Elements of applied cryptography

Digital Signatures

- Digital Signatures with appendix
- Digital signatures with message recovery
- Digital signatures based on RSA

Informal properties

- DEFINITION. A digital signature is a number dependent on some secret known only to the signer and, additionally, on the content of the message being signed
- PROPERTY. A digital signature must be verifiable, i.e., if a dispute arises an unbiased third party must be able to solve the dispute equitably, without requiring access to the signer's secret

Classification

Digital signatures with appendix

- require the original message as input to the verification algorithm;
- use hash functions
- Examples: **ElGamal, DSA, DSS**, Schnorr

Digital signatures with message recovery

- do not require the original message as input to the verification algorithm;
- the original message is recovered from the signature itself;
- Examples: RSA, Rabin, Nyberg-Rueppel

Definitions

- *M* is the message space
- h is a hash function with domain M
- M_h is the image of h
- S is the signature space

Key generation

- Alice selects a private key which defines a **signing algorithm** S_A which is a **one-to-one** mapping $S_A: M_h \to S$
- Alice defines the corresponding public key defining the *verification algorithm* V_A such that $V_A(m^*, s) = true$ if $S_A(m^*) = s$ and false otherwise, for all $m^* \in M_h$ and $s \in S$, where $m^* = h(m)$ for $m \in M$.
- The <u>public key V_A</u> is constructed such that it may be computed without knowledge of the signer's <u>private key S_A</u>

The signing process

Signature generation process

- Compute m* = h(m), s = S_A(m*)
- Send (m, s)

Signature verification process

- Obtain A's public key V_A
- Compute m* = h(m), u = V_A(m*, s)
- Accept the signature iff u = true

Properties of S_A and V_A

- (efficiency) S_A should be efficient to compute
- (efficiency) V_A should be efficient to compute
- (security) It should be computationally infeasible for an entity other than A to find an m \in M and an s \in S such that $V_A(m^*, s) = true$, where $m^* = h(m)$

Digital signature with message recovery

Definitions

- M is the message space
- M_s is the signing space
- S is the signature space

Key generation

- A selects a private key defining a signing algorithm S_A which is a one-to-one mapping S_A: M_S → S
- A defines the corresponding public key defining the *verification* algorithm V_A such that V_A•S_A is identity map on M_S.
- The <u>public key V_A</u> is constructed such that it may be computed without knowledge of the signer's <u>private key S_A</u>

Digital signature with message recovery

The signing process

- Compute $m^* = R(m)$, R is a **redundancy function** (invertible)
- Compute $s = S_A(m^*)$

Digital signature with message recovery

The signing process

- Obtain authentic public key V_A
- Compute $m^* = V(s)$
- ightharpoonup Verify if $m^* \in M_S$ (if not, reject the signature)
- Recover the message $m = R^{-1}(m^*)$

Digital signatures with message recovery

Properties of S_A and V_A

- (efficiency) S_A should be efficient to compute
- (efficiency) V_A should be efficient to compute
- (security) It should be **computationally infeasible** for an entity other than A to find an $s \in S$ such that $V_A(s) \in M_R$

Digital signatures with message recovery

The redundancy function

- R and R⁻¹ are publicly known
- Selecting an appropriate R is critical to the security of the system

An example of bad redundancy function leading to existential forgery

- Let us suppose that $M_R \equiv M_S$
- R and S_A are bijections, therefore M and S have the same number of elements
- Therefore, for all $s \in S$, $V_A(s) \in M_R$. Therefore, it is "easy" to find an m for which s is the signature, $m = R^{-1}(V_A(s))$
- s is a valid signature for m (existential forgery)

Digital signatures with message recovery

A good redundancy function although too redundant

- Example
 - $M = \{m : m \in \{0, 1\}^n\}, M_S = \{m : m \in \{0, 1\}^{2n}\}$
 - R: M \rightarrow M_S, R(m) = m||m (concatenation)
 - $M_R \subseteq M_S$
 - When n is large, $|M_R|/|M_S| = (1/2)^n$ is small. Therefore, for an adversary it is unlikely to choose an s that yields $V_A(s) \subseteq M_R$
- ISO/IEC 9776 is an international standard that defines a redundancy function for RSA and Rabin

