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Alice Bob 

•  eavesdropping 
•  tampering 

SSL 

•  Handshake protocol: establish a shared 
secret key by means of public key cryptography 

(2nd part of the course) 

•  Record protocols: use shared secret key to 
transmit data 
–  Ensure confidentiality and integrity 

(1st part of the course) 
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Encrypted files 
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•  Analogous to secure communication 
•  Alice todays sends a message to Alice tomorrow 

Alice Alice 



Building block: symmetric 
encryption 
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•  E, D: cipher  k: shared secret key (128 bits) 
•  p, c: plaintext, ciphertext 

•  Encryption algorithm is publicly known 
•  Never use proprietary algorithm 

E(.) D(.) 

Alice Bob 

p p = D(e, c) 

k k 

network 

c = E(k, p) c 
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Kerchoff’s principle  
(19th century) 

•  A cryptosystem should be secure even if 
everything about the system, except the key, is 
public knowledge 

•  The enemy knows the system (Shannon’s 
maxim) 

•  Pros: maintaining security is easier 
–  Keys are small keys 

•  Keeping small secrets it’s easier than keeping large secrets 
•  Replacing small secrets, once possibly compromised, is 

easier than replacing large secrets 
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Security through Obscurity 

•  StO attempts to use secrecy of design or 
implementation to provide security 

•  History shows that StO doesn’t work 
–  GSM/A1 disclosed by by mistake 
–  RC4 disclosed deliberately 
–  Enigma disclosed by intelligence 
–  ... many others… 

•  Solely relaying on StO is a poor design decision 
–  A secondary measure: defense in depth 
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Things to remember 

•  Cryptography is 
–  a very useful tool 
–  the basis for many mechanisms 

•  Cryptography is not 
–  The solution to all security problems 
–  Reliable unless implemented and used properly 
–  Something you should try to invent yourself 
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Cipher definition 

•  (DEF) A cipher defined over (K, P, C) is a pair of 
“efficient” algs (E, D) where 

•  s.t. 
 
 

–  E may be randomized; D is always deterministic 
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   E:P × K → C D:C × K →P

∀p∈P ,k ∈K :D(k,E(k,p))= p Consistency 
equation 
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Security of a cipher 

•  (Informal def) A symmetric cipher is secure iff 
for each pair (p, c) then  

•  given c, it is “difficult” to determine p without 
knowing e, and vice versa 

•  given c and p, it is difficult to determine e, unless 
it is used just once 
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What’s a secure cipher 

•  Attacker ability: cipher-text only  
•  Possible security requirements 

–  Attacker cannot recover secret key 
–  Attacker cannot recover plaintext 

•  Shannon’s idea 
–  Cipher-text should not reveal any information 

about plaint-text 
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Perfect secrecy  
(Shannon, 1949) 

•  A cipher (E, D) defined over (K, P, C) has 
perfect secrecy iff  

 
where P is a random variable in P and C is a random 
variable in C!
!

Information theoretical secure cipher 
Unconditionally secure cipher 
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   ∀p ∈P ,c ∈C :Pr P = p |C = c( ) = Pr(P = p)
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Shannon’s Theorem 

•  Theorem. In a perfect cipher |K|≥ |P|, i.e., the 
number of keys cannot be smaller than the 
number of messages 
–  Proof. By contradiction. 

•  A perfect cipher is impractical! 
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Unconditional security 

•  Perfect secrecy = unconditional security 
–  An adversary is assumed to have infinite computing 

resources 
–  Observation of the CT provides no information 

whatsoever to the adversary 

•  Necessary condition is that  
–  the key bits are truly randomly chosen and 
–  key len is at least as long as the msg len 
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Perfect secrecy 
(another definition) 

•  Definition. A cipher (E, D) over (K, P, C) has 
perfect secrecy iff �m1, m2 � P (|m1| = |m2|),  
�c � C, Pr(E(k, m1) = c) = Pr(E(k, m2) = c), 
where  

11 March 2015 SNCS - Introduction 15 

k ←
random

K

One Time Pad  
(Vernam cipher, 1917) 

•  Let m be a t-bit message, i.e., m � {0,1}t 

•  Let k be a t-bit key stream, k � {0, 1}t, where 
each bit is truly random chosen 

•  Encryption: E(k, m) = m � k  
•  Decryption: D(k, c) = c � k 

•  Very fast enc/dec 
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OTP has perfect secrecy 

•  Theorem. OTP has perfect secrecy iff  

•  OTP uses a minimal number of keys (minimality) 
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1. ∀m, ′m ∈P : len(m) = len( ′m )
2. ∀m ∈P :Pr(M = m) ≠ 0

3. k←
r

K
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OTP has perfect secrecy: 
intuition 
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Property of XOR 

•  The following theorem explains why � is so 
frequently used in cryptography. 

