ops - complexity

Bit complexity of basic operations in Z_n

- Let n be on k bits $(n < 2^k)$
- Let **a** and **b** be two integers in **Z**_n (on k-bits)
 - Addition a + b can be done in time O(k)
 - Subtraction a b can be can be done in time O(k)
 - Multiplication a × b can be done in O(k²)
 - Division a = q × b + r can be done in time O(k²)
 - Inverse a⁻¹ can be done in O(k²)
 - Modular exponentiation a^k can be done in O(k³)

How to encrypt/decrypt efficiently

- RSA requires modular exponentiation c^d mod n
 Let n have k bits in its binary representation, k = log n + 1
- **Grade-school** algorithm requires **(d-1)** modular multiplications
 - d is as large as n which is exponentially large with respect to k
 - The grade-school algorithm is inefficient
- Square-and-multiply algorithm requires up to 2k multiplications thus the algorithm can be done in O(k³)

07/04/16

The RSA Cryptosystem

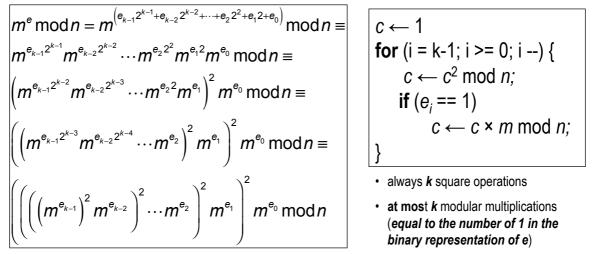
How to encrypt/decrypt efficiently

- RSA requires modular exponentiation a^x mod n
 Let n have k bits in its binary representation, k = log n + 1
- Grade-school algorithm requires (x-1) modular multiplications
 - If *x* is as large as *n*, which is exponentially large with respect to *k* → the grade-school algorithm is inefficient
- Square-and-multiply algorithm requires up to 2k multiplications thus the algorithm can be done in O(k³)

How to encrypt and decrypt efficiently

Exponentiation by repeated squaring and multiplication: *m*^e mod *n* requires at most log₂(e) multiplications and log₂(e) squares

Let e_{k-1} , e_{k-2} , ..., e_2 , e_1 , e_0 , where $k = \log_2 e$, the binary representation of e



07/04/16

The RSA Cryptosystem

Square and multiply

15

Exponentiation by repeated squaring and multiplication: $a^x \mod n$ requires at most $\log_2(x)$ multiplications and $\log_2(x)$ squares

Let x_{k-1} , x_{k-2} , ..., x_2 , x_1 , x_0 , where $k = \log_2 x$, the binary representation of x

$$\begin{bmatrix}
a^{x} \mod n = a^{\left(x_{k-1}2^{k-1}+x_{k-2}2^{k-2}+\dots+x_{2}2^{2}+x_{1}2+x_{0}\right)} \mod n \equiv \\
a^{x_{k-1}2^{k-1}}a^{x_{k-2}2^{k-2}}\dots a^{x_{2}2^{2}}a^{x_{1}2}a^{x_{0}} \mod n \equiv \\
\left(a^{x_{k-1}2^{k-2}}a^{x_{k-2}2^{k-3}}\dots a^{x_{2}2}a^{x_{1}}\right)^{2}a^{x_{0}} \mod n \equiv \\
\left(\left(a^{x_{k-1}2^{k-3}}a^{x_{k-2}2^{k-4}}\dots a^{x_{2}2^{k-4}}\dots a^{x_{2}2^{k-4}}\dots a^{x_{2}2^{k-4}}\right)^{2}a^{x_{0}} \mod n \equiv \\
\dots \\
\left(\left(\left(\left(a^{x_{k-1}}\right)^{2}a^{x_{k-2}}\right)^{2}\dots a^{x_{2}2^{k-4}}\right)^{2}a^{x_{1}}\right)^{2}a^{x_{0}} \mod n \equiv \\
\dots \\
\left(\left(\left(\left(a^{x_{k-1}}\right)^{2}a^{x_{k-2}}\right)^{2}\dots a^{x_{2}2^{k-4}}\right)^{2}a^{x_{1}}\right)^{2}a^{x_{0}} \mod n = \\
\dots \\
\left(\left(\left(a^{x_{k-1}}\right)^{2}a^{x_{k-2}}\right)^{2}\dots a^{x_{2}2^{k-4}}\right)^{2}a^{x_{1}}\right)^{2}a^{x_{0}} \mod n = \\
\dots \\
\left(\left(\left(a^{x_{k-1}}\right)^{2}a^{x_{k-2}}\right)^{2}\dots a^{x_{2}2^{k-4}}\right)^{2}a^{x_{1}}\right)^{2}a^{x_{0}} \mod n = \\
\dots \\
\left(\left(a^{x_{k-1}}a^{k-2}a^{k-2}a^{k-4}\dots a^{k-2}a^{k-4}a^{k-2}a^{k-4}a^{k-2}a^{k-4}a$$

