
Symmetric Encryption

Gianluca Dini
Dept. of Ingegneria dell’Informazione

University of Pisa
g.dini@iet.unipi.it

Secure communication

11 March 2015 SNCS - Introduction 2

Alice Bob

•  eavesdropping
•  tampering

SSL

•  Handshake protocol: establish a shared
secret key by means of public key cryptography

(2nd part of the course)

•  Record protocols: use shared secret key to
transmit data
–  Ensure confidentiality and integrity

(1st part of the course)

11 March 2015 SNCS - Introduction 3

e
e

Encrypted files

11 March 2015 SNCS - Introduction 4

•  Analogous to secure communication
•  Alice todays sends a message to Alice tomorrow

Alice Alice

Building block: symmetric
encryption

SNCS - Introduction 5

•  E, D: cipher k: shared secret key (128 bits)
•  p, c: plaintext, ciphertext

•  Encryption algorithm is publicly known
•  Never use proprietary algorithm

E(.) D(.)

Alice Bob

p p = D(e, c)

k k

network

c = E(k, p) c

11 March 2015

Kerchoff’s principle
(19th century)

•  A cryptosystem should be secure even if
everything about the system, except the key, is
public knowledge

•  The enemy knows the system (Shannon’s
maxim)

•  Pros: maintaining security is easier
–  Keys are small keys

•  Keeping small secrets it’s easier than keeping large secrets
•  Replacing small secrets, once possibly compromised, is

easier than replacing large secrets

11 March 2015 SNCS - Introduction 6

Security through Obscurity

•  StO attempts to use secrecy of design or
implementation to provide security

•  History shows that StO doesn’t work
–  GSM/A1 disclosed by by mistake
–  RC4 disclosed deliberately
–  Enigma disclosed by intelligence
–  ... many others…

•  Solely relaying on StO is a poor design decision
–  A secondary measure: defense in depth

11 March 2015 SNCS - Introduction 7

Things to remember

•  Cryptography is
–  a very useful tool
–  the basis for many mechanisms

•  Cryptography is not
–  The solution to all security problems
–  Reliable unless implemented and used properly
–  Something you should try to invent yourself

11 March 2015 SNCS - Introduction 8

Cipher definition

•  (DEF) A cipher defined over (K, P, C) is a pair of
“efficient” algs (E, D) where

•  s.t.

–  E may be randomized; D is always deterministic

SNCS - Introduction 9

 E:P × K → C D:C × K →P

∀p∈P ,k ∈K :D(k,E(k,p))= p Consistency
equation

11 March 2015

Security of a cipher

•  (Informal def) A symmetric cipher is secure iff
for each pair (p, c) then

•  given c, it is “difficult” to determine p without
knowing e, and vice versa

•  given c and p, it is difficult to determine e, unless
it is used just once

11 March 2015 SNCS - Introduction 10

What’s a secure cipher

•  Attacker ability: cipher-text only
•  Possible security requirements

–  Attacker cannot recover secret key
–  Attacker cannot recover plaintext

•  Shannon’s idea
–  Cipher-text should not reveal any information

about plaint-text

SNCS - Introduction 11 11 March 2015

Perfect secrecy
(Shannon, 1949)

•  A cipher (E, D) defined over (K, P, C) has
perfect secrecy iff

where P is a random variable in P and C is a random
variable in C!
!

Information theoretical secure cipher
Unconditionally secure cipher

SNCS - Introduction 12

 ∀p ∈P ,c ∈C :Pr P = p |C = c() = Pr(P = p)

11 March 2015

Shannon’s Theorem

•  Theorem. In a perfect cipher |K|≥ |P|, i.e., the
number of keys cannot be smaller than the
number of messages
–  Proof. By contradiction.

•  A perfect cipher is impractical!

