
The RSA cryptosystem

Public Key Encryption

RSA in a nutshell

¥  Rivest-Shamir-Adleman, 1978
Ð  Rivest, R.; Shamir, A.; Adleman, L. (February 1978). "

A Method for Obtaining Digital Signatures and Public-Key
Cryptosystems,Ó Communications of the ACM 21 (2): 120Ð126. doi:
10.1145/359340.359342.

¥  The most widely used asymmetric crypto-system

¥  Many applications
Ð  Encryption of small pieces (e.g. key transport)
Ð  Digital Signatures

¥  Underlying one-way function: integer
factorization problem

07/04/16 The RSA Cryptosystem 2

RSA key generation

1.  Generate two large, distinct primes p, q (100÷200 decimal digits)
2.  Compute n = p × q and φ(n) = (p-1)×(q-1)
3.  Select a random number 1 < e < φ(n) such that gcd(e, φ(n)) = 1
4.  Compute the unique integer 1 < d < φ such that ed ≡1 (mod φ)
5.  (d, n) is the private key
6.  (e, n) is the public key

At the end of key generation, p and q must be destroyed

The RSA Cryptosystem 3 07/04/16

RSA encryption and decryption

Encryption. To generate c from m, Bob should do the following
1.  Obtain A's authentic public key (n, e)
2.  Represent the message as an integer m in the interval

[0, n-1]
3.  Compute c = me mod n
4.  Send c to A

Decryption. To recover m from c, Alice should do the following
1.  Use the private key d to recover m = cd mod n

The RSA Cryptosystem 4 07/04/16

RSA consistency

¥  We have to prove that D(d(E(e, m)) = m, i.e.,
cd ≡ m (mod n)

¥  The proof may be based on either the Fermat’s
little theorem or the Eulero’s theorem

07/04/16 The RSA Cryptosystem 5

RSA consistency
Proof based on FermatÕs little theorem

¥  Fermat’s little theorem
Ð  If p is prime and gcd(p, a) = 1, then ap-1 = 1 (mod p)

¥  Proof
Ð  Since ed = 1 mod φ then ed = 1 + t (p Ð 1)(q Ð 1)

Ð  Check whether x = y mod (pq) is equivalent to check
whether x = y (mod p) � x = y (mod q)

Ð  med = m (mod p)
¥  m = 0 (mod p), so m is a multiple of p so med = 0 = m (mod p)

¥  m ≠ 0 (mod p), med = m mt(p Ð 1)(q Ð 1) = m (m(p Ð 1))t(q Ð 1) = m
(1)t(q Ð 1) = m (mod p)

Ð  Proof for q proceeds in a similar way

The RSA Cryptosystem 6 07/04/16

RSA consistency
Proof based on EuleroÕs theorem

¥  Eulero’s theorem

Ð  �integer n > 1, �a � Zn
*, aφ(n) � 1 (mod n) where

Zn
* = { x | 1 < x < n, gcd(x, n) = 1}

¥  Proof

Ð  We have to prove that D(d(E(e, m)) = m, i.e.,
cd ≡ mde ≡ mt!φ(n)+1 (mod n), where t is some

integer �mt·φ(n) ·m1 ≡ (mφ(n))t ·m1 ≡ m (mod n)

The RSA Cryptosystem 7 07/04/16

Example with artificially small
numbers

The RSA Cryptosystem 8

Key generation
!  Let p = 47 e q = 71

 n = p × q = 3337
 φ= (p-1) × (q-1)= 46 × 70 = 3220

!  Let e = 79
 ed = 1 mod φ
 79 × d = 1 mod 3220
 d = 1019

Encryption
Let m = 9666683
Divide m into blocks mi < n
m1 = 966; m2 = 668; m3 = 3
Compute
c1 = 96679 mod 3337 = 2276
c2 = 66879 mod 3337 = 2423
c3 = 379 mod 3337 = 158
c = c1c2c3 = 2276 2423 158

Decryption
m1 = 22761019 mod 3337 = 966
m2 = 24231019 mod 3337 = 668
m3 = 1581019 mod 3337 = 3
m = 966 668 3

07/04/16

RSA

¥  RSA algorithms for key generation, encryption
and decryption are ÒeasyÓ

¥  They involve the following operations
Ð  Discrete exponentiation

Ð  Generation of large primes (see next slide)
Ð  Solving diophantine equations

07/04/16 The RSA Cryptosystem 9

How to find a large prime

07/04/16 The RSA Cryptosystem 10

repeat
 p ! randomOdd(x);

until isPrime(p);

