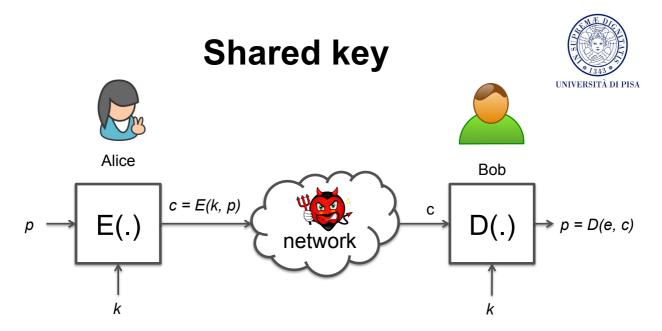


UNIVERSITÀ DI PISA UNIVERSITÀ DI P



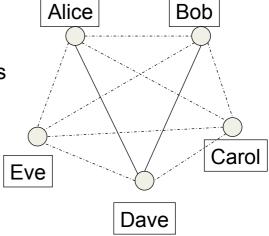
• k: shared secret key (128 bits)

Pairwise keys

Each pair of users shares an long-term secret

key

- Properties
 - Every user stores (n -1) keys
 - The overall number of keys is O(n²)



A.A. 2012-2013 Key management

Pairwise keys

Pros

- If a subject is compromised only its communications are compromised;
 - communications between two other subjects are not compromised
 - · We cannot do any better!

Cons

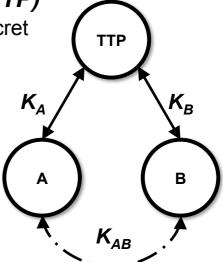
- Poor scalability: the number of keys is quadratic in the number of subjects
- Poor scalability: a new member's joining and a member's leaving affect all current members

Trusted Third Party

Online Trusted Third Party (TTP)

 Each user shares a long-term secret key with TTP

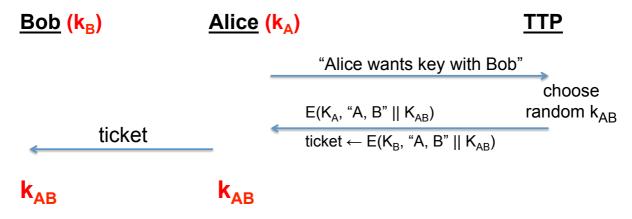
- Every user stores one key
- The overall number of keys is *n*
- TTP is a single point of failure
 - TTP must be always online
 - TTP knows all the keys
 - TTP can read all msg between Alice and Bob
 - TTP can impersonate any party



A.A. 2012-2013 Key management 5

Key distribution: a toy protocol

Alice wants a shared key with Bob. Eavesdropping security only



Subject to replay attacks

Key distribution: toy protocol

- Insecure against replay attacks (active adversary)
 - Attacker records session between Alice and merchant Bob
 - · For example: an order
 - Attacker replays session to Bob
 - · Bob thinks Alice is ordering another copy of the book

A.A. 2012-2013 Key management

TTP: to sum up

Pros

- It is easy to add and remove entities from the network
- Each entity needs to store only one long-term secret key

Cons

- TTP must be always online (availability)
- TTP must be efficient (performance)
- The TTP must store *n* long-term keys
- If the TTP is compromised, all communications are insecure (confidentiality and integrity)

Key question

- Can we generate shared keys without an online TTP?
- Answer: YES!
- Starting point of public-key cryptography
 - Merkle (1974)
 - Diffie-Hellman (1976)
 - RSA (1977)
 - More recently: ID-based encryption (2001), functional encryption (2011)...

A.A. 2012-2013 Key management 9

Key Management

DIFFIE-HELLMAN (1976)

Public key distribution system

 A public key distribution system allows two users to securely exchange a key over an insecure channel

A.A. 2012-2013 Key management 11

2nd most influential paper

 Whitfield Diffie and Martin Hellman, New directions in cryptography, IEEE Transactions of Information Theory, 22(6), pp. 644-654

Number theory

- · Multiplication is commutative
- $(a \times b) = (a \times b) \mod n$
- · Power of power is commutative
- $(a^b)^c = a^{bc} = a^{cb} = (a^c)^b \mod n$

A.A. 2012-2013 Key management 13

Number theory

Parameters

- Let p be prime
- Let $g \in (1, p)$ be a **generator (primitive root)**, i.e., $\forall 1 \le x < p$ (\mathbb{Z}_p), $\exists t \text{ s.t. } g^t \mod p = x$

