
Collision Resistant Hash
functions and MACs

Integrity vs authentication

•  Message integrity is the property whereby data
has not been altered in an unauthorized manner
since the time it was created, transmitted, or
stored by an authorized source

•  Message origin authentication is a type of
authentication whereby a party is corroborated
as the (original) source of specified data created
at some time in the past

•  Data origin authentication includes data
integrity and vice versa

A.A. 2012-2013 SNCS - CRHF & MACs 2

Collision Resistant Hash
Functions
CRHF & MACs

Hash functions: informal
properties

•  Informal properties
–  "easy" to compute
–  "unique"
–  "difficult" to invert

•  The hash of a message can be used to
"uniquely" represent the message

A.A. 2012-2013 SNCS - CRHF & MACs 4

An example

A.A. 2012-2013 SNCS - CRHF & MACs 5

Nel mezzo del cammin di nostra vita
mi ritrovai per una selva oscura
che' la diritta via era smarrita.

Ahi quanto a dir qual era e` cosa dura
esta selva selvaggia e aspra e forte
che nel pensier rinova la paura!

MD5

d94f329333386d5abef6475313755e94

128 bit The hash size is fixed, generally
smaller than the message size

Protecting files using C.R.
hash

•  Software packages

•  When user downloads package, can verify that
contents are valid
–  H collision resistant �

 attacker cannot modify package without detection

•  no key needed (public verifiability), but requires
read-only space

A.A. 2012-2013 SNCS - CRHF & MACs 6

read-only
public space

H(F1)
H(F2)

H(Fn)

� F1

package name

F2

package name

Fn

package name

Properties: collisions

•  A hash function H: {0,1}* → {0,1}m

•  Properties:
–  Compression – H maps an input x of arbitrary finite

length into an output H(x) of fixed length m
–  Ease of computation – given x, h(x) must be “easy”

to compute

•  A hash function is many-to-one and thus implies
collisions
–  A collision for H is a pair x0, x1 s.t. H(x0) = H(m1) and

x0 ≠ x1

A.A. 2012-2013 SNCS - CRHF & MACs 7

Security properties
•  Preimage resistance (one-way) – for essentially all pre-

specified outputs, it is computationally infeasible to find
any input which hashes to that output
–  I.e., to find x such that y = h(x) given y for which x is not known

•  2nd-preimage resistance (weak collision resistance)
– it is computationally infeasible to find any second input
which has the same output as any specified input
–  i.e., given x, to find x' ≠ x such that h(x) = h(x')

•  Collision resistance (strong collision resistance) – it
is computationally infeasible to find any two distinct
inputs which hash to the same output,
–  i.e., find x, xʹ such that h(x) = h(x')

A.A. 2012-2013 SNCS - CRHF & MACs 8

Classification

•  A one-way hash function (OWHF) provides
preimage resistance, 2-nd preimage resistance
–  OWHF is also called weak one-way hash function

•  A collision resistant hash function (CRHF)
provides 2-nd preimage resistance, collision
resistance
–  CRHF is also called strong one-wayhash function

A.A. 2012-2013 SNCS - CRHF & MACs 9

Relationship between
security properties

•  Collision resistance implies 2-nd preimage
resistance

•  Collision resistance does not imply preimage
resistance
–  In practice, CRHF almost always has the additional

property of preimage resistance

A.A. 2012-2013 SNCS - CRHF & MACs 10

Attacking Hash Function

•  An attack is successful if it produces a
collision

•  Selective forgery: the adversary has complete,
or partial, control over x

•  Existential forgery: the adversary has no
control over x

A.A. 2012-2013 SNCS - CRHF & MACs 11

Black box attacks

•  Black box attacks
–  Consider H as a black box
–  Only consider the output bit length m;
–  H approximates a random variable

•  Specific BB attacks
–  Guessing attack: find a 2nd pre-image (O(2m))
–  Birthday attack: find a collision (O(2m/2))

•  These attacks constitute a security upper
bound

A.A. 2012-2013 SNCS - CRHF & MACs 12

Guessing attack

•  Objective: to find a 2nd pre-image
–  Given x0, find x1 ≠ x0 s.t. H(x0) = H(x1)

•  Complexity
–  Every step requires

•  1 random number
generation: efficient!