•  Theorem. Let Y be a random variable on {0, 1}n, 
and X an independent uniform variable on 
{0,1}n. Then Z = Y � X is uniform on {0,1}n. 

•  Proof. (for n = 1) 
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Properties of OTP  
(pros and cons) 
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PROS 
•  Unconditionally secure 

–  A cryptosystem is unconditionally or information-theoretically 
secure if it cannot be broken even with infinite computational 
resources 

•  Very fast enc/dec 
•  Only one key maps m into c 



Properties of OTP 
(pros and cons) 

CONS 
•  Long keys 

–  Key len >= msg len 

•  Keys must be used once: avoid two time pad! 
–  C1 = M1 xor K, C2 = M2 xor K => 
–  C1 xor C2 = M1 xor M2 => M1, M2 (due to redundancy of 

English and ASCII) 

•  A Known-PlainText attack breaks OTP 
–  Given (m, c) => k = m xor c 

•  OTP does not provide integrity, even worse OTP is 
malleable 
–  Modifications to cipher-text are undetected and have predictable 

impact on plain-text 
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OTP is malleable 
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On malleability 

•  Alice sends Bob: c = p � e 
•  The adversary intercepts c and transmits Bob 

c’ = c � r (perturbation) 
•  Bob receives c’ and obtains p’ = p � r 

–  The modification goes undetected 
–  Predictable impact on the plaintext 
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Making OTP practical (1/3) 

•  Idea: replace random key by pseudo-random 
key 

•  Pseudo-Random Generator G is an efficient 
and deterministic function  
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   G : {0,1}s → {0,1}n,s  n

Seed space Key-stream space 
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Making OTP practical (2/3) 
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k 

G(k) 

m 

c 

  

c = E(k,m) = G(k)⊕ p
m = D(k,c) = G(k)⊕ c

⊕

↓

G 
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Making OTP practical (3/3) 

•  Can OTP now have perfect secrecy? 
–  We need a new definition of security! 

•  Security will depend on the specific PRG 
–  PRG must be/appear unpredictable 
–  PRG must look random, i.e., indistinguishable from a 

TRG for a limited adversary 
–  There exist no efficient algorithm to distinguish 

PRNG output from a TRG output 
–  CSPRNG 
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Computational security, a 
new definition of security 

Statistical tests 

•  Measure the quality of a random bit generator 
–  Probabilistically determine whether sample output 

sequences  possess certain attributes that a truly 
random sequence would be likely to exhibit 

•  Ex.: a sequence should roughly have the same number of 1’s 
as 0’s 

–  A generator may be rejected or accepted (= not 
rejected) 

•  Provide necessary conditions only 
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PRG must be unpredictable 

•  (Informal DEF) PRG is predictable if  
�i and an efficient algorithm A s.t. 
 

•  Then OTP is not secure! 
•  Even  

is a problem 
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A G(k)

0,,i( )→G(k)
i+1,,n−1

A G(k)
0,,i( )→G(k)

i+1
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Building PRG is hard 

•  “Random numbers should not be generated with 
a method chosen at random.” —Donald E. Knuth 

•  “The generation of random numbers is too 
important to be left to chance.” —Robert R. 
Coveyou 

•  “Anyone who considers arithmetical methods of 
producing random digits is, of course, in a state 
of sin”  —John von Neumann 
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Weak PRG 
(don’t use in crypto!) 

•  Linear congruential generator (LCG) 

•  glibc random() is similar to LCG 
–  Good statistics but predictable! 
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r [0] = seed

r [i ] = a ⋅ r [i −1] + b modp
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Real world examples 

•  MS-PPTP 
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  K = Kc→s,Ks→c( ) is the right way! 

Two time pad! 