! Primality tests do not try to factor the number under test
•  probabilistic primality test (Solovay-Strassen, Miller-Rabin)

polynomial in log n
•  true primality test (O(n12) in 2002))

!  FACT. On average (ln x)/2 odd numbers
must be tested before a prime p < x can be
found

On computing the private
exponent d
¥  Solution of d · e ≡ 1 mod φ(n) with gcd(e, φ(n))
≡ 1 can be done by means of the Extended
Euclidean Algorithm (EEA)
Ð  Exponent d can be computed efficiently (polytime)

Ð  Condition gcd(e, φ(n)) ≡ 1

07/04/16 The RSA Cryptosystem 11

Modular ops - complexity

Bit complexity of basic operations in Zn

¥  Let n be on k bits (n < 2k)
¥  Let a and b be two integers in Zn (on k-bits)

Ð Addition a + b can be done in time O(k)
Ð Subtraction a – b can be can be done in time O(k)
Ð Multiplication a × b can be done in O(k2)
Ð Division a = q × b + r can be done in time O(k2)
Ð  Inverse a-1 can be done in O(k2)
Ð Modular exponentiation ak can be done in O(k3)

07/04/16 The RSA Cryptosystem 12

How to encrypt/decrypt
efficiently
¥  RSA requires modular exponentiation cd mod n

Ð  Let n have k bits in its binary representation, k = log n + 1

¥  Grade-school algorithm requires (d-1) modular
multiplications

Ð  d is as large as n which is exponentially large with respect to k
Ð  The grade-school algorithm is inefficient

¥  Square-and-multiply algorithm requires up to 2k
multiplications thus the algorithm can be done in O(k3)

07/04/16 The RSA Cryptosystem 13

How to encrypt/decrypt
efficiently
¥  RSA requires modular exponentiation ax mod n

Ð  Let n have k bits in its binary representation, k =
log n + 1

¥  Grade-school algorithm requires (x-1) modular
multiplications

Ð  If x is as large as n, which is exponentially large
with respect to k " the grade-school algorithm is
inefficient

¥  Square-and-multiply algorithm requires up to
2k multiplications thus the algorithm can be
done in O(k3)

07/04/16 The RSA Cryptosystem 14

How to encrypt and decrypt
efficiently

07/04/16 The RSA Cryptosystem 15

Exponentiation by repeated squaring and multiplication: me mod n requires
at most log2(e) multiplications and log2(e) squares
Let ek-1, ek-2, …, e2, e1, e0, where k = log2 e, the binary representation of e

me modn = m
ek! 12k ! 1+ek! 2 2k ! 2+! +e2 22+e12+e0() modn "

mek! 12k ! 1

mek! 2 2k ! 2

! me2 22

me12me0 modn "

mek! 12k ! 2

mek! 2 2k ! 3

! me2 2me1()2

me0 modn "

mek! 12k ! 3

mek! 2 2k ! 4

! me2()2me1#
$%

&
'(

2

me0 modn "

mek ! 1()2mek ! 2#
$%

&
'(
2

!me2
#

$
%

&

'
(

2

me1

#

$
%
%

&

'
(
(

2

me0 modn

c ! 1
for (i = k-1; i >= 0; i --) {

 c ! c2 mod n;
 if (ei == 1)
 c ! c " m mod n;

}
•  always k square operations

•  at most k modular multiplications
(equal to the number of 1 in the
binary representation of e)

Square and multiply

07/04/16 The RSA Cryptosystem 16

Exponentiation by repeated squaring and multiplication: ax mod n requires
at most log2(x) multiplications and log2(x) squares
Let xk-1, xk-2, …, x2, x1, x0, where k = log2 x, the binary representation of x

ax modn = a
xk! 12k! 1+xk! 2 2k! 2+! +x2 22+x12+x0() modn "

axk! 12k! 1

axk! 2 2k! 2

! ax2 22

ax12ax0 modn "

axk! 12k! 2

axk! 2 2k! 3

! ax2 2ax1()2

ax0 modn "

axk! 12k! 3

axk! 2 2k! 4

! ax2()2

ax1
#
$%

&
'(

2

ax0 modn "

...

axk! 1()2

axk! 2#
$

&
'

2

! ax2
#

$
%

&

'
(

2

ax1

#

$
%
%

&

'
(
(

2

ax0 modn

c ! 1
for (i = k-1; i >= 0; i --) {

 c ! c2 mod n;
 if (xi == 1)
 c ! c " a mod n;