•  1 hash function
computation: efficient!

–  Constant and negligible data/storage complexity
–  Time complexity: 2m

A.A. 2012-2013 SNCS - CRHF & MACs 13

GuessingAttack(x0)
repeat

 x ← random(); // guessing
until h(x0) = h(x)
return x

Birthday attack

•  Algorithm
1.  Choose N = 2n/2 random input messages x1, x2, …,

xN (distinct w.h.p.)
2.  For i := 1 to N compute ti = H(xi)
3.  Look for a collision (ti = tj), i ≠ j. If not found, go to

step 1.

–  Running Time: 2n/2

–  Space: 2n/2

A.A. 2012-2013 SNCS - CRHF & MACs 14

Birthday paradox

•  Problem 1. In a room of 23 people, the
probability that at least a person is born on 25
December is 23/365 = 0.063

•  Problem 2. In a room of 23 people, the
probability that at least 2 people have the same
birthdate is 0.507

A.A. 2012-2013 SNCS - CRHF & MACs 15

Birthday paradox

•  Let r1, …, rn � {1,…,B} be independent and
identically distributed integers.

•  Theorem: when n = 1.2 × B1/2 then
 Pr[�i≠j: ri = rj] ≥ ½

A.A. 2012-2013 SNCS - CRHF & MACs 16

P(n)

A.A. 2012-2013 SNCS - CRHF & MACs 17

B = 106

#samples n

Sample hash functions

A.A. 2012-2013 SNCS - CRHF & MACs 18

Hash Function m Preimage Collision Speed
(Mb/sec)

MD5 128 2128 264

RIPEMD-128 128 2128 264

SHA-1, RIPEMD-160 160 2160 280 153

SHA-256 256 2128
 2128 111

SHA-512 512 2256 99

Use of CRHF

•  The purpose of a CRHF, in conjunction with
other mechanisms (authentic channel,
encryption, digital signature), is to provide
message integrity

A.A. 2012-2013 SNCS - CRHF & MACs 19

Integrity with CRHF

CRHF and an authentic channel

•  physically authentic channel

•  digital signature

A.A. 2012-2013 SNCS - CRHF & MACs 20

Integrity with CRHF

CRHF and encryption

•  E(e, x||H(x))
–  Confidentiality and integrity

–  As secure as E

•  x, E(e, H(x))
–  Sender has seen h(x)

•  E(e, x), H(x)
–  H(x) can be used to check a guessed x

A.A. 2012-2013 SNCS - CRHF & MACs 21

yes

no

no

How to build a CRHF

•  Goal: Build a CRHF
•  Approach: given a CRHF for short messages,

construct a CRHF for long messages
•  Solution: the Merkle-Damgard iterated

construction

A.A. 2012-2013 SNCS - CRHF & MACs 22

The Merkle-Damgard iterated
construction

A.A. 2012-2013 SNCS - CRHF & MACs 23

h h h

m[0] m[1] m[2] m[3] ll PB

h
IV

(fixed)
H(m)

H0 H1 H2 H3 H4

Given h: T × X ⟶ T (compression function)

we obtain H: X≤L ⟶ T . Hi - chaining variables

PB: padding block 1000…0 ll msg len

64 bits

If no space for PB
add another block

M-D collision resistance

•  Theorem. if h is collision resistant then so is H.
•  Proof: collision on H � collision on h

•  To construct a CRHF, it suffices to construct a
collision resistant compression function

A.A. 2012-2013 SNCS - CRHF & MACs 24

Compression function

•  Block cipher
•  Davies-Meyer compression function

–  Finding a collision h(H, m) = h(Hʹ,mʹ) requires 2n/2
evaluations of (E, D) � best possible!