Fast encryption with short public exponent

- RSA ops with public key exponent e can be speeded-up
 - Encryption
 - Digital signature verification
- The public key e can be chosen to be a very small value
 - e = 3 #MUL + #SQ = 2
 - e = 17 #MUL + #SQ = 5
 - e = 2¹⁶+1 #MUL + #SQ = 17
 - RSA is still secure
- There is no easy way to accelerate RSA when the private exponent *d* is involved
 - Len d = len n

07/04/16

The RSA Cryptosystem

RSA one-way function

- One-way function y = f(x)
 - -y = f(x) is easy
 - $-x = f^{-1}(y)$ is hard
- RSA one-way function
 - Multiplication is easy
 - Factoring is hard

The RSA Problem (RSAP)

• **DEFINITION. The RSA Problem** (**RSAP**): recovering plaintext *m* from ciphertext *c*, given the public key (*n*, *e*)

RSA VS FACTORING

• FACT. RSAP \leq_P FACTORING

- FACTORING is at least as difficult as RSAP or, equivalently, RSAP is not harder than FACTORING
- It is widely believed that RSAP and Factoring are computationally equivalent, although no proof of this is known.

07/04/16

The RSA Cryptosystem

Security of RSA

- THM (FACT 1). Computing the decryption exponent *d* from the public key (*n*, *e*) is computationally equivalent to factoring *n*
 - a. If the adversary could somehow factor *n*, then he could subsequently compute the private key *d* efficiently
 - b. If the adversary could somehow compute *d*, then it could subsequently factor *n* efficiently

07/04/16

Security of RSA

RSAP and e-th root

- A possible way to decrypt c = m^e mod n is to compute the modular e-th root of c
- THM (FACT 2). Computing the *e*-th root is a computationally easy problem iff *n* is prime
- THM (FACT 3). If n is composite the problem of computing the e-th root is equivalent to factoring

The RSA Cryptosystem

07/04/16

Security of RSA

- THM (FACT 4). Knowing φ is computationally equivalent to factoring
- PROOF.
- **1. Given p and q**, s.t. *n* =*pq*, computing φ is immediate.
- 2. Let φ be given.
 - a. From $\varphi = (p-1)(q-1) = n (p+q) + 1$, determine $x_1 = (p + q)$.
 - b. From $(p q)^2 = (p + q)^2 4n = x_1^2 4n$, determine $x_2 = (p q)$.

The RSA Cryptosystem

c. Finally, p = (x1 + x2)/2 and q = (x1 - x2)/2.

22

Security of RSA

- Exhaustive Private Key Search
 - This attack could be more difficult than factoring *d*
 - Key d is the same order of magnitude as n thus it is much greater than p and q

07/04/16

The RSA Cryptosystem

Factoring

- Primality testing vs. factoring
 - (FACT 5) Deciding whether an integer is composite or prime seems to be, in general, much easier than the factoring problem

Factoring algorithms

- Brute force
- Special purpose
- General purpose
- Elliptic Curve
- Factoring on Quantum Computer (for the moment only theorethical)

Factoring algorithms

- Brute Force
 - Unfeasible if n large and p len = q len

General purpose

- The running time depends solely on the size of n
 - Quadratic sieve
 - General number field sieve

Special purpose

- The running time depends on certain properties
 - Trial division
 - Pollard's rho algorithm
 - Pollard's *p* -1 algorithm

Elliptic curve algorithm

07¢0R\$A6Cryptosystem

25

Factoring: running times

Trial division: $O(\sqrt{n})$

Quadratic sieve:
$$O(e^{(\sqrt{\ln(n) \cdot \ln\ln(n)})})$$

General number field sieve: $O\left(e^{\left(1.923\times\sqrt[3]{\ln(n)} \cdot (\ln\ln(n))^2\right)}\right)$

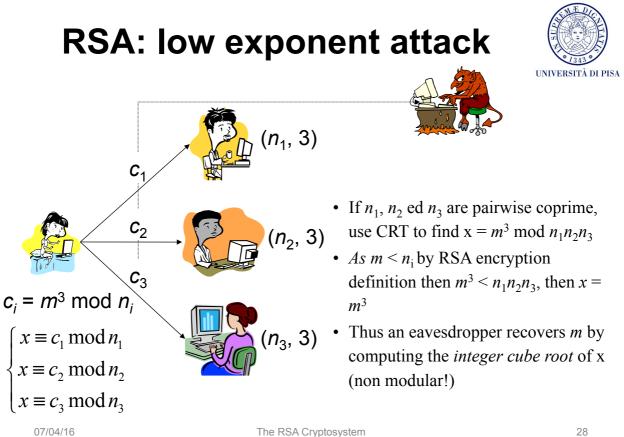
Selecting primes p and q

- **p** and **q** should be selected so that factoring *n* = *pq* is computationally infeasible, therefore
- p and q should be sufficiently large and about the same bitlenght (to avoid the elliptic curve factoring algorithm)

