
The RSA cryptosystem 

Public Key Encryption 

RSA in a nutshell 

¥  Rivest-Shamir-Adleman, 1978 
Ð  Rivest, R.; Shamir, A.; Adleman, L. (February 1978). "

A Method for Obtaining Digital Signatures and Public-Key 
Cryptosystems,Ó Communications of the ACM 21 (2): 120Ð126. doi:
10.1145/359340.359342. 

¥  The most widely used asymmetric crypto-system 

¥  Many applications 
Ð  Encryption of small pieces (e.g. key transport) 
Ð  Digital Signatures 

¥  Underlying one-way function: integer 
factorization problem 
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RSA key generation 

 
1.  Generate two large, distinct primes p, q (100÷200 decimal digits) 
2.  Compute n = p × q and φ(n) = (p-1)×(q-1) 
3.  Select a random number 1 < e < φ(n) such that gcd(e, φ(n)) = 1 
4.  Compute the unique integer 1 < d < φ such that ed ≡1 (mod φ) 
5.  (d, n) is the private key 
6.  (e, n) is the public key 
 
At the end of key generation, p and q must be destroyed 
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RSA encryption and decryption 

Encryption. To generate c from m, Bob should do the following 
1.  Obtain A's authentic public key (n, e) 
2.  Represent the message as an integer m in the interval 

[0, n-1]  
3.  Compute c = me mod n 
4.  Send c to A 

Decryption. To recover m from c, Alice should do the following 
1.  Use the private key d to recover m = cd mod n 
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RSA consistency 

¥  We have to prove that D(d(E(e, m)) = m, i.e., 
cd ≡ m (mod n) 

¥  The proof may be based on either the Fermat’s 
little theorem or the Eulero’s theorem 
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RSA consistency 
Proof based on FermatÕs little theorem 

¥  Fermat’s little theorem 
Ð  If p is prime and gcd(p, a) = 1, then ap-1 = 1 (mod p) 

¥  Proof 
Ð  Since ed = 1 mod φ then ed = 1 + t (p Ð 1)(q Ð 1) 

Ð  Check whether x = y mod (pq) is equivalent to check 
whether x = y (mod p) � x = y (mod q) 

Ð  med = m (mod p) 
¥  m = 0 (mod p), so m is a multiple of p so med = 0 = m (mod p) 

¥  m ≠ 0 (mod p), med = m mt(p Ð 1)(q Ð 1) = m (m(p Ð 1))t(q Ð 1) =   m 
(1)t(q Ð 1) = m (mod p)  

Ð  Proof for q proceeds in a similar way 
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RSA consistency 
Proof based on EuleroÕs theorem 

¥  Eulero’s theorem 

Ð  �integer n > 1, �a � Zn
*, aφ(n) � 1 (mod n) where  

Zn
* = { x | 1 < x < n, gcd(x, n) = 1} 

¥  Proof  

Ð  We have to prove that D(d(E(e, m)) = m, i.e.,   
cd ≡ mde ≡ mt!φ(n)+1 (mod n), where t is some 

integer �mt·φ(n) ·m1 ≡ (mφ(n))t ·m1 ≡ m (mod n) 
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Example with artificially small 
numbers 
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Key generation 
!  Let p = 47 e q = 71 

 n = p × q = 3337 
 φ= (p-1) × (q-1)= 46 × 70 = 3220 

!  Let e = 79 
 ed = 1 mod φ  
 79 × d = 1 mod 3220  
 d = 1019 

Encryption 
Let m = 9666683 
Divide m into blocks mi < n 
m1 = 966; m2 = 668; m3 = 3 
Compute 
c1 = 96679 mod 3337 = 2276 
c2 = 66879 mod 3337 = 2423 
c3 = 379 mod 3337 = 158 
c = c1c2c3 = 2276 2423 158 

Decryption 
m1 = 22761019 mod 3337 = 966 
m2 = 24231019 mod 3337 = 668 
m3 = 1581019 mod 3337 = 3 
m = 966 668 3 
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RSA  