Real world examples: 802.11b WEP 
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•  A new IV for each new message 

–  Key is fixed (104-bits) 
–  IV avoids 2TP 

•  Length of IV:     24 bits (in the standard!) 
–  Repeated IV after 224 ≈ 16M frames 
–  On some 802.11 cards IV resets to 0 after power cycle 
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Real world examples: 802.11b WEP 
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Key for frame #1: 1||k 
Key for frame #2: 2||k 
Key for frame #3: 3||k 
… 

•  Related keys 
•  FMS 2001 attack can 

recover K in 106 frames 
(now 40 Kframes) 

•  Avoid related keys! 
  

11 March 2015 

Real world examples: 802.11b: WEP 

•  A better construction 

•  Each frame 
has its own key 

•  Keys are pseudo-random 
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k G(K) … 

Key for frame #1 

Key for frame #2 

Key for frame #3 

Real world examples: old 
examples 

•  RC4 (1987) 
–  Used in HTTPS and WEP 
–  Variable seed; output: 1 byte 

•  Weaknesses 
–  Bias 

•  Pr[2nd byte = 0] = 2/256 (twice as random) 
–  Other bytes are biased too (e.g., 1st,3rd) 
–  It is recommended that the first 256 byes are ignored 

•  Pr[00] = 1/2562 + 1/2563 

–  Bias starts after several gigabytes but it is still a distinguisher 

–  Related keys 

•  It is recommended not to use RC4 but modern CSPRNG 
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Real world examples 
Old example (hw): CSS badly broken! 
•  Linear Feedback Shift Register (LFSR) 

 
•                                                       Seed := intial value 

•  DVD encryption (CSS): 2 LFSRs 
•  GMS encryption (A5/1,2): 3 LFSR 
•  Bluetooth (E0): 4 LFSRs 
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� 
All broken! 



LSFRs: not a good idea for 
crypto 

•  LSFRs are a bad choice in cryptography 
•  LSFRs have pros that are cons in crypto 

–  They are periodical 
•  A LSFR-m as at most a 2m-1 period 

–  They are linear 
•  A LSFR-m can be expressed as a m-degree polynomial 
•  As soon as we know m outputs of, we can efficiently compute the 

polynomial's coefficient by solving a system of linear equations 
•  Outputs can be computed from a KPT attack 

•  Have LSFRs to be thrown away? 
–  No, provided you use non-linear combinations (e.g. AND) of 

LSFRs  
–  Trivium stream cipher (2003)   
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Real world examples 

•  CSS(*): seed = 5 bytes (the key)  

•  Easy to break in time 217 

(*) More can be found here https://www.cs.cmu.edu/~dst/DeCSS/Kesden/ 

11 March 2015 SNCS - Introduction 38 

Real world examples 

•  CSS 
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encrypted movie 

prefix 

prefix 

� movie 

keystream 

•  A prefix of the movie is known 
(e.g., 20 bytes in mpeg):KPT! 

•  Then a prefix of CSS|1-20 can be 
computed 

•  For all possible initial setting of 
LFSR-17 (217) 

•  Run LFSR-17 to get 20 bytes 
of output 

•  Subtract from CSS prefix → 
candidate 20 bytes output of 
LFSR-25 

•  If consistent with LFSR-25 → 
found correct initial setting of 
both!! 

•  Using key, generate entire CSS 
output 

Modern stream ciphers 
(eStream) 

•  PRG: {0,1}s × R → {0,1}n, n � s 

•  nonce: a non-repeating value for a given key 
•  The pair (seed, nonce) is never used more than 

once 
–  You can reuse the key because the nonce makes (k, 

r) unique 

11 March 2015 SNCS - Introduction 40 

seed nonce keystream 



k
r 
i 

eStream project: Salsa 20 

•  Salsa20: {0,1}s×{0,1}64 → {0,1}n, s = 128, 256 
•  Salsa20: H(k, (r, 0)) || H(k, (k, 1)) || … 
•  h(): invertible function, to be fast on x86 

•  τx: constant (8), 
i : index/counter (8) 
k: (16) 
r: (8) 

•  No significant  
attacks!  
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Performance 
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AMD Opteron 2.2 GHz (Linux) 
 
PRG   Speed (Mb/s) 
RC4    126 
Salsa 20/12  643 
Sosemanuk  727 

eStream 

TRG 

•  RBG requires a naturally occurring source of 
randomness 
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RBG 

Probability of emitting a bit (1 or 0) value does not depend on the 
previous bits 