A.A. 2012-2013 SNCS - CRHF & MACs 25

Crucial for security

Message Authentication
Code (MAC)

CRHF & MACS

MAC

SNCS - CRHF & MACs 27

MAC generation
t = S(e, p)

A.A. 2012-2013

e e

Alice and Bob share a secret key k

MAC verification
t’ = MAC(e, p)
if (t == t’)

return true;
else return false;

p, t p, t

MAC Generation S: M × K → T t ← S(k, p)

MAC Verification V: M � K � T → Boolean {true, false} ← V(p, k, t)

Secure MACs
•  Ease of computation

–  Given a function S, a key k and an input x, S(k, x) is easy
to compute

•  Compression
–  S maps an input x of arbitrary finite bitlength into an output

of fixed length m
•  Computation-resistance

–  For each key k, given zero o more (xi, ti) pairs, where ti =
S(e, xi) (chosen message attack)

it is computationally infeasible to compute (x, t), t = S(k,
x), for any new input x ≠ xi (including possible t = ti for
some i) (existential forgery)

A.A. 2012-2013 SNCS - CRHF & MACs 28

Secure MACs: facts
•  Attacker cannot produce a valid tag for any new

message
–  Given (m, t), attacker cannot even produce (m,t’) for t’ ≠

t

!  Computation resistance implies key non-recovery
(but not vice versa)

!  For an adversary not knowing k
•  S must be 2nd-preimage and collision resistant;
•  S must be preimage resistant w.r.t. a chosen-text attack;

!  Secure MAC definition says nothing about preimage
and 2nd-preimage for parties knowing k

A.A. 2012-2013 SNCS - CRHF & MACs 29

Combining MAC and ENC

•  PT message: m; transmitted message: m’;
encryption key: e; MAC key: a

•  Option 1 (SSL)
–  t = S(a, m); c = E(e, m || t), m’ = c

•  Option 2 (IpSec)
–  c = E(e, m); t = S(a, c); m’ = c || t

•  Option 3 (SSH)
–  c = E(e, m); t = S(a, m); m’ = c || t

A.A. 2012-2013 SNCS - CRHF & MACs 30

How to build a MAC

•  From a PRF
–  CBC-MAC
–  NMAC
–  PMAC

•  From a CRHF
–  HMAC

A.A. 2012-2013 SNCS - CRHF & MACs 31

MAC from PRF

•  THM. If F: K × X → Y is a secure PRF and
 1/|Y| is negligible, then
 F defines a secure MAC

•  | Y | must be large, say | Y | ≥ 280

•  AES is a MAC for 16-byte messages (small-
MAC)

•  How to convert a small-MAC into a large-MAC?
–  CBC-MAC (banking – ANSI X9.9, X9.19, FIPS 186-3)
–  HMAC (Internet protocols: SSL, IpSec, SSH)

A.A. 2012-2013 SNCS - CRHF & MACs 32

Truncating MAC based on
PRF

•  THM. Let F: K × X → {0,1}m is a secure PRF
 the so is Fw(k,m) = F(k, m)|[1..w] �1≤w≤m
–  If S is a MAC based on a PRF outputting m-bit tags

then the truncated MAC outputting w-bit, w≤m, is
secure… as long as 1/2w is still negligible (say w≥64)

A.A. 2012-2013 SNCS - CRHF & MACs 33

CBC-MAC construction

A.A. 2012-2013 SNCS - CRHF & MACs 34

raw CBC

F(k,.) F(k,.) F(k,.)

m[0] m[1] m[3] m[4]

� �

F(k,.)

�

F(k1,.)
tag

CBC-MAC takes
•  two independent keys K and K1
•  an arbitrary # of input blocks
•  PRF is a cipher

Without the last encryption, rawCBC would be insecure

Security bounds

•  How many msgs can I CBC-MAC using the
same key?
–  Let q = #msgs CBC-MAC-ed with the same key k
–  It can be proven that after q msgs, the probability P

that MAC becomes insecure is q2/|X|
•  AES: |X| = 2128 and P < 1/232 � q < 248 (GOOD!)
•  3DES: |X| = 264, P < 1/232 � q < 216 (BAD!)