SNCS - Introduction 13 11 March 2015

Unconditional security

•  Perfect secrecy = unconditional security
–  An adversary is assumed to have infinite computing

resources
–  Observation of the CT provides no information

whatsoever to the adversary

•  Necessary condition is that
–  the key bits are truly randomly chosen and
–  key len is at least as long as the msg len

11 March 2015 SNCS - Introduction 14

Perfect secrecy
(another definition)

•  Definition. A cipher (E, D) over (K, P, C) has
perfect secrecy iff �m1, m2 � P (|m1| = |m2|),
�c � C, Pr(E(k, m1) = c) = Pr(E(k, m2) = c),
where

11 March 2015 SNCS - Introduction 15

k ←
random

K

One Time Pad
(Vernam cipher, 1917)

•  Let m be a t-bit message, i.e., m � {0,1}t

•  Let k be a t-bit key stream, k � {0, 1}t, where
each bit is truly random chosen

•  Encryption: E(k, m) = m � k
•  Decryption: D(k, c) = c � k

•  Very fast enc/dec

11 March 2015 SNCS - Introduction 16

OTP has perfect secrecy

•  Theorem. OTP has perfect secrecy iff

•  OTP uses a minimal number of keys (minimality)

SNCS - Introduction 17

1. ∀m, ′m ∈P : len(m) = len(′m)
2. ∀m ∈P :Pr(M = m) ≠ 0

3. k←
r

K

11 March 2015

OTP has perfect secrecy:
intuition

11 March 2015 SNCS - Introduction 18

Property of XOR

•  The following theorem explains why � is so
frequently used in cryptography.

•  Theorem. Let Y be a random variable on {0, 1}n,
and X an independent uniform variable on
{0,1}n. Then Z = Y � X is uniform on {0,1}n.

•  Proof. (for n = 1)

SNCS - Introduction 19 11 March 2015

Properties of OTP
(pros and cons)

11 March 2015 SNCS - Introduction 20

PROS
•  Unconditionally secure

–  A cryptosystem is unconditionally or information-theoretically
secure if it cannot be broken even with infinite computational
resources

•  Very fast enc/dec
•  Only one key maps m into c

Properties of OTP
(pros and cons)

CONS
•  Long keys

–  Key len >= msg len

•  Keys must be used once: avoid two time pad!
–  C1 = M1 xor K, C2 = M2 xor K =>
–  C1 xor C2 = M1 xor M2 => M1, M2 (due to redundancy of

English and ASCII)

•  A Known-PlainText attack breaks OTP
–  Given (m, c) => k = m xor c

•  OTP does not provide integrity, even worse OTP is
malleable
–  Modifications to cipher-text are undetected and have predictable

impact on plain-text

11 March 2015 SNCS - Introduction 21

OTP is malleable

11 March 2015 SNCS - Introduction 22

On malleability

•  Alice sends Bob: c = p � e
•  The adversary intercepts c and transmits Bob

c’ = c � r (perturbation)
•  Bob receives c’ and obtains p’ = p � r

–  The modification goes undetected
–  Predictable impact on the plaintext

11 March 2015 SNCS - Introduction 23

Making OTP practical (1/3)

•  Idea: replace random key by pseudo-random
key

•  Pseudo-Random Generator G is an efficient
and deterministic function

SNCS - Introduction 24

 G : {0,1}s → {0,1}n,s  n

Seed space Key-stream space

11 March 2015

Making OTP practical (2/3)

SNCS - Introduction 25

k

G(k)

m

c

c = E(k,m) = G(k)⊕ p
m = D(k,c) = G(k)⊕ c

⊕

↓

G

11 March 2015

Making OTP practical (3/3)

•  Can OTP now have perfect secrecy?
–  We need a new definition of security!

•  Security will depend on the specific PRG
–  PRG must be/appear unpredictable
–  PRG must look random, i.e., indistinguishable from a

TRG for a limited adversary
–  There exist no efficient algorithm to distinguish

PRNG output from a TRG output
–  CSPRNG

SNCS - Introduction 26 11 March 2015

Computational security, a
new definition of security

Statistical tests

•  Measure the quality of a random bit generator
–  Probabilistically determine whether sample output

sequences possess certain attributes that a truly
random sequence would be likely to exhibit

•  Ex.: a sequence should roughly have the same number of 1’s
as 0’s

–  A generator may be rejected or accepted (= not
rejected)

•  Provide necessary conditions only

11 March 2015 SNCS - Introduction 27

PRG must be unpredictable

•  (Informal DEF) PRG is predictable if
�i and an efficient algorithm A s.t.