Probability of emitting a bit value (1 or 0) is equal to 0.5 

Sequence of statistically independent and 
unbiased bits 

HW-based TRG 

•  HW-based RBGs exploit the randomness in 
some physical phenomena 
–  elapsed time between emission of particles during 

radioactive decay 
–  thermal noise from a semiconductor diode or resistor 
–  the frequency instability of a free running oscillator 
–  the amount a metal-insulator semiconductor capacity is 

charged during a fixed period of time 
–  air turbulence within a sealed disk drive which causes 

random fluctuations in disk drive sector read latency times 
–  sound from a microphone or video from a camera 
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SW-based TRG 

•  Random processes used by SW-based RBGs 
include 
–  The system clock 
–  Elapsed time between keystrokes or mouse 

movement 
–  Content of input/output buffers 
–  User input 
–  Operating system values such as system load and 

network statistics 
–  A well-designed SW-based RBG uses as many 

sources as available 
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TRG 

•  TRG must not be subject to observation and 
manipulation by an adversary 

•  The natural source of randomness is subject to 
influence by external factors and to malfunction 

•  TRG must be tested periodically 
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RBG Test Suites 

•  Diehard Battery of Tests of Randomness CD, 
1995. http://www.stat.fsu.edu/pub/diehard/ 

•  NIST test suite for random numbers 
http://csrc.nist.gov/groups/ST/toolkit/rng/
index.html 
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BLOCK CIPHERS 
Symmetric Encryption 

11 March 2015 SNCS - Introduction 48 



Block cipher 

•  Block ciphers break up the plaintext in blocks of 
fixed length n bits and encrypt one block at time 

•  E: {0,1}n →{0,1}n  D: {0,1}n →{0,1}n 

•  E is a permutation (one-to-one, invertible) 
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Canonical example 
Block ciphers 
•  DES  n = 64 bits,  k = 56 bits 
•  3DES  n = 64 bits,  k = 168 bits 
•  AES  n = 128 bits  k = 128, 192, 256 bits 
Performance (AMD Opteron, 2.2 GHz) 
•  RC4   126 MB/s 
•  Salsa20/12  643 MB/s 
•  Sosemanuk  727 MB/s 
•  3DES   13 MB/s 
•  AES-128   109 MB/s 
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True Random Cipher 
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N = 2n 
•  A true random cipher is perfect 
•  Implement all possible 

permutations: 2n! permutations 
•  A random key for each 

permutation 
•  Key size := log2 2n! ≈  (n − 1.44) 2n 

exp in the block size! 

Practical block cipher 

•  In practice, the encryption function 
corresponding to a randomly chosen key should 
appear as a randomly chosen permutation 
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π←Perms({0,1}n) 

k ← K!

x 

π(x) or E(k, x)? 



Exhaustive key search 

•  Problem. Given a few pairs (pi, ci = E(e, pi))  
find e 
–  Known-plaintex attack 

•  Theorem. Given                  pairs of plaintext 
ciphertext, a key can be recovered by 
exhaustive key search in an expected time 
O(2k-1)  
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  k + 4( ) n⎡⎢ ⎤⎥

Exhaustive key search 

•  DES, �p, c, there is at most one key e s.t. c = 
DES(e, p)  with probability ≥ 1 − 1/256 = 99.5% 
(unicity probability) 

•  DES, for two pairs (p1, c1 = DES(e, p1)), (p2, c2 = 
DES(e, p2)), unicity probability ≈ 1 – 1/271 

•  AES-128, given two input/output pairs, unicity 
probability ≈ 1 – 1/2128 

•  � two input/output pairs are enough for 
exhaustive key search 
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DES challenge 

p = “The unknown messages is: XXX …” 

        c1      c2      c3 

•  Goal. Find e � {0,1}56 s.t. ci = DES(e, pi), i = 1, 2, 3 
•  1997: Internet search – 3 months 
•  1998: EFF machine (deep crack) – 3 days (250K$) 
•  1999: combined search – 22 hours 

•  2006: COPACABANA (120 FPGAs) – 7 days (10K$) 
•  � 56-bit ciphers should not be used 
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Triple DES (3DES) 
•  EDE – 3E((e1, e2, e3), p) = E(e1, D(e2, E(e3, p))) 

–  e1 = e2 = e3 � 3DES → DES (backward compatibility) 
–  Key size = 168-bits 
–  3 times slower than DES 
–  Simple attack ≈ 2118 

–  Standard (ANSI X9.17 and ISO 8732) 
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Two-times DES (2DES) 

•  c = 2E((e1, e2), m) = E(e2, E(e1, m)) 
–  Key size: 112 bits 
–  2 times slower than E 

•  Completely unsecure 
–  Naïve approach: 22k 

–  Meet-in-the-middle attack  
•  Time complexity: 256 (doable nowadays!) 
•  Space complexity: 256 (lot of space!) 
•  Expected number of false positives: 22k-tn 

•  2E brings no advantage 
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Meet-in-the-middle attack 

•  Intuition: given (c, p), find (e1, e2) s.t.  
E(e1, E(e2, p)) = c 
–  Time complexity < 263 (doable nowadays!) 