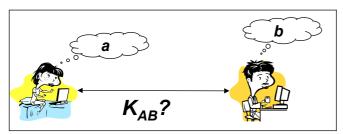
DISCRETE EXPONENTIATION

Given g, p and x, to compute y = g^x mod p is computationally easy

DISCRETE LOGARITHM

• Given g, $1 \le y \le p-1$, it is computationally difficult to determine x $(1 \le x \le p-1)$ s.t. $y = g^x \mod p$

Diffie-Hellman



- Let *p* be a large prime (600 digits, 2000 bits)
- Let 1≤ g < p
- Let p e g publicly known

Alice chooses a random number a Bob chooses a random number b

M1 A
$$\rightarrow$$
 B: A, $Y_A = g^a \mod p$
M2 B \rightarrow A: B, $Y_B = g^b \mod p$

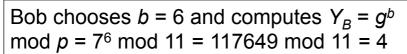
Alice computes $K_{AB} = (Y_B)^a \mod p = g^{ab} \mod p$ Bob computes $K_{AB} = (Y_A)^b \mod p = g^{ab} \mod p$

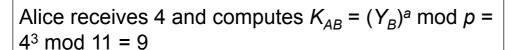
A.A. 2012-2013 Key management 15

Diffie-Hellman with small numbers

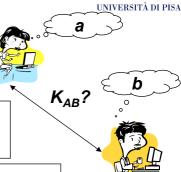
Let p = 11, g = 7

Alice chooses a = 3 and computes $Y_A = g^a \mod p = 7^3 \mod 11 = 343 \mod 11 = 2$





Bob receives 2 and computes $K_{AB} = (Y_A)^b \mod p = 2^6 \mod 11 = 9$



Security of Diffie-Hellman

- Eavesdropper sees p, g, Y_A and Y_B and wants to compute K_{AB}
- Diffie-Hellman Problem
 - Given p, g, $Y_A = g^a \pmod{p}$ and $Y_B = g^b \pmod{p}$, compute $g^{ab} \pmod{p}$
 - How hard is this problem?

A.A. 2012-2013 Key management 17

Security of Diffie-Hellman

- If logs (mod p) are easily computed then DH-Problem can be easily solved
- There is no proof of the converse, i.e., if logs (mod p) are difficult then DH is secure
- We don't see any way to compute K_{AB} from Y_A and Y_B without first obtaining either a or b

How hard is Diffie-Hellman Problem

- Let p be a prime, $p < 2^n$
 - All quantities are representable as *n*-bit numbers
- Exponentiation takes at most 2×log₂ p < 2n multiplications (mod p)
 - Linear in the exponent n
 - Exponent n may be very large
- Taking logs (mod p) requires $p^{1/2} = 2^{n/2}$ operations
- Example n = 512
 - Exponentiation requires at most 1024 multiplications
 - Taking logs mod p requires $2^{256} = 10^{77}$ operations

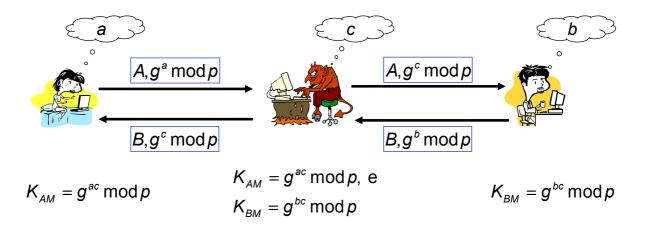
A.A. 2012-2013 Key management 19

How hard is Diffie-Hellman

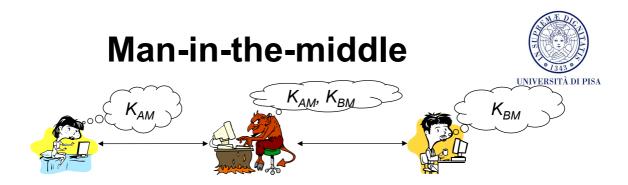
Cipher key	<u>modulus</u>	elliptic curve
size	size	size
80 bits	1024 bits	160 bits
128 bits	3072 bits	256 bits
256 bits (AES)	15360 bits	512 bits
	1	
	slow	