•  Then OTP is not secure!
•  Even

is a problem

SNCS - Introduction 28

A G(k)

0,,i()→G(k)
i+1,,n−1

A G(k)
0,,i()→G(k)

i+1

11 March 2015

Building PRG is hard

•  “Random numbers should not be generated with
a method chosen at random.” —Donald E. Knuth

•  “The generation of random numbers is too
important to be left to chance.” —Robert R.
Coveyou

•  “Anyone who considers arithmetical methods of
producing random digits is, of course, in a state
of sin” —John von Neumann

11 March 2015 SNCS - Introduction 29

Weak PRG
(don’t use in crypto!)

•  Linear congruential generator (LCG)

•  glibc random() is similar to LCG
–  Good statistics but predictable!

SNCS - Introduction 30

r [0] = seed

r [i] = a ⋅ r [i −1] + b modp

11 March 2015

Real world examples

•  MS-PPTP

11 March 2015 SNCS - Introduction 31

 K = Kc→s,Ks→c() is the right way!

Two time pad!

Real world examples: 802.11b WEP

SNCS - Introduction 32

•  A new IV for each new message

–  Key is fixed (104-bits)
–  IV avoids 2TP

•  Length of IV: 24 bits (in the standard!)
–  Repeated IV after 224 ≈ 16M frames
–  On some 802.11 cards IV resets to 0 after power cycle

11 March 2015

Real world examples: 802.11b WEP

SNCS - Introduction 33

Key for frame #1: 1||k
Key for frame #2: 2||k
Key for frame #3: 3||k
…

•  Related keys
•  FMS 2001 attack can

recover K in 106 frames
(now 40 Kframes)

•  Avoid related keys!

11 March 2015

Real world examples: 802.11b: WEP

•  A better construction

•  Each frame
has its own key

•  Keys are pseudo-random

11 March 2015 SNCS - Introduction 34

k G(K) …

Key for frame #1

Key for frame #2

Key for frame #3

Real world examples: old
examples

•  RC4 (1987)
–  Used in HTTPS and WEP
–  Variable seed; output: 1 byte

•  Weaknesses
–  Bias

•  Pr[2nd byte = 0] = 2/256 (twice as random)
–  Other bytes are biased too (e.g., 1st,3rd)
–  It is recommended that the first 256 byes are ignored

•  Pr[00] = 1/2562 + 1/2563

–  Bias starts after several gigabytes but it is still a distinguisher

–  Related keys

•  It is recommended not to use RC4 but modern CSPRNG

11 March 2015 SNCS - Introduction 35

Real world examples
Old example (hw): CSS badly broken!
•  Linear Feedback Shift Register (LFSR)

•  Seed := intial value

•  DVD encryption (CSS): 2 LFSRs
•  GMS encryption (A5/1,2): 3 LFSR
•  Bluetooth (E0): 4 LFSRs

11 March 2015 SNCS - Introduction 36

�
All broken!

LSFRs: not a good idea for
crypto

•  LSFRs are a bad choice in cryptography
•  LSFRs have pros that are cons in crypto

–  They are periodical
•  A LSFR-m as at most a 2m-1 period

–  They are linear
•  A LSFR-m can be expressed as a m-degree polynomial
•  As soon as we know m outputs of, we can efficiently compute the

polynomial's coefficient by solving a system of linear equations
•  Outputs can be computed from a KPT attack

•  Have LSFRs to be thrown away?
–  No, provided you use non-linear combinations (e.g. AND) of

LSFRs
–  Trivium stream cipher (2003)

11 March 2015 SNCS - Introduction 37

Real world examples

•  CSS(*): seed = 5 bytes (the key)

•  Easy to break in time 217

(*) More can be found here https://www.cs.cmu.edu/~dst/DeCSS/Kesden/

11 March 2015 SNCS - Introduction 38

Real world examples

•  CSS

11 March 2015 SNCS - Introduction 39

encrypted movie

prefix

prefix

� movie

keystream

•  A prefix of the movie is known
(e.g., 20 bytes in mpeg):KPT!