¥  RSA algorithms for key generation, encryption 
and decryption are ÒeasyÓ 

¥  They involve the following operations 
Ð  Discrete exponentiation 

Ð  Generation of large primes (see next slide) 
Ð  Solving diophantine equations 
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How to find a large prime 
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repeat 
 p !  randomOdd(x); 

until isPrime(p); 

! Primality tests do not try to factor the number under test 
•  probabilistic primality test (Solovay-Strassen, Miller-Rabin) 

polynomial in log n 
•  true primality test (O(n12) in 2002)) 

!  FACT. On average (ln x)/2 odd numbers 
must be tested before a prime p < x can be 
found 



On computing the private 
exponent d 
¥  Solution of d · e ≡ 1 mod φ(n) with gcd(e, φ(n)) 
≡ 1 can be done by means of the Extended 
Euclidean Algorithm (EEA)  
Ð  Exponent d can be computed efficiently (polytime) 

Ð  Condition gcd(e, φ(n)) ≡ 1   
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Modular ops - complexity 

Bit complexity of basic operations in Zn 

¥  Let n be on k bits (n < 2k) 
¥  Let a and b be two integers in Zn (on k-bits) 

Ð Addition a + b can be done in time O(k) 
Ð Subtraction a – b can be can be done in time O(k) 
Ð Multiplication a × b can be done in O(k2) 
Ð Division a = q × b + r can be done in time O(k2) 
Ð  Inverse a-1 can be done in O(k2) 
Ð Modular exponentiation ak can be done in O(k3) 
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How to encrypt/decrypt 
efficiently 
¥  RSA requires modular exponentiation cd mod n 

Ð  Let n have k bits in its binary representation, k = log n + 1 

¥  Grade-school algorithm requires (d-1) modular 
multiplications 

Ð  d is as large as n which is exponentially large with respect to k 
Ð  The grade-school algorithm is inefficient 

¥  Square-and-multiply algorithm requires up to 2k 
multiplications thus the algorithm can be done in O(k3) 
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How to encrypt/decrypt 
efficiently 
¥  RSA requires modular exponentiation ax mod n 

Ð  Let n have k bits in its binary representation, k = 
log n + 1 

¥  Grade-school algorithm requires (x-1) modular 
multiplications 

Ð  If x is as large as n, which is exponentially large 
with respect to k " the grade-school algorithm is 
inefficient 

¥  Square-and-multiply algorithm requires up to 
2k multiplications thus the algorithm can be 
done in O(k3) 
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How to encrypt and decrypt 
efficiently 
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Exponentiation by repeated squaring and multiplication: me mod n requires 
at most log2(e) multiplications and log2(e) squares 
Let ek-1, ek-2, …, e2, e1, e0, where k = log2 e,  the binary representation of e 

me modn = m
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c !  1 
for (i = k-1; i >= 0; i --) { 

  c !  c2 mod n; 
 if (ei == 1) 
   c !  c "  m mod n; 

} 
•  always k square operations 

•  at most k modular multiplications 
(equal to the number of 1 in the 
binary representation of e) 

Square and multiply 
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Exponentiation by repeated squaring and multiplication: ax mod n requires 
at most log2(x) multiplications and log2(x) squares 
Let xk-1, xk-2, …, x2, x1, x0, where k = log2 x,  the binary representation of x 

   

ax modn = a
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c !  1 
for (i = k-1; i >= 0; i --) { 

  c !  c2 mod n; 
 if (xi == 1) 
   c !  c "  a mod n; 

} 
¥  always k square operations 

¥  at most k modular multiplications 
(equal to the number of 1 in the 
binary representation of e) 



Fast encryption with short 
public exponent 
¥  RSA ops with public key exponent e can be speeded-up 

Ð  Encryption 
Ð  Digital signature verification 

¥  The public key e can be chosen to be a very small value 
Ð  e = 3   #MUL + #SQ = 2 
Ð  e = 17   #MUL + #SQ = 5 
Ð  e = 216+1  #MUL + #SQ = 17 
Ð  RSA is still secure 

