The RSA cryptosystem

Public Key Encryption

RSA In a nutshell

¥ Rivest-Shamir-Adleman, 1978

b Rivest, R.; Shamir, A.; Adleman, L. (February 1978). "
A Method for Obtaining Digital Signatures and Public-Key
Cryptosystems,OCommunications of the ACM 21 (2): 120D126. doi:
10.1145/359340.359342.

¥ The most widely used asymmetric crypto-system

¥ Many applications
b Encryption of small pieces (e.g. key transport)
b Digital Signatures

¥ Underlying one-way function: integer
factorization problem

UNIVERSITA DI PISA

RSA key generation

Generate two large, distinct primes p, q (100+200 decimal digits)
Compute n=p x g and (n) = (p-1)x(q-1)

Select a random number 1 < e < ¢p(n) such that gcd(e, ¢(n)) =1
Compute the unique integer 1 < d < ¢ such that ed 1 (mod ¢p)
(d, n) is the private key

(e, n) is the public key

A o

At the end of key generation, p and q must be destroyed

RSA encryption and decryption

Encryption. To generate ¢ from m, Bob should do the following
1. Obtain A's authentic public key (n, e)

2. Represent the message as an integer m in the interval
[0, n-1]

3. Compute ¢ =memod n

4. Sendcto A

Decryption. To recover m from c, Alice should do the following
1. Use the private key d to recover m = ¢?mod n

RSA consistency

¥ We have to prove that D(d(E(e, m)) = m, i.e.,
c? = m (mod n)

¥ The proof may be based on either the Fermat’s
little theorem or the Eulero’s theorem

07/04/16 The RSA Cryptosystem 5

RSA consistency

Proof based on FermatOdittle theorem

¥ Fermat’s little theorem

b |If pis prime and gcd(p, a) = 1, then a1 =1 (mod p)
¥ Proof

D Sinceed=1modg@thened=1+t(pbD1)(gb 1)

b Check whether x =y mod (pq) is equivalent to check
whether x =y (mod p) A x =y (mod q)

D med=m (mod p)
¥ m=0 (mod p), so mis a multiple of p so méd =0 =m (mod p)

¥ m#0(modp), med=m miPPHE@PY=m (MPPL@PY = m
(1)@ =m (mod p)

B Proof for g proceeds in a similar way

07/04/16 The RSA Cryptosystem 6

RSA consistency

Proof based on EuleroOgheorem

¥ Eulero’s theorem

b Vintegern>1, Va € Z,, a®™=1 (mod n) where
Z, ={x|1<x<n,gcd(x, n) =1}

¥ Proof

b We have to prove that D(d(E(e, m)) = m, i.e.,
c? = m9e = mt~*(M*1 (mod n), where tis some
integer ®>mteM -m1= (MmeM)t-m!' = m (mod n)

07/04/16 The RSA Cryptosystem 7

Example with artificially small

numbers
Key generation Encryption
= letp=47eq=71 Let m = 9666683
n=pxq=3337 Divide m into blocks m; < n
= (p-1) x (g-1)=46 x 70=3220 m, = 966; m, = 668; m; = 3
= Lete=79 Compute
ed =1 mod @ ¢, = 9667° mod 3337 = 2276
79 x d =1 mod 3220 ¢, = 6687° mod 3337 = 2423
d=1019 c; = 3 mod 3337 = 158
C = C,C,C3 = 2276 2423 158
Decryption

m, = 2276191 mod 3337 = 966
m, = 24231019 mod 3337 = 668
m, = 1581019 mod 3337 = 3

m = 966 668 3

07/04/16 The RSA Cryptosystem 8

RSA

¥ RSA algorithms for key generation, encryption
and decryption are OeasyO

¥ They involve the following operations
b Discrete exponentiation
b Generation of large primes (see next slide)
b Solving diophantine equations

07/04/16

How to find a large prime

The RSA Cryptosystem

repeat
p! randomOdd(x);
until isPrime(p);