•  Then a prefix of CSS|1-20 can be
computed

•  For all possible initial setting of
LFSR-17 (217)

•  Run LFSR-17 to get 20 bytes
of output

•  Subtract from CSS prefix →
candidate 20 bytes output of
LFSR-25

•  If consistent with LFSR-25 →
found correct initial setting of
both!!

•  Using key, generate entire CSS
output

Modern stream ciphers
(eStream)

•  PRG: {0,1}s × R → {0,1}n, n � s

•  nonce: a non-repeating value for a given key
•  The pair (seed, nonce) is never used more than

once
–  You can reuse the key because the nonce makes (k,

r) unique

11 March 2015 SNCS - Introduction 40

seed nonce keystream

k
r
i

eStream project: Salsa 20

•  Salsa20: {0,1}s×{0,1}64 → {0,1}n, s = 128, 256
•  Salsa20: H(k, (r, 0)) || H(k, (k, 1)) || …
•  h(): invertible function, to be fast on x86

•  τx: constant (8),
i : index/counter (8)
k: (16)
r: (8)

•  No significant
attacks!

11 March 2015 SNCS - Introduction 41

Performance

11 March 2015 SNCS - Introduction 42

AMD Opteron 2.2 GHz (Linux)

PRG Speed (Mb/s)
RC4 126
Salsa 20/12 643
Sosemanuk 727

eStream

TRG

•  RBG requires a naturally occurring source of
randomness

11 March 2015 SNCS - Introduction 43

RBG

Probability of emitting a bit (1 or 0) value does not depend on the
previous bits

Probability of emitting a bit value (1 or 0) is equal to 0.5

Sequence of statistically independent and
unbiased bits

HW-based TRG

•  HW-based RBGs exploit the randomness in
some physical phenomena
–  elapsed time between emission of particles during

radioactive decay
–  thermal noise from a semiconductor diode or resistor
–  the frequency instability of a free running oscillator
–  the amount a metal-insulator semiconductor capacity is

charged during a fixed period of time
–  air turbulence within a sealed disk drive which causes

random fluctuations in disk drive sector read latency times
–  sound from a microphone or video from a camera

11 March 2015 SNCS - Introduction 44

SW-based TRG

•  Random processes used by SW-based RBGs
include
–  The system clock
–  Elapsed time between keystrokes or mouse

movement
–  Content of input/output buffers
–  User input
–  Operating system values such as system load and

network statistics
–  A well-designed SW-based RBG uses as many

sources as available

11 March 2015 SNCS - Introduction 45

TRG

•  TRG must not be subject to observation and
manipulation by an adversary

•  The natural source of randomness is subject to
influence by external factors and to malfunction

•  TRG must be tested periodically

11 March 2015 SNCS - Introduction 46

RBG Test Suites

•  Diehard Battery of Tests of Randomness CD,
1995. http://www.stat.fsu.edu/pub/diehard/

•  NIST test suite for random numbers
http://csrc.nist.gov/groups/ST/toolkit/rng/
index.html

11 March 2015 SNCS - Introduction 47

BLOCK CIPHERS
Symmetric Encryption

11 March 2015 SNCS - Introduction 48

Block cipher

•  Block ciphers break up the plaintext in blocks of
fixed length n bits and encrypt one block at time

•  E: {0,1}n →{0,1}n D: {0,1}n →{0,1}n

•  E is a permutation (one-to-one, invertible)