¥  There is no easy way to accelerate RSA when the 
private exponent d is involved 
Ð  Len d = len n 
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RSA one-way function 

¥  One-way function y = f(x) 
Ð  y = f(x) is easy 

Ð  x = f-1(y) is hard 

¥  RSA one-way function 
Ð  Multiplication is easy 
Ð  Factoring is hard 
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Security of RSA 

The RSA Problem (RSAP) 
¥  DEFINITION. The RSA Problem (RSAP): 

recovering plaintext m from ciphertext c, given the 
public key (n, e) 

RSA VS FACTORING 
¥  FACT. RSAP ≤P FACTORING 

Ð  FACTORING is at least as difficult as RSAP or, 
equivalently, RSAP is not harder than FACTORING 

Ð  It is widely believed that RSAP and Factoring are 
computationally equivalent, although no proof of 
this is known. 
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Security of RSA 

¥  THM (FACT 1). Computing the decryption 
exponent d from the public key (n, e) is 
computationally equivalent to factoring n 
a.  If the adversary could somehow factor n, then he 

could subsequently compute the private key d 
efficiently 

b.  If the adversary could somehow compute d, then it 
could subsequently factor n efficiently 

07/04/16 The RSA Cryptosystem 20 



Security of RSA 

RSAP and e-th root 
¥  A possible way to decrypt c = me mod n is to 

compute the modular e-th root of c 

¥  THM (FACT 2). Computing the e-th root is a 
computationally easy problem iff n is prime 

¥  THM (FACT 3). If n is composite the problem 
of computing the e-th root is equivalent to 
factoring 
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Security of RSA 

¥  THM (FACT 4). Knowing φ is computationally 
equivalent to factoring 

¥  PROOF. 
1.  Given p and q, s.t. n =pq, computing φ is 

immediate. 
2.  Let φ be given.   

a.  From φ = (p-1)(q-1) = n Ð (p+q) + 1, determine x1 = (p
+q).  

b.  From (p Ð q)2 = (p + q)2 Ð 4n = x1
2 Ð 4n, determine x2 

= (p Ð q). 
c.  Finally, p = (x1 + x2)/2 and q = (x1 Ð x2)/2. 
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Security of RSA 

¥  Exhaustive Private Key Search 

¥  This attack could be more difficult than factoring d 

¥  Key d is the same order of magnitude as n thus it is 

much greater than p and q 

07/04/16 The RSA Cryptosystem 23 

Factoring 

¥  Primality testing vs. factoring 
Ð  (FACT 5) Deciding whether an integer is composite or 

prime seems to be, in general, much easier than the 
factoring problem 

¥  Factoring algorithms 
Ð  Brute force 
Ð  Special purpose 
Ð  General purpose 
Ð  Elliptic Curve 
Ð  Factoring on Quantum Computer (for the moment only 

theorethical) 
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Factoring algorithms 
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¥  Brute Force 
Ð  Unfeasible if n large and p len = q len 

¥  General purpose 
Ð  The running time depends solely on the size of n 

¥  Quadratic sieve 
¥  General number field sieve  

¥  Special purpose 
Ð  The running time depends on certain properties 

¥  Trial division 
¥  Pollard's rho algorithm 
¥  Pollard's p -1 algorithm 

¥  Elliptic curve algorithm 
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Factoring: running times 

Trial division: ( )O n

Quadratic sieve: 
( ) ( )( )( )¥ln lnlnn n

O e

General number field sieve: 
( ) ( )( )! "# ¥$ %

& '
! "
$ %
& '

231.923 ln lnlnn n
O e
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RSA in practice 

Selecting primes p and q 

Ð p and q should be selected so that factoring  
n = pq is computationally infeasible, therefore 

Ð p and q should be sufficiently large and 
about the same bitlenght (to avoid the elliptic 
curve factoring algorithm) 

Ð p - q should be not too small 
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RSA: low exponent attack 
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¥  If n1, n2 ed n3 are pairwise coprime, 
use CRT to find x = m3 mod n1n2n3 

¥  As m < ni by RSA encryption 
definition then m3 < n1n2n3, then x = 
m3 

¥  Thus an eavesdropper recovers m by 
computing the integer cube root of x 
(non modular!) 