– p - q should be not too small

07/04/16

The RSA Cryptosystem



RSA in practice - padding

- We have described schoolbook/plain RSA
- Plain RSA implementation may be insecure
 - RSA is deterministic
 - PT values x = 0, x = 1 produce CT equal to 0 and 1
 - Small PT might be subject to attacks
 - RSA is malleable
- Never use plain RSA
- Padding is a possible solution
 - Optimal Asymmetric Encryption Padding (OAEP) in Public Key Cryptography Standard #1 (PKCS #1)

07/04/16

The RSA Cryptosystem

RSA is malleable

- RSA malleability is based on the homo-morphic property of RSA
- Attack
 - The attacker replaces CT = y mod n by
 CT' = s^e•y mod n, with s some integer s.t. gcd(s, n) = 1
 - The receiver decrypts CT': $(s^{e} \cdot y)^d = s^{ed} \cdot x^{ed} = s \cdot x \mod n$
 - By operating on the CT the adversary manages to multiply PT by s
 - EX. Let x be an amount of money. If s = 2 then the adversary doubles the amount
 - **Possible solution**: introduce redundancy: ex. *x* || *x*

RSA – Homomorphic property

- Let *m*₁ and *m*₂ two plaintext messages
- Let c_1 and c_2 their respective encryptions
- Observe that

 $(m_1m_2)^e \equiv m_1^e m_2^e \equiv c_1c_2 \pmod{n}$

In other words, the CT of the product m₁m₂ is the product of CTs c₁c₂ mod n

The RSA Cryptosystem

07/04/16

RSA in practice - PKCS #1

- Parameters
 - M = message
 - | M | = message len in bytes
 - k = | n | modulus len in bytes
 - | H | = hash function output len in bytes

The RSA Cryptosystem

– L = optional label ("" by default)

RSA in practice - PKCS #1

Padding

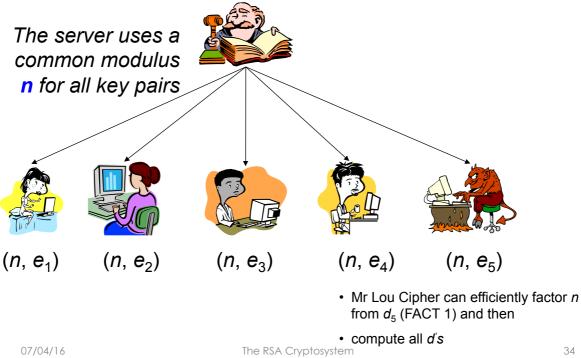
- Generate a string PS = 00...0; PS len = k |M| 2|H| 21. (PS len may be zero)
- 2. DB = Hash(L) || PS || 0x01 || M
- 3. seed = random(); seed len = | H |
- 4. $dbMask = MGF(seed, k |H| 1)^{(*)}$
- 5. maskedDB = DB **xor** dbMask
- 6. seedMask = MGF(maskedDB, | H |)
- 7. maskedSeed = seed **xor** seedMask
- 8. $EM = 0 \times 00$ || maskedSeed || maskedDB (**)

The RSA Cryptosystem

(*) MGF mask generation function (e.g., SHA-1) ^(**) EM is the padded message

07/04/16

Common modulus attack



A, $c \leftarrow E(e, bid)$ Auctioneer's public key = (n, e) Image: Comparison of the strength of the strenge strength of the strength of the strength

The adversary encrypts all possible bids (e.g, 2^{32}) until he finds a **b** such that *E*(e, b) = *c*

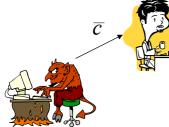
Thus, the adversary sends a bid containing the minimal offer to win the auction: b' = b + 1

Salting is a solution: $r \leftarrow random(); c \leftarrow E(e, r || bid)$

07/04/16

The RSA Cryptosystem

An adaptive chosen-ciphertext attack



- Bob decrypts ciphertext except a given ciphertext c
- Mr Lou Cipher wants to determine the ciphertext corresponding to *c*
- Mr Lou Cipher selects x at random, s.t. gcd(x, n) = 1, and sends Bob the quantity $\overline{c} = cx^e \mod n$
- Bob decrypts it, producing $\overline{m} = (\overline{c})^d = c^d x^{ed} = mx \pmod{n}$
- Mr Lou Cipher determine *m* by computing $m = \overline{m}x^{-1} \mod n$

The attack can be contrasted by imposing structural constraints on *m*

35

UNIVERSITÀ DI PISA