Slow transition from (mod p) to elliptic curves

Man-in-the-middle

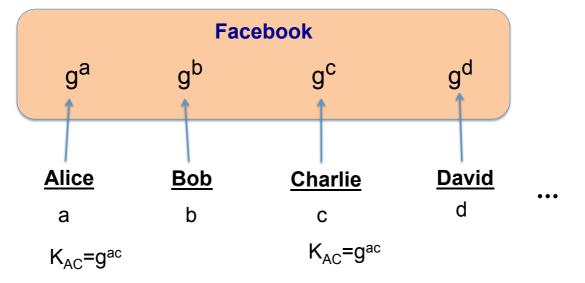


A.A. 2012-2013 Key management 21



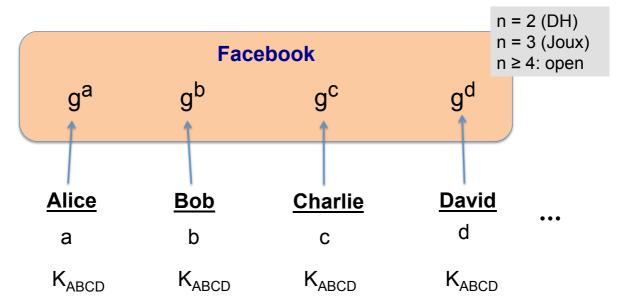
- Alice believes to communicate with Bob by means of K_{AM}
- Bob believes to communicate with Alice by means of K_{BM}
- The adversary can
 - read messages between Alice and Bob
 - impersonate Alice and Bob
- DH is insecure against an active attack

Diffie-Hellman is notinteractive



A.A. 2012-2013 Key management 23

Diffie-Hellman: an open problem



Key management

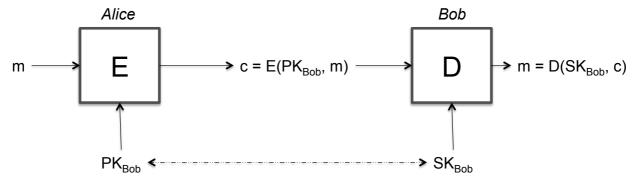
PUBLIC KEY ENCRYPTION

A.A. 2012-2013 Key management 25

The fundamental question

- Can we generate shared keys without an online TTP?
- PK encryption provides yet another answer to this question
 - DH is a public-key key distribution scheme
 - Public-key encryption is a more general encryption scheme

Public key encryption



PK: public key SK: secret key

A.A. 2012-2013 Key management 27

Public key encryption

- **DEF**. A public key encryption scheme is a triple of algs (G, E, D) s.t.
- G: randomized alg. for key generation (pk, sk)
- **E(pk, m)**: randomized alg. that takes m ∈ M and outputs c∈ C
- D(sk, m) deterministic alg. that takes c ∈ C and outputs m ∈ M or ⊥
- **Consistency**. ∀(pk, sk), ∀ m ∈ M, D(sk, E(pk, m)) = m

Security

- Known pk ∈ K and c ∈ C, it is computationally infeasible to find the message m ∈ M such that E(e, m) = c
- Known the public key pk

 K, it is
 computationally infeasible to determine the
 corresponding secret key sk

 K
- Constructions generally rely on hard problems form number theory and algebra

A.A. 2012-2013 Key management 29

A PK encryption is not perfect

- PK encryption scheme is not perfect according to Shannon
 - Adversary intercepts CT c
 - Adversary selects PT m s.t. Pr[M = m] ≠ 0
 - Adversary computes c' = E(pk, m)
 - If $c \neq c'$, then $Pr[M = m \mid C = c] = 0$