RSA in practice - padding 

¥  We have described schoolbook/plain RSA 

¥  Plain RSA implementation may be insecure 
Ð  RSA is deterministic 
Ð  PT values x = 0, x = 1 produce CT equal to 0 and 1 
Ð  Small PT might be subject to attacks 
Ð  RSA is malleable 

¥  Never use plain RSA 
¥  Padding is a possible solution 

Ð  Optimal Asymmetric Encryption Padding (OAEP) in 
Public Key Cryptography Standard #1 (PKCS #1) 
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RSA is malleable 

¥  RSA malleability is based on the homo-morphic 
property of RSA 

¥  Attack 
Ð  The attacker replaces CT = y mod n by  

CTÕ = se#y mod n, with s some integer s.t. gcd(s, n) = 1 
Ð  The receiver decrypts CTÕ: (se#y)d = sed#xed = s#x mod n 
Ð  By operating on the CT the adversary manages to multiply 

PT by s 
Ð  EX. Let x be an amount of money. If s = 2 then the 

adversary doubles the amount 
Ð  Possible solution: introduce redundancy: ex. x || x 
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RSA – Homomorphic property  
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¥  Let m1 and m2 two plaintext messages 
¥  Let c1 and c2 their respective encryptions 
¥  Observe that 

( ) ( )! !1 2 1 2 1 2 mode e em m m m c c n

!  In other words, the CT of the product m1m2 is the 
product of CTs c1c2 mod n 

RSA in practice - PKCS #1 

¥  Parameters 
Ð  M = message 

Ð  | M | = message len in bytes 
Ð  k = | n | modulus len in bytes 

Ð  | H | = hash function output len in bytes 
Ð  L = optional label (ÒÓ by default) 
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RSA in practice - PKCS #1 

¥  Padding 
1.  Generate a string PS = 00…0; PS len = k Ð | M | - 2 |H|  - 2 

(PS len may be zero) 

2.! DB = Hash(L) || PS || 0x01  || M 
3.! seed = random(); seed len = | H | 
4.! dbMask  = MGF (seed, k - | H | - 1) (*) 
5.! maskedDB = DB xor dbMask 
6.! seedMask = MGF(maskedDB, | H |) 
7.! maskedSeed = seed xor seedMask 
8.! EM = 0x00  || maskedSeed || maskedDB (**) 

 

(*) MGF mask generation function (e.g., SHA-1) 
(**) EM is the padded message 
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Common modulus attack 
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The server uses a 
common modulus 
n for all key pairs 

(n, e1) (n, e5) (n, e2) (n, e3) (n, e4) 

¥  Mr Lou Cipher can efficiently factor n 
from d5 (FACT 1) and then 

¥  compute all d’s 



Chosen-plaintext attack 
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The adversary encrypts all possible bids (e.g, 232) until he finds 
a b such that E(e, b) = c 

Thus, the adversary sends a bid containing the minimal offer to 
win the auction: bÕ  = b + 1 

Salting is a solution: r ← random(); c←E(e, r || bid) 

A, c←E(e, bid) AuctioneerÕs public key = (n, e) 

An adaptive chosen-ciphertext 
attack 
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modec cx n=

!  Bob decrypts ciphertext except a given 
ciphertext c 

!  Mr Lou Cipher wants to determine the 
ciphertext corresponding to c  

¥  Mr Lou Cipher selects x at random, s.t. gcd(x, n) =1, and 
sends Bob the quantity 

c

¥  Bob decrypts it, producing ( ) ( )modd d edm c c x mx n= = =

¥  Mr Lou Cipher determine m by computing 1modm mx n!=

The attack can be contrasted by imposing structural constraints on m 