}
¥  always k square operations

¥  at most k modular multiplications
(equal to the number of 1 in the
binary representation of e)

Fast encryption with short
public exponent
¥  RSA ops with public key exponent e can be speeded-up

Ð  Encryption
Ð  Digital signature verification

¥  The public key e can be chosen to be a very small value
Ð  e = 3 #MUL + #SQ = 2
Ð  e = 17 #MUL + #SQ = 5
Ð  e = 216+1 #MUL + #SQ = 17
Ð  RSA is still secure

¥  There is no easy way to accelerate RSA when the
private exponent d is involved
Ð  Len d = len n

07/04/16 The RSA Cryptosystem 17

RSA one-way function

¥  One-way function y = f(x)
Ð  y = f(x) is easy

Ð  x = f-1(y) is hard

¥  RSA one-way function
Ð  Multiplication is easy
Ð  Factoring is hard

07/04/16 The RSA Cryptosystem 18

Security of RSA

The RSA Problem (RSAP)
¥  DEFINITION. The RSA Problem (RSAP):

recovering plaintext m from ciphertext c, given the
public key (n, e)

RSA VS FACTORING
¥  FACT. RSAP ≤P FACTORING

Ð  FACTORING is at least as difficult as RSAP or,
equivalently, RSAP is not harder than FACTORING

Ð  It is widely believed that RSAP and Factoring are
computationally equivalent, although no proof of
this is known.

07/04/16 The RSA Cryptosystem 19

Security of RSA

¥  THM (FACT 1). Computing the decryption
exponent d from the public key (n, e) is
computationally equivalent to factoring n
a.  If the adversary could somehow factor n, then he

could subsequently compute the private key d
efficiently

b.  If the adversary could somehow compute d, then it
could subsequently factor n efficiently

07/04/16 The RSA Cryptosystem 20

Security of RSA

RSAP and e-th root
¥  A possible way to decrypt c = me mod n is to

compute the modular e-th root of c

¥  THM (FACT 2). Computing the e-th root is a
computationally easy problem iff n is prime

¥  THM (FACT 3). If n is composite the problem
of computing the e-th root is equivalent to
factoring

07/04/16 The RSA Cryptosystem 21

Security of RSA

¥  THM (FACT 4). Knowing φ is computationally
equivalent to factoring

¥  PROOF.
1.  Given p and q, s.t. n =pq, computing φ is

immediate.
2.  Let φ be given.

a.  From φ = (p-1)(q-1) = n Ð (p+q) + 1, determine x1 = (p
+q).

b.  From (p Ð q)2 = (p + q)2 Ð 4n = x1
2 Ð 4n, determine x2

= (p Ð q).
c.  Finally, p = (x1 + x2)/2 and q = (x1 Ð x2)/2.

07/04/16 The RSA Cryptosystem 22

Security of RSA

¥  Exhaustive Private Key Search

¥  This attack could be more difficult than factoring d

¥  Key d is the same order of magnitude as n thus it is

much greater than p and q

07/04/16 The RSA Cryptosystem 23

Factoring

¥  Primality testing vs. factoring
Ð  (FACT 5) Deciding whether an integer is composite or

prime seems to be, in general, much easier than the
factoring problem

¥  Factoring algorithms
Ð  Brute force
Ð  Special purpose
Ð  General purpose
Ð  Elliptic Curve
Ð  Factoring on Quantum Computer (for the moment only

theorethical)

07/04/16 The RSA Cryptosystem 24

The RSA Cryptosystem 25

Factoring algorithms

07/04/16

¥  Brute Force
Ð  Unfeasible if n large and p len = q len

¥  General purpose
Ð  The running time depends solely on the size of n

¥  Quadratic sieve
¥  General number field sieve

¥  Special purpose
Ð  The running time depends on certain properties

¥  Trial division
¥  Pollard's rho algorithm
¥  Pollard's p -1 algorithm

¥  Elliptic curve algorithm

The RSA Cryptosystem 26

Factoring: running times

Trial division: ()O n

Quadratic sieve:
() ()()()¥ln lnlnn n

O e

General number field sieve:
() ()()! "# ¥$ %

& '
! "
$ %
& '

231.923 ln lnlnn n
O e

07/04/16

RSA in practice

Selecting primes p and q

Ð p and q should be selected so that factoring
n = pq is computationally infeasible, therefore

Ð p and q should be sufficiently large and
about the same bitlenght (to avoid the elliptic
curve factoring algorithm)

Ð p - q should be not too small

07/04/16 The RSA Cryptosystem 27

RSA: low exponent attack

07/04/16 The RSA Cryptosystem 28

1 1

2 2

3 3

mod

mod

mod

x c n

x c n

x c n

!"
#

!$
!%

(n1, 3)

(n2, 3)

(n3, 3)

ci = m3 mod ni

c1

c2

c3

¥  If n1, n2 ed n3 are pairwise coprime,
use CRT to find x = m3 mod n1n2n3

¥  As m < ni by RSA encryption
definition then m3 < n1n2n3, then x =
m3

¥  Thus an eavesdropper recovers m by
computing the integer cube root of x
(non modular!)