PK encryption - basic protocol

<u>Alice</u> <u>Bob</u>

$$(pk, sk) \leftarrow G()$$

"Alice", pk

Msg x

Bob,
$$c \leftarrow E(pk, x)$$

$$x \leftarrow D(sk, c)$$

 $x \leftarrow D(sk, c)$

A.A. 2012-2013 Key management 31

Basic key transport protocol

<u>Alice</u> <u>Bob</u>

$$(pk, sk) \leftarrow G()$$
 "Alice", pk

choose random key $x \in \{0,1\}^{128}$

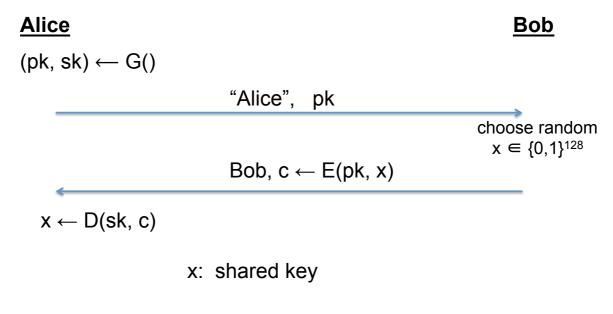
Bob,
$$c \leftarrow E(pk, x)$$

 $z \leftarrow AES(x, msg)$

 $msg \leftarrow AES(x, z)$

x: session key

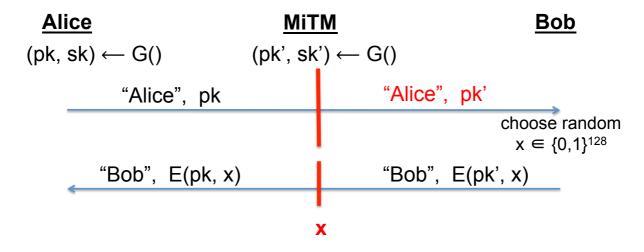
Establish a secret key



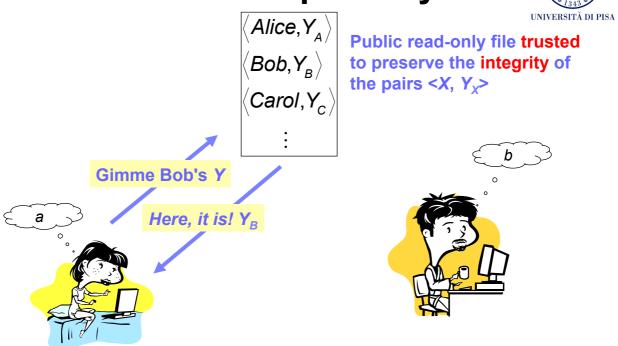
A.A. 2012-2013 Key management 33

Insecure against MITM

As described, the protocol is insecure against active attacks

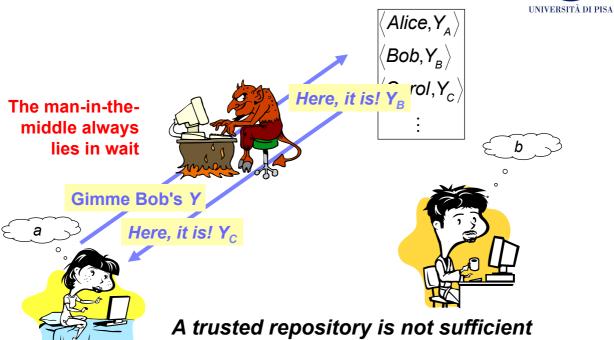


A trusted repository



A.A. 2012-2013 Key management 35

Diffie-Hellman protocol



A.A. 2012-2013 Key management 36

Key distribution with public encryption

UNIVERSITÀ DI PISA

Pros

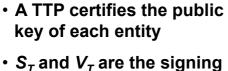
- No TTP is required
- The public file could reside with each entity
- Only n public keys need to be stored to allow secure communications between any pair of entities, assuming that the only attack is that by a passive adversary

Cons

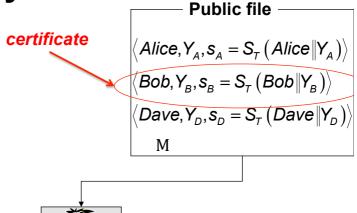
Key management becomes more difficult in the presence of an active adversary

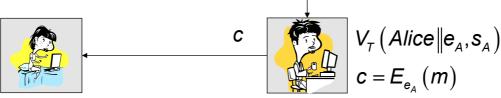
A.A. 2012-2013 Key management 37

Key distribution with public keys



• S_T and V_T are the signing and verification keys of the TTP



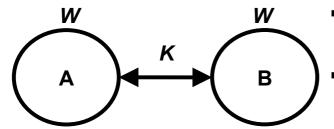


Key Management

ESTABLISHING EPHEMERAL KEYS

A.A. 2012-2013 Key management 39

Session/Ephemeral key



- A and B a priori share a long term key W
- A and B wants to establish a **session key K**
- Session key is used for bulk encryption
- A session key is used for one communication session
- Long term key is used for many runs of the key establishment protocols; in each run, the key encrypts a small amount of data

Establishing an ephemeral/ session key

one-pass

M1
$$A \rightarrow B$$
: $E(W,t_A || "B,A" || K)$

 t_A is a timestamp (a "fresh" quantity) requires synchronized clocks

with challenge-response

$$M1 \quad A \leftarrow B: \quad n_{_{B}}$$

$$M2 \quad A \rightarrow B: \quad E_{W}(W, n_{B} || "A, B" || K)$$

 n_B is a nonce (a "fresh" quantity)

both parties contribute to the session key

M1
$$A \leftarrow B$$
: n_{R}

M2
$$A \rightarrow B$$
: $E(W, K_A || n_B || n_A || "A, B")$

$$M3$$
 $A \leftarrow B$ $E(W, K_B || n_A || n_B || "B, A")$

- n_A and n_B are nonces
- K_A and K_B are keying materiale
- $K = K_A \oplus K_B$

41

A good design choice

- It is always a good design practice to assume that a
 - 1. session key is compromised and that
 - 2. the adversary holds it as well all the messages that lead to that key establishment (the protocol run)