= FACT. On average (In x)/2 odd numbers

must be tested before a prime p < x can be

found

Primality tests do not try to factor the number under test

* probabilistic primality test (Solovay-Strassen, Miller-Rabin)

polynomial in log n

« true primality test (O(n'?) in 2002))

07/04/16

The RSA Cryptosystem

10

On computing the private
exponent d

¥ Solution of d - e 1 mod ¢(n) with gcd(e, ¢@(n))
= 1 can be done by means of the Extended
Euclidean Algorithm (EEA)
b Exponent d can be computed efficiently (polytime)
b Condition gcd(e, ¢(n)) = 1

Modular ops - complexity

UNIVERSITA DI PISA

Bit complexity of basic operations in Z,
¥ Let n be on k bits (n < 2¥)

¥ Letaand b be two integers in Z, (on k-bits)
D Addition a + b can be done in time O(k)
D Subtraction a - b can be can be done in time O(k)
P Multiplication a x b can be done in O(k?)
P Division a=q x b + r can be done in time O(k?)
Plnverse a' can be done in O(k?)
P Modular exponentiation a can be done in O(k?)

How to encrypt/decrypt e
efficiently

¥ RSA requires modular exponentiation ¢ mod n
D Let n have k bits in its binary representation, k= log n + 1

¥ Grade-school algorithm requires (d-1) modular
multiplications
D dis as large as n which is exponentially large with respect to k
D The grade-school algorithm is inefficient

¥ Square-and-multiply algorithm requires up to 2k
multiplications thus the algorithm can be done in O(k3)

How to encrypt/decrypt
efficiently

¥ RSA requires modular exponentiation ax mod n
b Let n have k bits in its binary representation, k =
logn+1
¥ Grade-school algorithm requires (x-1) modular
multiplications

b If x is as large as n, which is exponentially large
with respect to k =» the grade-school algorithm is
inefficient

¥ Square-and-multiply algorithm requires up to
2k multiplications thus the algorithm can be
done in O(k3)

How to encrypt and decrypt

efficiently

UNIVERSITA DI PISA

Exponentiation by repeated squaring and multiplication: m® mod n requires
at most log,(e) multiplications and log,(e) squares

Let €15 €4.0) -y €95 €4, €, Where k =log, e, the binary representation of e

e, 2 tve,, , 224 +e 22+e 2+e "
memodn:m(e = °)modn

2k!1 zk! 2

me®? " m%22"" 1 m%* m*%?m®modn "

2k!3

| 2
(mek!lzk'zme“2 ! meZZmel) m® modn "

2
k13 ki4 2
gmemlz mek!22 [mez) mgf‘ meo mOdn "
2 2 &
0/## €11)2 €xi2 &) & & €

07/04/16 The RSA Cryptosystem

Square and multiply

c! 1
for (i=k-1;1>=0;i--){
c! ¢2mod n;
i (6, == 1)
c! ¢" mmodn;
}

+ always k square operations

+ at most k modular multiplications
(equal to the number of 1 in the
binary representation of e)

15

UNIVERSITA DI PISA

Exponentiation by repeated squaring and multiplication: @ mod n requires
at most log,(x) multiplications and log,(x) squares

Let X;.15 Xp.s -5 Xo5 Xq5 Xo, Where k = log, x, the binary representation of x

k!l k! 2 2
+ + o+ + +
(xk!12 Xk!22 ! X22 X12 XO)

a*modn=a modn "

axkllzk!laxk! ,242 | a><222ax12a><0 modn "

!

x,, 2K'2 x _ok'S X,2_ X 2 X, "
a a2 1 g2 a™®modn

2
H ki3 ki4 2 & N
a® a%:® 1 a®| a% a“modn

a modn

i ;2 &
%#(axk!l) axk!ZlgL! axz(axl

?

c! 1
for (i=k-1;i>=0;i--){
c! ¢2modn;
if (x;== 1)
c! c¢" amodn;
}

¥ always k square operations

¥ at most k modular multiplications
(equal to the number of 1 in the
binary representation of e)

16

Fast encryption with short
public exponent

¥ RSA ops with public key exponent e can be speeded-up
b Encryption
b Digital signature verification