11 March 2015 SNCS - Introduction 49

Canonical example
Block ciphers
•  DES n = 64 bits, k = 56 bits
•  3DES n = 64 bits, k = 168 bits
•  AES n = 128 bits k = 128, 192, 256 bits
Performance (AMD Opteron, 2.2 GHz)
•  RC4 126 MB/s
•  Salsa20/12 643 MB/s
•  Sosemanuk 727 MB/s
•  3DES 13 MB/s
•  AES-128 109 MB/s

11 March 2015 SNCS - Introduction 50

True Random Cipher

11 March 2015 SNCS - Introduction 51

N = 2n
•  A true random cipher is perfect
•  Implement all possible

permutations: 2n! permutations
•  A random key for each

permutation
•  Key size := log2 2n! ≈ (n − 1.44) 2n

exp in the block size!

Practical block cipher

•  In practice, the encryption function
corresponding to a randomly chosen key should
appear as a randomly chosen permutation

11 March 2015 SNCS - Introduction 52

π←Perms({0,1}n)

k ← K!

x

π(x) or E(k, x)?

Exhaustive key search

•  Problem. Given a few pairs (pi, ci = E(e, pi))
find e
–  Known-plaintex attack

•  Theorem. Given pairs of plaintext
ciphertext, a key can be recovered by
exhaustive key search in an expected time
O(2k-1)

11 March 2015 SNCS - Introduction 53

 k + 4() n⎡⎢ ⎤⎥

Exhaustive key search

•  DES, �p, c, there is at most one key e s.t. c =
DES(e, p) with probability ≥ 1 − 1/256 = 99.5%
(unicity probability)

•  DES, for two pairs (p1, c1 = DES(e, p1)), (p2, c2 =
DES(e, p2)), unicity probability ≈ 1 – 1/271

•  AES-128, given two input/output pairs, unicity
probability ≈ 1 – 1/2128

•  � two input/output pairs are enough for
exhaustive key search

11 March 2015 SNCS - Introduction 54

DES challenge

p = “The unknown messages is: XXX …”

 c1 c2 c3

•  Goal. Find e � {0,1}56 s.t. ci = DES(e, pi), i = 1, 2, 3
•  1997: Internet search – 3 months
•  1998: EFF machine (deep crack) – 3 days (250K$)
•  1999: combined search – 22 hours

•  2006: COPACABANA (120 FPGAs) – 7 days (10K$)
•  � 56-bit ciphers should not be used

11 March 2015 SNCS - Introduction 55

Triple DES (3DES)
•  EDE – 3E((e1, e2, e3), p) = E(e1, D(e2, E(e3, p)))

–  e1 = e2 = e3 � 3DES → DES (backward compatibility)
–  Key size = 168-bits
–  3 times slower than DES
–  Simple attack ≈ 2118

–  Standard (ANSI X9.17 and ISO 8732)

11 March 2015 SNCS - Introduction 56

Two-times DES (2DES)

•  c = 2E((e1, e2), m) = E(e2, E(e1, m))
–  Key size: 112 bits
–  2 times slower than E

•  Completely unsecure
–  Naïve approach: 22k

–  Meet-in-the-middle attack
•  Time complexity: 256 (doable nowadays!)
•  Space complexity: 256 (lot of space!)
•  Expected number of false positives: 22k-tn

•  2E brings no advantage

11 March 2015 SNCS - Introduction 57

Meet-in-the-middle attack

•  Intuition: given (c, p), find (e1, e2) s.t.
E(e1, E(e2, p)) = c
–  Time complexity < 263 (doable nowadays!)

–  Space complexity = 256 (lot of space!)
–  No advantage in 2E!

11 March 2015 SNCS - Introduction 58

E(e2, ·) E(e1, ·) p c ●

Meet-in-the.middle

Meet-in-the-middle attack

•  3DES
•  Meet-in-the-middle-attack

–  Time = 2112 (undoable!)

–  Space = 256 (lot of space!)

