

Elements of applied cryptography

Digital Signatures

  Digital Signatures with appendix

  Digital signatures with message recovery

  Digital signatures based on RSA

© Gianluca Dini Network Security 2

Informal properties

  DEFINITION. A digital signature is a number dependent on
some secret known only to the signer and, additionally, on
the content of the message being signed

  PROPERTY. A digital signature must be verifiable, i.e., if a
dispute arises an unbiased third party must be able to solve
the dispute equitably, without requiring access to the
signer's secret

© Gianluca Dini Network Security 3

Classification

  Digital signatures with appendix
•  require the original message as input to the verification algorithm;
•  use hash functions
•  Examples: ElGamal, DSA, DSS, Schnorr

  Digital signatures with message recovery
•  do not require the original message as input to the verification

algorithm;
•  the original message is recovered from the signature itself;
•  Examples: RSA, Rabin, Nyberg-Rueppel

© Gianluca Dini Network Security 4

Digital signatures with appendix
Definitions
•  M is the message space
•  h is a hash function with domain M
•  Mh is the image of h
•  S is the signature space
Key generation
•  Alice selects a private key which defines a signing algorithm SA which is a one-to-one

mapping SA: Mh → S
•  Alice defines the corresponding public key defining the verification algorithm VA such

that VA(m*, s) = true if SA(m*) = s and false otherwise, for all m*∈ Mh and s∈S, where
m* = h(m) for m ∈ M.

•  The public key VA is constructed such that it may be computed without knowledge
of the signer’s private key SA

Digital signatures with appendix

© Gianluca Dini Network Security

The signing process
M Mh S

h SA

m m* s

Signature generation process
•  Compute m* = h(m), s = SA(m*)

•  Send (m, s)

© Gianluca Dini Network Security 6

Digital signatures with appendix

Signature verification process
•  Obtain A’s public key VA

•  Compute m* = h(m), u = VA(m*, s)

•  Accept the signature iff u = true

Mh´ S
Boolean

(m*,s) VA true

false

© Gianluca Dini Network Security 7

Digital signatures with appendix

Properties of SA and VA

•  (efficiency) SA should be efficient to compute

•  (efficiency) VA should be efficient to compute

•  (security) It should be computationally infeasible for an
entity other than A to find an m∈M and an s∈S such that
VA(m*, s) = true, where m* = h(m)

© Gianluca Dini Network Security 8

Digital signature with message recovery

Definitions
•  M is the message space
•  MS is the signing space
•  S is the signature space
Key generation
•  A selects a private key defining a signing algorithm SA which is a

one-to-one mapping SA: MS → S
•  A defines the corresponding public key defining the verification

algorithm VA such that VA•SA is identity map on MS.
•  The public key VA is constructed such that it may be computed

without knowledge of the signer’s private key SA

Digital signature with message recovery

© Gianluca Dini Network Security

The signing process

M

MS

S

R SA

m m* s

MR

• Compute m* = R(m), R is a redundancy function (invertible)

• Compute s = SA(m*)

Digital signature with message recovery

© Gianluca Dini Network Security

•  Obtain authentic public key VA

•  Compute m* = V(s)
► Verify if m* ∈ MS (if not, reject the signature)
•  Recover the message m = R-1(m*)

The signing process

M

MS

S

R SA

m m* s

MR

© Gianluca Dini Network Security 11

Digital signatures with message recovery

Properties of SA and VA

•  (efficiency) SA should be efficient to compute

•  (efficiency) VA should be efficient to compute

•  (security) It should be computationally infeasible for an
entity other than A to find an s ∈ S such that VA(s) ∈ MR

© Gianluca Dini Network Security 12

Digital signatures with message recovery
The redundancy function

•  R and R-1 are publicly known

•  Selecting an appropriate R is critical to the security of the system

An example of bad redundancy function leading to existential forgery

•  Let us suppose that MR ≡ MS

•  R and SA are bijections, therefore M and S have the same number of
elements

•  Therefore, for all s ∈ S, VA(s) ∈ MR. Therefore, it is “easy” to find an
m for which s is the signature, m = R-1(VA(s))

•  s is a valid signature for m (existential forgery)

© Gianluca Dini Network Security 13

Digital signatures with message recovery

A good redundancy function although too redundant

•  Example

•  M = {m : m ∈ {0, 1}n}, MS = {m : m ∈ {0, 1}2n}

•  R: M → MS, R(m) = m||m (concatenation)

•  MR ⊆ MS

•  When n is large, |MR|/|MS| = (1/2)n is small. Therefore, for an
adversary it is unlikely to choose an s that yields VA(s)∈MR

•  ISO/IEC 9776 is an international standard that defines a redundancy
function for RSA and Rabin

© Gianluca Dini Network Security 14

Dig. sign. with appendix from message recovery

  Signature generation
•  Compute m* = R(h(m)), s = SA(m*)
•  A’s digital signature for m is s
∀ 〈m, s〉 are made available to anyone who may wish to verify the signature

  Signature verification
•  Obtain A’s public key VA

•  Compute m* = R(h(m)), m′ = VA(s), and u = (m′ == m*)
•  Accept the signature iff u = true