¥ The public key e can be chosen to be a very small value

Pe=3 #MUL + #SQ = 2
pe=17 #MUL + #SQ =5
P e=216+]1 #MUL + #SQ = 17

P RSA is still secure

¥ There is no easy way to accelerate RSA when the
private exponent d is involved
b Lend=lenn

RSA one-way function

¥ One-way function y = f(x)
by =1(x) is easy
b x = fi(y) is hard

¥ RSA one-way function

b Multiplication is easy
b Factoring is hard

Security of RSA

The RSA Problem (RSAP)

¥ DEFINITION. The RSA Problem (RSAP):
recovering plaintext m from ciphertext c, given the
public key (n, e)

RSA VS FACTORING

¥ FACT. RSAP <, FACTORING
b FACTORING is at least as difficult as RSAP or,
equivalently, RSAP is not harder than FACTORING

b It is widely believed that RSAP and Factoring are
computationally equivalent, although no proof of
this is known.

Security of RSA

¥ THM (FACT 1). Computing the decryption
exponent d from the public key (n, e) is
computationally equivalent to factoring n
a. If the adversary could somehow factor n, then he

could subsequently compute the private key d
efficiently

b. If the adversary could somehow compute d, then it
could subsequently factor n efficiently

Security of RSA

UNIVERSITA DI PISA

RSAP and e-th root

¥ A possible way to decrypt ¢ = m® mod n is to
compute the modular e-th root of ¢

¥ THM (FACT 2). Computing the e-th root is a
computationally easy problem iff n is prime

¥ THM (FACT 3). If nis composite the problem
of computing the e-th root is equivalent to
factoring

07/04/16 The RSA Cryptosystem 21

Security of RSA

¥ THM (FACT 4). Knowing ¢ is computationally
equivalent to factoring

¥ PROOF.

1. Given p and q, s.t. n =pg, computing @ is
iImmediate.
2. Let ¢ be given.
a. From ¢ = (p-1)(g-1) = n B p+q) + 1, determine x; = (p
+0).
b. From (p D qf =(p + q)? D 4n = x? D 4n, determine X,
=(pba)
c. Finally, p = (x1 + x2)/2 and q = (x1 b x2)/2.

UNIVERSITA DI PISA

07/04/16 The RSA Cryptosystem 22

Security of RSA

UNIVERSITA DI PISA

¥ Exhaustive Private Key Search
¥ This attack could be more difficult than factoring d

¥ Key d is the same order of magnitude as n thus itis
much greater than p and g

Factoring

d 1342 L)
UNIVERSITA DI PISA

¥ Primality testing vs. factoring

b (FACT 5) Deciding whether an integer is composite or
prime seems to be, in general, much easier than the
factoring problem

¥ Factoring algorithms
b Brute force
b Special purpose
b General purpose
b Elliptic Curve

b Factoring on Quantum Computer (for the moment only
theorethical)

Factoring algorithms

UNIVERSITA DI PISA

¥ Brute Force
b Unfeasible if n large and p len = g len

¥ General purpose
D The running time depends solely on the size of n
¥ Quadratic sieve
¥ General number field sieve

¥ Special purpose
D The running time depends on certain properties
¥ Trial division
¥ Pollard's rho algorithm
¥ Pollard's p -1 algorithm

¥ Elliptic curve algorithm

Factoring: running times Lo

UNIVERSITA DI PISA

Trial division: O (vn)

Quadratic sieve: O(e('”(”)*A”'”(“)))

g .923#13/In(n)¥(lnIn(n))2"(%l
General number field sieve: O$eEl ¢
& 1

RSA In practice

Selecting primes p and q

b p and q should be selected so that factoring
n = pq is computationally infeasible, therefore

B p and q should be sufficiently large and
about the same bitlenght (to avoid the elliptic
curve factoring algorithm)

