
Collision Resistant Hash 
functions and MACs 

Integrity vs authentication 

•  Message integrity is the property whereby data 
has not been altered in an unauthorized manner 
since the time it was created, transmitted, or 
stored by an authorized source 

•  Message origin authentication is a type of 
authentication whereby a party is corroborated 
as the (original) source of specified data created 
at some time in the past 

•  Data origin authentication includes data 
integrity and vice versa 
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Collision Resistant Hash 
Functions 
CRHF & MACs 

Hash functions: informal 
properties 

•  Informal properties 
–  "easy" to compute 
–  "unique"  
–  "difficult" to invert 

•  The hash of a message can be used to 
"uniquely" represent the message 
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An example 
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Nel mezzo del cammin di nostra vita 
mi ritrovai per una selva oscura 
che' la diritta via era smarrita. 

Ahi quanto a dir qual era e` cosa dura 
esta selva selvaggia e aspra e forte 
che nel pensier rinova la paura! 

MD5 

d94f329333386d5abef6475313755e94 

128 bit The hash size is fixed, generally 
smaller than the message size 

Protecting files using C.R. 
hash 

•  Software packages 

•  When user downloads package, can verify that 
contents are valid 
–  H collision resistant   � 

         attacker cannot modify package without detection 

•  no key needed (public verifiability),   but requires 
read-only space 
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read-only 
public space 

H(F1) 
H(F2) 

H(Fn) 

� F1 

package name 

F2 

package name 

Fn 

package name 



Properties: collisions 

•  A hash function H: {0,1}* → {0,1}m 

•  Properties: 
–  Compression – H maps an input x of arbitrary finite 

length into an output H(x) of fixed length m 
–  Ease of computation – given x, h(x) must be “easy” 

to compute 

•  A hash function is many-to-one and thus implies 
collisions 
–  A collision for H is a pair x0, x1 s.t. H(x0) = H(m1) and 

x0 ≠ x1 
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Security properties 
•  Preimage resistance (one-way) – for essentially all pre-

specified outputs, it is computationally infeasible to find 
any input which hashes to that output 
–   I.e., to find x such that y = h(x) given y for which x is not known 

•  2nd-preimage resistance (weak collision resistance) 
– it is computationally infeasible to find any second input 
which has the same output as any specified input  
–  i.e., given x, to find x' ≠ x such that h(x) = h(x') 

•   Collision resistance (strong collision resistance) – it 
is computationally infeasible to find any two distinct 
inputs which hash to the same output,  
–  i.e., find x, xʹ such that h(x) = h(x') 
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Classification 

•  A one-way hash function (OWHF) provides 
preimage resistance, 2-nd preimage resistance 
–  OWHF is also called weak one-way hash function 

•  A  collision resistant hash function (CRHF) 
provides 2-nd preimage resistance, collision 
resistance 
–  CRHF is also called strong one-wayhash function 
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Relationship between 
security properties 

•  Collision resistance implies 2-nd preimage 
resistance 

•  Collision resistance does not imply preimage 
resistance 
–  In practice, CRHF almost always has the additional 

property of preimage resistance 
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Attacking Hash Function 

•  An attack is successful if it produces a 
collision 

•  Selective forgery: the adversary has complete, 
or partial, control over x 

•  Existential forgery: the adversary has no 
control over x 
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Black box attacks 

•  Black box attacks 
–  Consider H as a black box 
–  Only consider the output bit length m; 
–  H approximates a random variable 

•  Specific BB attacks 
–  Guessing attack: find a 2nd pre-image (O(2m)) 
–  Birthday attack: find a collision (O(2m/2)) 

•  These attacks constitute a security upper 
bound 

A.A. 2012-2013 SNCS - CRHF & MACs 12 



Guessing attack 

•  Objective: to find a 2nd pre-image 
–  Given x0, find x1 ≠ x0 s.t. H(x0) = H(x1) 

•  Complexity 
–  Every step requires 

•  1 random number  
generation: efficient! 

•  1 hash function  
computation: efficient! 

–  Constant and negligible data/storage complexity 
–  Time complexity: 2m  
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GuessingAttack(x0) 
repeat  

 x ← random(); // guessing 
until h(x0) = h(x) 
return x 

Birthday attack 

•  Algorithm 
1.  Choose N = 2n/2 random input messages x1, x2, …, 

xN (distinct w.h.p.) 
2.  For i := 1 to N compute ti = H(xi) 
3.  Look for a collision (ti = tj), i ≠ j. If not found, go to 

step 1.  

–  Running Time: 2n/2 

–  Space: 2n/2 
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Birthday paradox 

•  Problem 1. In a room of 23 people, the 
probability that at least a person is born on 25 
December is 23/365 = 0.063 

•  Problem 2. In a room of 23 people, the 
probability that at least 2 people have the same 
birthdate is 0.507 
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Birthday paradox 

•  Let   r1, …, rn � {1,…,B}   be independent and 
identically distributed integers.  