  Comment
•  R is not security critical anymore and can be any one-to-one mapping

© Gianluca Dini Network Security 15

Types of attacks

BREAKING A SIGNATURE

1.  Total break – adversary is able to compute the signer’s

private key

2.  Selective forgery – adversary controls the messages whose

signature is forged

3.  Existential forgery – adversary has no control on the

messages whose signature is forged

© Gianluca Dini Network Security 16

Types of attacks

BASIC ATTACKS
  KEY-ONLY ATTACKS – adversary knows only the signer’s

public key
  MESSAGE ATTACKS

a.  known-message attack
 An adversary has signatures for a set of messages which are
known by the adversary but not chosen by him

a.  chosen-message attack
 In this case messages are chosen by the adversary

b.  adaptive chosen-message attack
 In this case messages are adaptively chosen by the adversary

© Gianluca Dini Network Security 17

Attacks: considerations

  Adaptive chosen-message attack
•  It is the most difficult attack to prevent
•  Although an adaptive chosen-message attack may be infeasible to mount in practice, a

well-designed signature scheme should nonetheless be designed to protect against the
possibility

  The level of security may vary according to the application
•  Example 1. When an adversary is only capable of mounting a key-only attack, it may

suffice to design the scheme to prevent the adversary from being successful at selective
forgery.

•  Example 2. When the adversary is capable of a message attack, it is likely necessary to
guard against the possibility of existential forgery.

© Gianluca Dini Network Security 18

Attacks: considerations

  Hash functions and digital signature processes
•  When a hash function h is used in a digital signature scheme (as is often

the case), h should be a fixed part of the signature process
so that an adversary is unable to take a valid signature, replace h with a
weak hash function, and then mount a selective forgery attack.

•  Example. Let 〈m, s〉 where s = SA(h(m)) .
Let adversary be able to replace h with a weaker hash function g that is
vulnerable to selective forgery.
Then the adversary can

1.  determine m′ such that g(m′) = h(m); and
2.  replace m with m′

© Gianluca Dini Network Security 19

Digital signatures based on RSA

© Gianluca Dini Network Security 20

Introductory comments

  Since the encryption transformation is a bijection, digital
signatures can be created by reversing the roles of
encryption and decryption

  Digital signature with message recovery
  MS ≡ S ≡ Vn

  A redundancy function R: M →Vn is chosen and is public
knowledge

© Gianluca Dini Network Security 21

Key generation

1.  Generate two large, distinct primes p, q (100÷200
decimal digits)

2.  Compute n = p×q and φ = (p-1)×(q-1)

3.  Select a random number 1 < e < φ such that gcd(e, φ) = 1

4.  Compute the unique integer 1 < d < φ such that
ed ≡ 1 mod φ

5.  (d, n) is the private key

6.  (e, n) is the public key

At the end of key generation, p and q must be destroyed

© Gianluca Dini Network Security 22

Signature generation and verification

Signature generation. In order to sign a message m, A does
the following

1.  Compute m* = R(m) an integer in [0, n–1]
2.  Compute s = m*d mod n
3.  A’s signature for m is s

Signature verification. In order to verify A’s signature s and
recover message m, B does the following

1.  Obtain A’s authentic public key (e, n)
2.  Compute m* = se mod n
3.  Verify that m* is in MR; if not reject the signature
4.  Recover m = R-1(m*)

© Gianluca Dini Network Security 23

Proof that verification works

  Theorem. If s is a signature for a message m, then s =
m*d mod n where m* = R(m).

  Proof.

  Since ed = 1 (mod φ), se = m*ed = m* (mod n).
Finally, R-1(m*) = R-1(R(m)) = m.

© Gianluca Dini Network Security 24

Possible attacks

  Integer factorization
  Factorization of n lead to total break.

  A should choose p and q so that factoring n is a
computationally infeasible task

  Multiplicative property of RSA: requirement on R
  A necessary condition for avoiding existential forgery is that R

must not satisfy the multiplicative property.

© Gianluca Dini Network Security 25

RSA signature in practice

Reblocking problem. If Alice wants to send Bob a secret and signed
message to Bob then it must be nA < nB

  There are various ways to solve the problem
•  reordering: the operation with the smaller modulus is

performed first; however the preferred order is always to sign
first and encrypt later

•  two moduli for entity: each entity has two moduli; moduli for
signing (e.g., t-bits) are always smaller of all possible moduli
for encryption (e.g., t+1-bits)

•  ad-hoc format of the moduli

© Gianluca Dini Network Security 26

RSA signature in practice

  Redundancy function
•  A suitable redundancy function is necessary in order to avoid

existential forgery
•  IOS/IEC 9796 (1991) defines a mapping that takes a k-bit

integer and maps it into a 2k-bits integer

  The RSA digital signature scheme with appendix
•  MD5 (128 bit)
•  PKCS#1 specifies a redundancy function mapping 128-bit

integer to a k-bit integer, where k is the modulus size (k ≥ 512,
k = 768, 1024)

© Gianluca Dini Network Security 27

RSA signature in practice

  Performance characteristics
•  Let p= q= k then
•  signature generation requires O(k3) bit operations
•  signature verification, in the case of small public exponent,

requires O(k2) bit operations
•  Suggested value for e in practice are 3 and 216+1. Of course, p and q

must be chosen so that gcd(e, (p – 1)(q – 1)) = 1.
•  The RSA signature scheme is ideally suited to situations where

signature verification is the predominant operation being
performed.