D p - g should be not too small

07/04/16 The RSA Cryptosystem 27

¥ If n;, n, edn, are pairwise coprime,
(n,, 3) use CRT to find x #m® modn;n,n,
¥ As m< n, by RSA encryption
definitionthenm? < n,n,n,, thenx =
m?
" x! ¢ modn (n, 3) ¥ Thus an eave_sdropper recoverpy
gx | ¢, modn, computing thenteger cube rooof x
' (non modular!)
ﬁ}a(I ¢;modn,

07/04/16 The RSA Cryptosystem 28

¢; = m* mod n;

RSA In practice - padding

UNIVERSITA DI PISA

¥ We have described schoolbook/plain RSA

¥ Plain RSA implementation may be insecure
b RSA is deterministic
D PT values x =0, x = 1 produce CT equal to 0 and 1
b Small PT might be subject to attacks
b RSA is malleable

¥ Never use plain RSA

¥ Padding is a possible solution

b Optimal Asymmetric Encryption Padding (OAEP) in
Public Key Cryptography Standard #1 (PKCS #1)

RSA is malleable

UNIVERSITA DI PISA

¥ RSA malleability is based on the homo-morphic
property of RSA

¥ Attack

b The attacker replaces CT = y mod n by
CTO =s°y mod n, with s some integer s.t. gcd(s, n) = 1

P The receiver decrypts CTO: eey)d = sedexed = sex mod n

b By operating on the CT the adversary manages to multiply
PT by s

b EX. Let x be an amount of money. If s = 2 then the
adversary doubles the amount

b Possible solution: introduce redundancy: ex. x || x

RSA — Homomorphic property

¥ Let m; and m, two plaintext messages
¥ Let ¢, and c, their respective encryptions
¥ Observe that

(mm,)" ! m*m,S! cc,(modn)

= In other words, the CT of the product m;m, is the
product of CTs c¢,c, mod n

RSA In practice - PKCS #1

¥ Parameters
B M = message
D | M | = message len in bytes
D k =| n | modulus len in bytes
b | H | = hash function output len in bytes
P L = optional label (OO by default)

RSA Iin practice - PKCS #1

L3132
UNIVERSITA DI PISA

¥ Padding

1. Generate astring PS=00...0; PSlen=kb |[M|-2|H| -2
(PS len may be zero)

2.! DB=Hash(L) || PS || Ox01 || M

3.!' seed =random(); seedlen=|H |

4.! dbMask = MGF (seed, k-|H|-1)®

5.! maskedDB = DB xor dbMask

6.! seedMask = MGF(maskedDB, | H |)

7.! maskedSeed = seed xor seedMask

8.! EM =0x00 || maskedSeed || maskedDB ()

) MGF mask generation function (e.g., SHA-1)
(") EM is the padded message

07/04/16 The RSA Cryptosystem 33

Common modulus attack

UNIVERSITA DI PISA

)

L
)
)

The server uses a ;
common modulus ===
n for all key pairs

(n, ey) (n, e,) (n,) (n, e,) (n, ex)

¥ Mr Lou Cipher can efficiently factor n
from dg (FACT 1) and then

¥ compute all d's
07/04/16 The RSA Cryptosystem 34

AuctioneerOs public key = (n, e)

-

The adversary encrypts all possible bids (e.g, 232) until he finds
a b such that E(e, b) =c

Thus, the adversary sends a bid containing the minimal offer to
win the auction: bO =b+ 1

G%

»
»
»
»

Salting is a solution: r — random(); c—E(e, r || bid)

07/04/16 The RSA Cryptosystem 35

An adaptive chosen-ciphertext
attack

» Bob decrypts ciphertext except a given
ciphertext ¢

= Mr Lou Cipher wants to determine the
ciphertext corresponding to ¢

¥ Mr Lou Cipher selects x at random, s.t. gcd(x, n) =1, and
sends Bob the quantity ¢ =c¥modr

¥ Bob decrypts it, producing m=(c)’ = ¢ ¥* = m{mod 7

¥ Mr Lou Cipher determine m by computing m= mx*mod r

The attack can be contrasted by imposing structural constraints on m

07/04/16 The RSA Cryptosystem 36