•  Theorem:   when  n = 1.2 × B1/2  then 
                   Pr[ �i≠j:   ri = rj ] ≥  ½  
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P(n) 
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B = 106 

#samples n 

Sample hash functions 
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Hash Function m Preimage Collision Speed  
(Mb/sec) 

MD5 128 2128 264 

RIPEMD-128 128 2128 264 

SHA-1, RIPEMD-160 160 2160 280 153  

SHA-256 256 2128 
 2128 111 

SHA-512 512 2256 99 



Use of CRHF 

•  The purpose of a CRHF, in conjunction with 
other mechanisms (authentic channel, 
encryption, digital signature), is to provide 
message integrity  
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Integrity with CRHF 

CRHF and an authentic channel 

•  physically authentic channel 

•  digital signature 
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Integrity with CRHF 

CRHF and encryption 

•  E(e, x||H(x)) 
–  Confidentiality and integrity 

–  As secure as E 

•  x, E(e, H(x)) 
–  Sender has seen h(x) 

•  E(e, x), H(x) 
–  H(x) can be used to check a guessed x 
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yes 

no 

no 

How to build a CRHF 

•  Goal: Build a CRHF 
•  Approach: given a CRHF for short messages, 

construct a CRHF for long messages 
•  Solution: the Merkle-Damgard iterated 

construction 
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The Merkle-Damgard iterated 
construction 
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h h h 

m[0] m[1] m[2] m[3]  ll   PB 

h 
IV 

(fixed) 
H(m) 

H0 H1 H2 H3 H4 

Given   h: T × X ⟶ T         (compression function) 

we obtain    H: X≤L ⟶ T .            Hi  -  chaining variables 

PB:    padding block  1000…0  ll  msg len 

64 bits 

If no space for PB  
add another block 

M-D collision resistance 

•  Theorem. if  h  is collision resistant then so is  H. 
•  Proof:    collision on H   �   collision on h 

•  To construct a CRHF, it suffices to construct a 
collision resistant compression function 
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Compression function 

•  Block cipher 
•  Davies-Meyer compression function 

–  Finding a collision h(H, m) = h(Hʹ,mʹ) requires 2n/2 
evaluations of (E, D) � best possible! 
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Crucial for security 

Message Authentication 
Code (MAC) 

CRHF & MACS 



MAC 
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MAC generation 
t = S(e, p) 

A.A. 2012-2013 

e e 

Alice and Bob share a secret key k 

MAC verification 
t’ = MAC(e, p) 
if (t == t’) 

return true; 
else return false; 

p, t p, t 

MAC Generation S: M × K → T   t ← S(k, p) 

MAC Verification V: M � K � T → Boolean   {true, false} ← V(p, k, t) 

Secure MACs 
•  Ease of computation 

–  Given a function S, a key k and an input x, S(k, x) is easy 
to compute 

•  Compression 
–  S maps an input x of arbitrary finite bitlength into an output 

of fixed length m 
•  Computation-resistance 

–  For each key k, given zero o more (xi, ti) pairs, where ti = 
S(e, xi) (chosen message attack) 
 
it is computationally infeasible to compute (x, t), t = S(k, 
x), for any new input x ≠ xi  (including possible t = ti for 
some i) (existential forgery) 
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Secure MACs: facts 
•  Attacker cannot produce a valid tag for any new 

message 
–  Given  (m, t), attacker cannot even produce (m,t’)  for   t’ ≠ 

t  

!  Computation resistance implies key non-recovery 
(but not vice versa) 

!  For an adversary not knowing k 
•  S must be 2nd-preimage and collision resistant; 
•  S must be preimage resistant w.r.t. a chosen-text attack; 

!  Secure MAC definition says nothing about preimage 
and 2nd-preimage for parties knowing k 
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Combining MAC and ENC 

•  PT message: m; transmitted message: m’; 
encryption key: e; MAC key: a 

•  Option 1 (SSL) 
–  t = S(a, m); c = E(e, m || t), m’ = c 

•  Option 2 (IpSec) 
–  c = E(e, m); t = S(a, c); m’ = c || t 

•  Option 3 (SSH) 
–  c = E(e, m); t = S(a, m); m’ = c || t 
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How to build a MAC 

•  From a PRF  
–  CBC-MAC 
–  NMAC 
–  PMAC 

•  From a CRHF 
–  HMAC 
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MAC from PRF 

•  THM. If F: K × X → Y is a secure PRF and 
          1/|Y| is negligible, then 
           F defines a secure MAC 

•  | Y | must be large, say | Y | ≥ 280 

•  AES is a MAC for 16-byte messages (small-
MAC) 

•  How to convert a small-MAC into a large-MAC? 
–  CBC-MAC (banking – ANSI X9.9, X9.19, FIPS 186-3) 
–  HMAC (Internet protocols: SSL, IpSec, SSH) 
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Truncating MAC based on 
PRF 

•  THM. Let F: K × X → {0,1}m is a secure PRF 
          the so is Fw(k,m) = F(k, m)|[1..w] �1≤w≤m 
–  If S is a MAC based on a PRF outputting m-bit tags 

then the truncated MAC outputting w-bit, w≤m, is 
secure… as long as 1/2w is still negligible (say w≥64) 
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CBC-MAC construction 
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raw CBC 

F(k,.) F(k,.) F(k,.) 

m[0] m[1] m[3] m[4] 

� � 

F(k,.) 