–  Space complexity = 256 (lot of space!) 
–  No advantage in 2E! 
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E(e2, ·) E(e1, ·) p c ● 

Meet-in-the.middle 

Meet-in-the-middle attack 

•  3DES 
•  Meet-in-the-middle-attack 

–  Time = 2112 (undoable!) 

–  Space = 256 (lot of space!) 
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E(e3, ·) E(e2, ·) p c ● 

Meet-in-the.middle 

E(e1, ·) 

Computational security 

•  A cipher is computationally (practically) 
secure if the perceived level of computation 
required to defeat it, using the best attack 
known, exceeds, by a comfortable margin, the 
computation resources of the hypothesized 
adversary 
–  Now, the adversary is assumed to have a limited 

computation power 
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Attack Complexity 

•  Attack complexity is the dominant of: 
•  data complexity — expected number of input 

data units required 
–  Ex.: exhaustive data analysis is O(2n)  

•  storage complexity — expected number of 
storage units required 

•  processing complexity — expected number of 
operations required to processing input data 
and/or fill storage with data 
–  Ex.: exhaustive key search is O(2k) 
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Computational security vs 
attack complexity 

•  A block cipher is computationally secure if  
•  Block size n is sufficiently large to preclude 

exhaustive data analysis, and 
•  Key size k is sufficiently large to preclude 

exhaustive key search, and 
•  No known attack has data and processing 

complexity significantly less than, 
respectively, 2n and 2k 
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Types of attacks 

•  Attacks are classified according to what information an 
adversary has access to 
–  ciphertext-only attack (the least strong) 
–  known-plaintext attack 
–  chosen-plaintext attack (the strongest) 

•  Fact. A cipher secure against chosen-plaintext attacks is 
also secure against CT-only and known-PT attacks 

•  Best practice. It is customary to use ciphers resistant to 
a chosen-PT attack even when mounting that attack is 
not practically feasible  
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Cryptoanalysis 
An historical example 

Mono-alphabetic substitution 
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Cryptoanalysis 
An historical example 

Mono-alphabetic substitution 
•  The key is a permutation of the alphabet 
•  Encryption algorithm: every cleartext character 

having position p in the alphabet is substituted by 
the character having the same position p in the key  

•  Decryption algorithm: every ciphertext character 
having position p in the key is substituted by the 
character having the same position p in the cleartext 

•  Number of keys = 26! – 1 � 4 ×1026  
(number of seconds since universe birth!) 
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Cryptonalysis 
An historical example 

•  The monoalphabetic-substitution cipher 
maintains the redundancy that is present in the 
cleartext 

•  It can be “easily” crypto-analized with a 
ciphertext-only attack 
based on language  
statistics 
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Frequency of single 
characters in English text 

Cryptoanalysis: lesson 
learned 

•  Good ciphers should hide statistical properties of 
the encrypted plaintext 

•  The cyphertext symbols should appear to be 
random 

•  A large key space alone is not sufficient for 
strong encryption function (necessary condition) 

11 March 2015 SNCS - Introduction 67 

Crypto-analysis of DES 
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attack method data complexity storage 
complexity 

processing  
complexity known chosen 

exhaustive 
precomputation — 1 256 1* 

exhaustive search 1 — negligible 255 

linear 
cryptanalysis 

243 (85%) — for texts 243 

238 (10%) — for texts 250 

differential 
cryptanalysis 

— 247 for texts 247 

255 — for texts 255 

 

* Table lookup 
%: probability of success 

LC is the best known analytical attack but it is considered 
“unpractical” 



Cryptanalysis 

•  Cryptanalysis is the science and, sometimes, 
the art of breaking cryptosystems 
–  Classical cryptanalysis: recovering PT, or even the 

key, from CT 
•  Brute-force attack 
•  Analytical attack 

–  Implementation attack 
•  Side-channel analysis (time-, power-analysis) 
•  Buffer-overflow 

