SICUREZZA DEI SISTEMI SOFTWARE (6/9 CFU) Laurea Magistrale in Ingegneria Informatica

SECURITY IN NETWORKED COMPUTING SYSTEMS

Computer Engineering

20 February 2017

NAME ___

SERIAL NO.

EXERCISE NO. 1 (LMCE, LMECS)

- 1. Introduce the Diffie-Hellman key exchange scheme.
- 2. Argue about its security w.r.t. a passive adversary.
- 3. Argue about its vulnerability to the main-in-the-middle attack and propose a solution.

EXERCISE NO. 2 (LMCE)

Let us consider the modified version of the Diffie-Hellman protocol reported below and aimed at establishing a session key K_{AB} , $K_{AB} = g^{x_A x_B} mod p$, between user Alice and server Bob, with *P* a secret password shared between Alice and Bob.

$$M1 A \to B: A, \{g^{x_A} mod p\}_P$$

 $M2 B \rightarrow A$: $B, \{g^{x_B} mod p\}_P$

- 1) Which of these are drawbacks of using the protocol (argue the answer)?
 - a) It is vulnerable to offline password-dictionary attacks.
 - b) It requires server Bob to store passwords in the clear-text.
 - c) It is vulnerable to the *man-in-the-middle* attack.

(2) Does the protocol guarantees identification, i.e., *A* knows that *B* is present and/or vice versa (argue the answer)?

- A. No;
- B. Yes, A w.r.t. B;
- C. Yes, B w.r.t. A;
- D. Yes, both.

(3) Extend the protocol in order to achieve mutual authentication.

EXERCISE NO. 3 (LMCE, LMECS)

Let K_A be the public key of Alice, $S_P(x)$ be the digital signature of principal P on item x, CA be a Certification Authority (trusted by all principals of the system), and finally H a secure hash function. Which of the following certificates are useful to establish a secure channel with Alice (do not consider the validity interval)? Argue why.

- (A) "Alice" $\mid \mid S_{CA}(H(\text{"Alice"} \mid \mid K_A))$
- (B) "Alice" $|| K_A || S_A$ ("Alice" $|| K_A$)
- (C) "Alice" $|| K_A || S_{CA}$ ("Alice" $|| H(K_A)$)
- (D) "Alice" $|| K_A || S_{CA}(H("Alice" || K_A))$
- (E) "Alice" $| | K_A | | S_{CA} (K_A)$
- (F) "Alice" || K_A || S_B ("Alice" || $H(K_A)$ || "issuer: Bob") || S_{CA} ("Bob" || K_B)
- (G) "Alice" || *K*_A || *S*_B("Alice" || H(KA) || "issuer: Bob") || SCA("Bob, CA=Yes" || KB)

#marks: 12

#MARKS: 10

#marks: 8

SECURITY IN NETWORKED COMPUTING SYSTEMS

Computer Engineering

20 February 2017

SOLUTION

EXERCISE #1

See theory.

EXERCISE #2.

Question (1)

- A. The protocol is not subject to an offline dictionary attack because the plaintext of M1 is a random number.
- B. The protocol requires a server to store a password in clear-text.
- C. The protocol is not vulnerable to a MIM because the adversary does not know the password P.

Question (2)

The protocol does not guarantee identification because A does has not received any fresh material encrypted by K_{AB} at the end of the protocol, and vice versa.

Question (3)

M1	$A \rightarrow B$:	n_A
M2	$B \rightarrow A$:	$\left\{n_{\scriptscriptstyle B}, n_{\scriptscriptstyle A}, g^{x_{\scriptscriptstyle B}} \bmod p\right\}_p$
112	4 . D	(

- M3 $A \rightarrow B$: $\{n_B, g^{x_A} \mod p\}_{K_{AB}}$
- M4 $B \rightarrow A$: $\{n_B, n_A\}_{K_{AB}}$

EXERCISE #3.

- (A) It is not good because there is no way to extract Alice's public key from the certificate.
- (B) It is not good because it is a self-certified certificate.
- (C) Good
- (D) Good
- (E) It is not good because it does not link Alice's identifier "Alice" to Alice's public key K_A .
- (F) It is not good, because the Certification Authority CA (root of trust) has not delegated Bob to serve as a Certification Authority
- (G) Good. It describes a case of certificate chain where Bob has been properly delegated by the Certification Authority CA to serve as a sub-CA.