- (B) State the assumptions under which One Time Pad (OTP) is a perfectly secure cipher.
- (C) In order for OTP to be perfectly secure, which of the following do we need to assume about the adversary?
 - a. The adversary has limited computing power.

(A) State the Shannon's definition of Perfect Security.

- b. The adversary does not know anything about the key.
- c. The adversary cannot modify the message.

EXERCISE NO. 2

EXERCISE NO. 1

NAME

The figure shows an identification protocol that allows a mobile station (MS) to identify itself w.r.t. an access point (AP) where c is a 128-bit random *challenge*, r is the corresponding *response*, and v is 24-bit random *initialization vector*.

M1	$MS \rightarrow AP$:	REQ	AP, MS generates an initialization vector v at random,
M2	$AP \rightarrow MS$:	С	computes the response r by encrypting
M3	$MS \rightarrow AP$:	v.r	c, $r = \text{SPRG}(k \ v) \Big _{128} \oplus c$, where $\text{SPRG}(k \ v) \Big _{128}$ is a 128-bit
1.10		- , -	sequence generated by a secure pseudo-random generator
M4	$AP \rightarrow MS$:	YES NO	SPRG. The generator is seeded by $k v$, where k is a long-
			term cryptographic key secretely shared by AP and MS.
pon	receiving	the respon	ise r from MS in message M3, AP computes

 $r' = \operatorname{SPRG}(k||v)|_{128} \oplus c$, and returns $r\mathfrak{l} == r$ to the user.

A. Does this protocol guarantee identification? Can a passive adversary impersonate a mobile station?

Let us suppose now that AP sends MS the initialization vector v together with the challenge c in message M2 which becomes $\langle c, v \rangle$ (v in M3 is not necessary anymore)

B. Define a *dictionary attack* against this variant of the protocol and evaluate the size in bytes of the dictionary.¹

EXERCISE NO. 3

U

We consider the basic version of Kerberos insufficient and feel the need to introduce the Ticket Granting Ticket. Explain why.

SICUREZZA DEI SISTEMI SOFTWARE (6/9 CFU) Laurea Magistrale in Ingegneria Informatica

SECURITY IN NETWORKED COMPUTING SYSTEMS

Computer Engineering

11 September 2013

_SERIAL NO. __

Upon receiving message M2 carrying a challenge C from

#MARKS: 10

#MARKS: 10

#marks: 10

¹ Hint: the initialization vector space is small and thus vectors can be reused with high likelihood.

SECURITY IN NETWORKED COMPUTING SYSTEMS Computer Engineering

11 September 2013

SOLUTION

EXERCISE #1

- A. See the theory.
- B. See the theory.
- C. The correct answer is B). Option A) is wrong because, a perfectly secure cipher is secure regardless the adversary's computing power. Option C) is wrong because OTP is malleable.

EXERCISE #2.

- A. An adversary can eavesdrop the channel, and obtains v, r an c. So it is able to determine $z = r \oplus c$, where z = SPRG(k||v). By using the pair (v, z) then the adversary is able to identify as MS w.r.t. to AP as many times he likes.
- B. As in step A, the adversary can eavesdrop the channel, and obtains v, r an c. However, now, the choice of v is not under his/her control. So (s)he has to build a dictionary (v, z). Whenever AP reuses v, the adversary is able to reuse z. The dictionary has a number of entries n that is equal to the number of initializations vectors, namely $n = 2^{24}$. Each entry must accommodate the pseudo-random sequence of bits corresponding to v. So, its size s is 16 bytes. It follows that the dictionary size S is $S = n \times s = 2^{28}$ bytes = 256 Mbytes.

EXERCISE #3.

See the theory.