–  Social Engineering Attacks  
•  Bribing, blackmailing, tricking 
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ENCRYPTION MODES 
Symmetric Encryption 

11 March 2015 SNCS - Introduction 70 

Encryption Modes 

•  A block cipher encrypts PT in fixed-size n-bit 
blocks 

•  When the PT len exceeds n bits, there are 
several modes to the block cipher 
–  Electronic Codebook (ECB) 
–  Cipher-block Chaining (CBC) 
–  Cipher-feedback (CFB) 
–  Output feedback (OFB) 
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Electronic codebook 
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PT blocks are encrypted separately 



ECB - properties 

•  PROS 
–  No block synchronization is required 
–  No error propagation 

•  One or moe bits in a single CT block affects decipherment of 
that block only 

–  Can be parallelized 

•  CONS 
–  Identical PT results in identical CT 

•  ECB doesn’t hide data pattern 
•  ECB allows traffic analysis 

–  Blocks are encrypted separately 
•  ECB allows block re-ordering and substitution 
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ECB – block replay attack 
•  Bank transaction that transfers a client U’s amount 

of money D from bank B1 to bank B2 
–  Bank B1 debits D to U  
–  Bank B1 sends the “credit D to U” message to bank B2 
–  Upon receiving the message, Bank B2 credits D to U 

•  Credit message format 
–  Src bank: M (12 byte) 
–  Rcv banck: R (12 byte) 
–  Client: C (48 byte) 
–  Bank account: N (16 byte)  
–  Amount of money: D (8 byte) 

•  Cipher: n = 64 bit; ECB mode 
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ECB – block replay attack 

•  Mr. Lou Cipher is a client of the banks and wants to 
make a fraud 

•  Attack aim 
–  To replay Bank B1’s message "credit 100$ to Lou Cipher" 

many times 

•  Attack strategy  
–  Lou Cipher activates multiple transfers of 100$ so that 

multiple messages  "credit 100$ to Lou Cipher" are sent 
from B1 to B2 

–  The adversary identifies at least one of these messages 
–  The adversary replies the message several times 
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ECB – block replay attack 

•  Mr. Lou Cipher performs k equal transfers 
–  credit 100$ to Lou Cipher → c1 
–  credit 100$ to Lou Cipher → c2 
–  ... 
–  credit 100$ to Lou Cipher → ck 

•  Then, he searches “his own” CT in the network 
–  k equal CTs!  

•  Finally he replies one of these cryptograms 
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ECB – block replay attack 

•  An 8-byte timestamp field T (block #1) is added 
to the message to prevent replay attacks 

•  However, Mr Lou Cipher can 
–  Identify “his own” CT by inspecting blocks #2-#13 
–  Intercept any “fresh” CT 
–  Substitute block #1 of “his own” CT with block #1 of 

the intercepted “fresh” block 
–  Replay the resulting CT  
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Cipher block chaining (CBC) 
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CBC - properties 
•  Chaining dependencies: ci depends on pi and all preceding 

PT blocks 
•  Encryption is randomized by using IV 

–  CBC is non deterministic 
•  Identical ciphertext results from the same PT under the same key and IV 

–  IV is a nonce 

•  CT-block reordering affects decryption 
•  IV can be sent in the clear but its integrity must be guaranteed 
•  CBC suffers from Error propagation 

–  Bit errors in ci affect decryption of ci and ci+1 (error propagation) 
–  CBC is self-synchronizing (error recovery) 
–  CBC does not tolerate “lost” bits (framing errors) 
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Padding – the PKCS#5 
standard 

•  Padding is necessary when PT len is not a block 
multiple 
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If PT len is NOT a block multiple 
Padding bytes ! #bytes to complete a 
block 

If PT is a block multiple 
Padding = block 
Each padding byte ! 8 

Block  



Other encryption modes 
•  Other encryption modes 

–  Cipher Feedback mode (CFB) 
–  Output Feedback mode (OFB) 
–  Counter mode (CTR) 
–  Galois Counter mode (GCM) 
–  and many others (e.g., CCM, CTS, …) 

•  In CFB, OFB, CTR a block cipher is used as stream 
cipher / pseudo-random generator 

•  In GCM a block cipher guarantees confidentiality 
and authentication and integrity 

•  Block ciphers are very versatile components 
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