RSA in practice - padding

¥  We have described schoolbook/plain RSA

¥  Plain RSA implementation may be insecure
Ð  RSA is deterministic
Ð  PT values x = 0, x = 1 produce CT equal to 0 and 1
Ð  Small PT might be subject to attacks
Ð  RSA is malleable

¥  Never use plain RSA
¥  Padding is a possible solution

Ð  Optimal Asymmetric Encryption Padding (OAEP) in
Public Key Cryptography Standard #1 (PKCS #1)

07/04/16 The RSA Cryptosystem 29

RSA is malleable

¥  RSA malleability is based on the homo-morphic
property of RSA

¥  Attack
Ð  The attacker replaces CT = y mod n by

CTÕ = se#y mod n, with s some integer s.t. gcd(s, n) = 1
Ð  The receiver decrypts CTÕ: (se#y)d = sed#xed = s#x mod n
Ð  By operating on the CT the adversary manages to multiply

PT by s
Ð  EX. Let x be an amount of money. If s = 2 then the

adversary doubles the amount
Ð  Possible solution: introduce redundancy: ex. x || x

07/04/16 The RSA Cryptosystem 30

RSA – Homomorphic property

07/04/16 The RSA Cryptosystem 31

¥  Let m1 and m2 two plaintext messages
¥  Let c1 and c2 their respective encryptions
¥  Observe that

() ()! !1 2 1 2 1 2 mode e em m m m c c n

!  In other words, the CT of the product m1m2 is the
product of CTs c1c2 mod n

RSA in practice - PKCS #1

¥  Parameters
Ð  M = message

Ð  | M | = message len in bytes
Ð  k = | n | modulus len in bytes

Ð  | H | = hash function output len in bytes
Ð  L = optional label (ÒÓ by default)

07/04/16 The RSA Cryptosystem 32

RSA in practice - PKCS #1

¥  Padding
1.  Generate a string PS = 00…0; PS len = k Ð | M | - 2 |H| - 2

(PS len may be zero)

2.! DB = Hash(L) || PS || 0x01 || M
3.! seed = random(); seed len = | H |
4.! dbMask = MGF (seed, k - | H | - 1) (*)
5.! maskedDB = DB xor dbMask
6.! seedMask = MGF(maskedDB, | H |)
7.! maskedSeed = seed xor seedMask
8.! EM = 0x00 || maskedSeed || maskedDB (**)

(*) MGF mask generation function (e.g., SHA-1)
(**) EM is the padded message

07/04/16 The RSA Cryptosystem 33

Common modulus attack

07/04/16 The RSA Cryptosystem 34

The server uses a
common modulus
n for all key pairs

(n, e1) (n, e5) (n, e2) (n, e3) (n, e4)

¥  Mr Lou Cipher can efficiently factor n
from d5 (FACT 1) and then

¥  compute all d’s

Chosen-plaintext attack

07/04/16 The RSA Cryptosystem 35

The adversary encrypts all possible bids (e.g, 232) until he finds
a b such that E(e, b) = c

Thus, the adversary sends a bid containing the minimal offer to
win the auction: bÕ = b + 1

Salting is a solution: r ← random(); c←E(e, r || bid)

A, c←E(e, bid) AuctioneerÕs public key = (n, e)

An adaptive chosen-ciphertext
attack

07/04/16 The RSA Cryptosystem 36

modec cx n=

!  Bob decrypts ciphertext except a given
ciphertext c

!  Mr Lou Cipher wants to determine the
ciphertext corresponding to c

¥  Mr Lou Cipher selects x at random, s.t. gcd(x, n) =1, and
sends Bob the quantity

c

¥  Bob decrypts it, producing () ()modd d edm c c x mx n= = =

¥  Mr Lou Cipher determine m by computing 1modm mx n!=

The attack can be contrasted by imposing structural constraints on m