•  Example. A trusted third party creates a public-key certificate for an entity
A. This requires only one signature generation, and this signature may be
verified many times by various other entities

© Gianluca Dini Network Security 28

RSA signature in practice

  Parameter selection
•  bitsize of the modulus: miminum 768; at least 1024 for signatures of

longer lifetime or critical for overall security of a large network (i.e.,
the private key of a certification authority)

•  No weaknesses have been reported when the public exponent e is
chosen to be a small number such as 3 or 216+1.

•  It is not recommended to restrict the size of the private exponent d in
order to improve the efficiency of signature generation

  Bandwidth efficiency
•  By definition, BWE = log2 (MS) / log2 (MR)
•  For (RSA, ISO/IEC 9796), BWE = 0.5, that is, with a 1024-bits

modulus can be signed 512-bits messages

© Gianluca Dini Network Security 29

RSA signature in practice

  System wide parameters
•  Each entity must have a distinct RSA modulus; it is insecure to

use a system-wide modulus
•  The public exponent e can be a system-wide parameter, and is

in many applications. In this case, the low exponent attack must
be considered

  Short vs. long messages
•  Suppose n is a 2k-bit RSA modulus which is used to sign k-bit

messages (i.e., BWE is 0.5)
•  Suppose entity A wishes to sign a kt-bit message m
•  For t = 1 RSA with message recovery is more efficient;
•  For t > 1, RSA with appendix is more efficient

RSA, hash functions and forgery

•  Digital signature and preimage resistance
•  Go to here.

© Gianluca Dini Network Security

DIGITAL SIGNATURES BASED
ON ELGAMAL

© Gianluca Dini Network Security

© Gianluca Dini Network Security 32

ElGamal’s digital signature

Discrete Logarithm Systems
  Let p be a prime, q a prime divisor of p–1 and g∈[1, p–1]

has order q

  Let x be the private key selected at random from [1, q–1]

  Let y be the corresponding public key y = gx mod p

Discrete Logarithm Problem (DLP)
  Given (p, q, g) and y, determine x

© Gianluca Dini Network Security 33

ElGamal’s digital signature

  Signature
•  select k ∈ Zp–1

* randomly
•  r = gk mod p, s = (h(m)–xr)k–1 mod (p–1)
•  The pair (r, s) is the digital signature for m

  Verification
•  Verify that 1 ≤ r ≤ p–1; if not reject the signature
•  Compute v1 = yrrs mod p
•  Compute h(m) and v2 = gh(m) mod p
•  Accept the signature only if v1 = v2.

© Gianluca Dini Network Security 34

ElGamal’s digital signature

Proof

  If the digital signature (r, s) has been produced by Alice
then s = (h(m)–xr)k–1 mod (p–1).

  Multiplying both sides by k gives ks = (h(m)–xr) mod (p–
1). Rearranging yields h(m)≡ks+xr mod (p–1).

  This implies that gh(m) ≡ gar+ks ≡ (gx)rrs mod p

  Thus v1 = v2 as required.

© Gianluca Dini Network Security 35

ElGamal’s digital signature
Security

  In order to forge a signature, an adversary can select k at random,
compute r = gk mod p. Than he has to compute s = (h(m)–xr)k–1 mod (p–
1). If the DLP is computationally infeasible, the adversary can do no better
than to choose an s at random; the success probability is 1/p which is
negligible for large p.

  A different k must be selected for different messages otherwise the secret
key x can be revealed

  If no hash function h is used, an adversary can easily mount an existential
forgery attack.

  If the check on r is not done, an adversary can sign messages of its choice
provided it has one valid signature produced by Alice

AUTHENTICATION VS
NON-REPUDIATION

© Gianluca Dini Network Security

© Gianluca Dini Network Security 37

Non-repudiation

  Non-repudiation prevents a signer from signing a document and
subsequently being able to successfully deny having done so.

  Non-repudiation vs authentication of origin
•  Authentication (based on symmetric cyptography) allows a party to

convince itself or a mutually trusted party of the integrity/authenticity
of a given message at a given time t0

•  Non-repudiation (based on public-key cyptography) allows a party to
convince others at any time t1 ≥ t0 of the integrity/authenticity of a given
message at time t0

 Alice’s digital signature for a given message depends on the message and
a secret known to Alice only (the private key)

© Gianluca Dini Network Security 38

Non-repudiation

  Data origin authentication as provided by a digital signature is valid only
while the secrecy of the signer’s private key is maintained

  A threat that must be addressed is a signer who intentionally discloses his
private key, and thereafter claims that a previously valid signature was
forged

  This threat may be addressed by
•  preventing direct access to the key
•  use of a trusted timestamp agent
•  use of a trusted notary agent

© Gianluca Dini Network Security 39

Thanks for attention!