11 March 2015 SNCS - Introduction 59

E(e3, ·) E(e2, ·) p c ●

Meet-in-the.middle

E(e1, ·)

Computational security

•  A cipher is computationally (practically)
secure if the perceived level of computation
required to defeat it, using the best attack
known, exceeds, by a comfortable margin, the
computation resources of the hypothesized
adversary
–  Now, the adversary is assumed to have a limited

computation power

11 March 2015 SNCS - Introduction 60

Attack Complexity

•  Attack complexity is the dominant of:
•  data complexity — expected number of input

data units required
–  Ex.: exhaustive data analysis is O(2n)

•  storage complexity — expected number of
storage units required

•  processing complexity — expected number of
operations required to processing input data
and/or fill storage with data
–  Ex.: exhaustive key search is O(2k)

11 March 2015 SNCS - Introduction 61

Computational security vs
attack complexity

•  A block cipher is computationally secure if
•  Block size n is sufficiently large to preclude

exhaustive data analysis, and
•  Key size k is sufficiently large to preclude

exhaustive key search, and
•  No known attack has data and processing

complexity significantly less than,
respectively, 2n and 2k

11 March 2015 SNCS - Introduction 62

Types of attacks

•  Attacks are classified according to what information an
adversary has access to
–  ciphertext-only attack (the least strong)
–  known-plaintext attack
–  chosen-plaintext attack (the strongest)

•  Fact. A cipher secure against chosen-plaintext attacks is
also secure against CT-only and known-PT attacks

•  Best practice. It is customary to use ciphers resistant to
a chosen-PT attack even when mounting that attack is
not practically feasible

11 March 2015 SNCS - Introduction 63

Cryptoanalysis
An historical example

Mono-alphabetic substitution

11 March 2015 SNCS - Introduction 64

Cryptoanalysis
An historical example

Mono-alphabetic substitution
•  The key is a permutation of the alphabet
•  Encryption algorithm: every cleartext character

having position p in the alphabet is substituted by
the character having the same position p in the key

•  Decryption algorithm: every ciphertext character
having position p in the key is substituted by the
character having the same position p in the cleartext

•  Number of keys = 26! – 1 � 4 ×1026
(number of seconds since universe birth!)

11 March 2015 SNCS - Introduction 65

Cryptonalysis
An historical example

•  The monoalphabetic-substitution cipher
maintains the redundancy that is present in the
cleartext

•  It can be “easily” crypto-analized with a
ciphertext-only attack
based on language
statistics

11 March 2015 SNCS - Introduction 66

Frequency of single
characters in English text

Cryptoanalysis: lesson
learned

•  Good ciphers should hide statistical properties of
the encrypted plaintext

•  The cyphertext symbols should appear to be
random

•  A large key space alone is not sufficient for
strong encryption function (necessary condition)

11 March 2015 SNCS - Introduction 67

Crypto-analysis of DES

11 March 2015 SNCS - Introduction 68

attack method data complexity storage
complexity

processing
complexity known chosen

exhaustive
precomputation — 1 256 1*

exhaustive search 1 — negligible 255

linear
cryptanalysis

243 (85%) — for texts 243

238 (10%) — for texts 250

differential
cryptanalysis

— 247 for texts 247

255 — for texts 255

* Table lookup
%: probability of success

LC is the best known analytical attack but it is considered
“unpractical”

Cryptanalysis

•  Cryptanalysis is the science and, sometimes,
the art of breaking cryptosystems
–  Classical cryptanalysis: recovering PT, or even the

key, from CT
•  Brute-force attack
•  Analytical attack

–  Implementation attack
•  Side-channel analysis (time-, power-analysis)
•  Buffer-overflow

–  Social Engineering Attacks
•  Bribing, blackmailing, tricking

11 March 2015 SNCS - Introduction 69

ENCRYPTION MODES
Symmetric Encryption

11 March 2015 SNCS - Introduction 70

Encryption Modes

•  A block cipher encrypts PT in fixed-size n-bit
blocks

•  When the PT len exceeds n bits, there are
several modes to the block cipher
–  Electronic Codebook (ECB)
–  Cipher-block Chaining (CBC)
–  Cipher-feedback (CFB)
–  Output feedback (OFB)