A.A. 2012-2013 SNCS - CRHF & MACs 35

MAC Padding

•  Pad by zeroes � insecure
–  pad(m) and pad(m||0) have the same MAC

•  Padding must be an invertible function
–  m0 ≠ m1 � pad(m0) ≠ pad(m1)

•  Standard padding (ISO)
–  Append “100…00” as needed

•  Scan right to left
•  “1” determines the beginning of the pad

–  Add a dummy block if necessary
•  When the message is a multiple of the block
•  The dummy block is necessary or existential forgery arises

A.A. 2012-2013 SNCS - CRHF & MACs 36

CMAC

•  CMAC uses k1 and k2 derived from k
•  We don’t need the final encryption anymore

A.A. 2012-2013 SNCS - CRHF & MACs 37

F(k,.) F(k,.)

m[0]

�
m[1] m[w]

F(k,.)

�

�

tag

100

k1

F(k,.) F(k,.)

m[0]

�

m[1] m[w]

F(k,.)

�

�

tag

k2

HMAC

Can we use a CRHF to build a MAC?
•  S(k, m) = H(k||m) is insecure!

A.A. 2012-2013 SNCS - CRHF & MACs 38

HASH – insecure scheme

A.A. 2012-2013 SNCS - CRHF & MACs 39

h h

m[0] m[1] m[2] ll PB

h t > > > h

k

IV
(fixed)

>

•  Let (m, t), where t = S(k, m)
•  It is “easy” to build a pair (m’, t’), where t’ = S(k, m’)

•  Let m’ = m||PB||w, where w is a block, then
•  t’ = h(w, t) � existential forgery

HMAC

Standard
•  HMAC: S(k, m) = H(k�opad || H(k�ipad||p))

–  ipad and opad are fixed and predefined
–  Standard uses SHA-256 (PRF)
–  TLS: HMAC-SHA1-96

•  SHA1 is not collision resistant but HMAC needs only that the
compression function is a PRF

–  Security bounds.
Pr [after q MACs, HMAC becomes insecure] = q2/|T|

•  SHA-256: q << 2128 (GOOD!)

A.A. 2012-2013 SNCS - CRHF & MACs 40

HMAC – secure scheme

A.A. 2012-2013 SNCS - CRHF & MACs 41

h h

m[0] m[1] m[2] ll PB

h

h
tag

> > > h

k⨁ipad

IV
(fixed)

>

> IV
(fixed)

h
>

k⨁opad

Timing Attack

•  Example: Keyczar crypto library (Python)
[simplified]

 def Verify(key, msg, sig_bytes):
 return HMAC(key, msg) == sig_bytes

•  The problem: ‘==‘ implemented as a byte-by-
byte comparison

•  Comparator returns false when first inequality
found

A.A. 2012-2013 SNCS - CRHF & MACs 42

Timing attack

A.A. 2012-2013 SNCS - CRHF & MACs 43

Timing attack: to compute tag for target message do:
Step 1: Query server with random tag
Step 2: Loop over all possible first bytes and query server.

 stop when verification takes a little longer than in step 1
Step 3: repeat for all tag bytes until valid tag found

m , tag k
accept or reject

target
msg m

3 47 * * * *

Defense #1
Make string comparator always take same time
(Python) :

 return false if sig_bytes has wrong length
 result = 0
 for x, y in zip(HMAC(key,msg) , sig_bytes):

 result |= ord(x) ^ ord(y)
 return result == 0

Can be difficult to ensure due to optimizing
compiler

A.A. 2012-2013 SNCS - CRHF & MACs 44

Defense #2

Make string comparator always take same time
(Python) :

 def Verify(key, msg, sig_bytes):
 mac = HMAC(key, msg)
 return HMAC(key, mac) == HMAC(key,

sig_bytes)

Attacker doesn’t know values being compared!

A.A. 2012-2013 SNCS - CRHF & MACs 45