� 

F(k1,.) 
tag 

CBC-MAC takes 
•  two independent keys K and K1 
•  an arbitrary # of input blocks 
•  PRF is a cipher 

Without the last encryption, rawCBC would be insecure 



Security bounds 

•  How many msgs can I CBC-MAC using the 
same key? 
–  Let q = #msgs CBC-MAC-ed with the same key k 
–  It can be proven that after q msgs, the probability P 

that MAC becomes insecure is q2/|X| 
•  AES: |X| = 2128 and P < 1/232 � q < 248 (GOOD!) 
•  3DES: |X| = 264, P < 1/232 � q < 216 (BAD!) 
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MAC Padding 

•  Pad by zeroes � insecure 
–  pad(m) and pad(m||0) have the same MAC 

•  Padding must be an invertible function 
–  m0 ≠ m1 � pad(m0) ≠ pad(m1) 

•  Standard padding (ISO) 
–  Append “100…00” as needed 

•  Scan right to left 
•  “1” determines the beginning of the pad 

–  Add a dummy block if necessary 
•  When the message is a multiple of the block 
•  The dummy block is necessary or existential forgery arises 
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CMAC 

•  CMAC uses k1 and k2 derived from k 
•  We don’t need the final encryption anymore 
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F(k,.) F(k,.) 

m[0] 

� 
m[1] m[w] 

F(k,.) 

� 
 

� 

tag 

100 

k1 

F(k,.) F(k,.) 

m[0] 

� 
 

m[1] m[w] 

F(k,.) 

� 
 

� 

tag 

k2 

HMAC 

Can we use a CRHF to build a MAC? 
•  S(k, m) = H(k||m) is insecure! 
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HASH – insecure scheme 
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h h 

m[0] m[1] m[2]  ll   PB 

h t > > > h 

k 

IV 
(fixed) 

> 

•  Let (m, t), where t = S(k, m) 
•  It is “easy” to build a pair (m’, t’), where t’ = S(k, m’) 

•  Let m’ = m||PB||w, where w is a block, then  
•  t’ = h(w, t) � existential forgery 

HMAC 

Standard  
•  HMAC: S(k, m) = H(k�opad || H(k�ipad||p)) 

–  ipad and opad are fixed and predefined 
–  Standard uses SHA-256 (PRF) 
–  TLS: HMAC-SHA1-96  

•  SHA1 is not collision resistant but HMAC needs only that the 
compression function is a PRF  

–   Security bounds.  
Pr [after q MACs, HMAC becomes insecure] = q2/|T|  

•  SHA-256: q << 2128 (GOOD!) 
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HMAC – secure scheme 
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h h 

m[0] m[1] m[2]  ll   PB 

h 

h 
tag 

> > > h 

k⨁ipad 

IV 
(fixed) 

> 

> IV 
(fixed) 

h 
> 

k⨁opad 

Timing Attack 

•  Example: Keyczar crypto library  (Python) 
[simplified] 

 def Verify(key, msg, sig_bytes): 
  return HMAC(key, msg) == sig_bytes 

•  The problem:    ‘==‘   implemented as a byte-by-
byte comparison 

•  Comparator returns false when first inequality 
found 
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Timing attack 
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Timing attack:   to compute tag for target message do: 
Step 1:   Query server with random tag 
Step 2:   Loop over all possible first bytes and query server. 

    stop when verification takes a little longer than in step 1 
Step 3:   repeat for all tag bytes until valid tag found 

m ,  tag k 
accept or reject 

target  
msg  m 

3 47 * * * * 

Defense #1 
Make string comparator always take same time   
(Python) :  

 return false if  sig_bytes  has wrong length 
 result = 0         
 for x, y in zip( HMAC(key,msg) , sig_bytes): 

          result |= ord(x) ^ ord(y) 
 return result == 0 

 
Can be difficult to ensure due to optimizing 
compiler 
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Defense #2 

Make string comparator always take same time   
(Python) :  

 def Verify(key, msg, sig_bytes): 
  mac = HMAC(key, msg) 
  return HMAC(key, mac) == HMAC(key,  

sig_bytes) 
 

Attacker doesn’t know values being compared! 
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