11 March 2015 SNCS - Introduction 71

Electronic codebook

11 March 2015 SNCS - Introduction 72

PT blocks are encrypted separately

ECB - properties

•  PROS
–  No block synchronization is required
–  No error propagation

•  One or moe bits in a single CT block affects decipherment of
that block only

–  Can be parallelized

•  CONS
–  Identical PT results in identical CT

•  ECB doesn’t hide data pattern
•  ECB allows traffic analysis

–  Blocks are encrypted separately
•  ECB allows block re-ordering and substitution

11 March 2015 SNCS - Introduction 73

ECB – block replay attack
•  Bank transaction that transfers a client U’s amount

of money D from bank B1 to bank B2
–  Bank B1 debits D to U
–  Bank B1 sends the “credit D to U” message to bank B2
–  Upon receiving the message, Bank B2 credits D to U

•  Credit message format
–  Src bank: M (12 byte)
–  Rcv banck: R (12 byte)
–  Client: C (48 byte)
–  Bank account: N (16 byte)
–  Amount of money: D (8 byte)

•  Cipher: n = 64 bit; ECB mode

11 March 2015 SNCS - Introduction 74

ECB – block replay attack

•  Mr. Lou Cipher is a client of the banks and wants to
make a fraud

•  Attack aim
–  To replay Bank B1’s message "credit 100$ to Lou Cipher"

many times

•  Attack strategy
–  Lou Cipher activates multiple transfers of 100$ so that

multiple messages "credit 100$ to Lou Cipher" are sent
from B1 to B2

–  The adversary identifies at least one of these messages
–  The adversary replies the message several times

11 March 2015 SNCS - Introduction 75

ECB – block replay attack

•  Mr. Lou Cipher performs k equal transfers
–  credit 100$ to Lou Cipher → c1
–  credit 100$ to Lou Cipher → c2
–  ...
–  credit 100$ to Lou Cipher → ck

•  Then, he searches “his own” CT in the network
–  k equal CTs!

•  Finally he replies one of these cryptograms

11 March 2015 SNCS - Introduction 76

ECB – block replay attack

•  An 8-byte timestamp field T (block #1) is added
to the message to prevent replay attacks

•  However, Mr Lou Cipher can
–  Identify “his own” CT by inspecting blocks #2-#13
–  Intercept any “fresh” CT
–  Substitute block #1 of “his own” CT with block #1 of

the intercepted “fresh” block
–  Replay the resulting CT

11 March 2015 SNCS - Introduction 77

Cipher block chaining (CBC)

11 March 2015 SNCS - Introduction 78

CBC - properties
•  Chaining dependencies: ci depends on pi and all preceding

PT blocks
•  Encryption is randomized by using IV

–  CBC is non deterministic
•  Identical ciphertext results from the same PT under the same key and IV

–  IV is a nonce

•  CT-block reordering affects decryption
•  IV can be sent in the clear but its integrity must be guaranteed
•  CBC suffers from Error propagation

–  Bit errors in ci affect decryption of ci and ci+1 (error propagation)
–  CBC is self-synchronizing (error recovery)
–  CBC does not tolerate “lost” bits (framing errors)

11 March 2015 SNCS - Introduction 79

Padding – the PKCS#5
standard

•  Padding is necessary when PT len is not a block
multiple

11 March 2015 SNCS - Introduction 80

If PT len is NOT a block multiple
Padding bytes ! #bytes to complete a
block

If PT is a block multiple
Padding = block
Each padding byte ! 8

Block

Other encryption modes
•  Other encryption modes

–  Cipher Feedback mode (CFB)
–  Output Feedback mode (OFB)
–  Counter mode (CTR)
–  Galois Counter mode (GCM)
–  and many others (e.g., CCM, CTS, …)

•  In CFB, OFB, CTR a block cipher is used as stream
cipher / pseudo-random generator

•  In GCM a block cipher guarantees confidentiality
and authentication and integrity

•  Block ciphers are very versatile components

11 March 2015 SNCS - Introduction 81