Dig. sign. with appendix from message recover

Signature generation

- Compute $\mathbf{m}^* = R(h(m))$, $s = S_A(m^*)$
- A's digital signature for m is s

 $\forall \langle m, s \rangle$ are made available to anyone who may wish to verify the signature

Signature verification

- Obtain A's public key V_A
- Compute $m^* = R(h(m))$, $m' = V_A(s)$, and $u = (m' == m^*)$
- Accept the signature iff *u* = true

Comment

• **R** is not security critical anymore and can be **any** one-to-one mapping

Types of attacks

BREAKING A SIGNATURE

- Total break adversary is able to compute the signer's private key
- 2. Selective forgery adversary controls the messages whose signature is forged
- Existential forgery adversary has no control on the messages whose signature is forged

Types of attacks

BASIC ATTACKS

- KEY-ONLY ATTACKS adversary knows only the signer's public key
- MESSAGE ATTACKS
 - a. known-message attack

An adversary has signatures for a set of messages which are known by the adversary but not chosen by him

a. <u>chosen-message attack</u>

In this case messages are chosen by the adversary

b. adaptive chosen-message attack

In this case messages are adaptively chosen by the adversary

Attacks: considerations

Adaptive chosen-message attack

- It is the most difficult attack to prevent
- Although an adaptive chosen-message attack may be infeasible to mount in practice, a
 well-designed signature scheme should nonetheless be designed to protect against the
 possibility

The level of security may vary according to the application

- Example 1. When an adversary is only capable of mounting a key-only attack, it may
 suffice to design the scheme to prevent the adversary from being successful at selective
 forgery.
- **Example 2**. When the adversary is capable of a message attack, it is likely necessary to guard against the possibility of existential forgery.

Attacks: considerations

Hash functions and digital signature processes

- When a hash function h is used in a digital signature scheme (as is often the case), h should be a fixed part of the signature process so that an adversary is unable to take a valid signature, replace h with a weak hash function, and then mount a selective forgery attack.
- Example. Let $\langle m, s \rangle$ where $s = S_A(h(m))$. Let adversary be able to replace h with a weaker hash function g that is vulnerable to selective forgery.

Then the adversary can

- 1. determine m' such that g(m') = h(m); and
- 2. replace m with m'

Digital signatures based on RSA

Introductory comments

- Since the encryption transformation is a bijection, digital signatures can be created by reversing the roles of encryption and decryption
- Digital signature with message recovery
- $M_S \equiv S \equiv V_n$
- A redundancy function R: M → V_n is chosen and is public knowledge

Key generation

- 1. Generate two **large**, **distinct primes** *p*, *q* (100÷200 decimal digits)
- 2. Compute $n = p \times q$ and $\phi = (p-1) \times (q-1)$
- 3. Select a **random number** $1 < e < \phi$ such that $gcd(e, \phi) = 1$
- 4. Compute the **unique** integer $1 < d < \phi$ such that $ed \equiv 1 \mod \phi$
- 5. (d, n) is the private key
- 6. (*e*, *n*) is the public key

At the end of key generation, p and q must be destroyed

Signature generation and verification

Signature generation. In order to sign a message m, A does the following

- 1. Compute $m^* = R(m)$ an integer in [0, n-1]
- 2. Compute $s = m^{*d} \mod n$
- 3. A's signature for m is s

Signature verification. In order to verify A's signature s and recover message m, B does the following

- 1. Obtain A's authentic public key (e, n)
- 2. Compute $m^* = s^e \mod n$
- 3. Verify that m^* is in M_R ; if not reject the signature
- 4. Recover $m = R^{-1}(m^*)$

Proof that verification works

- **Theorem**. If s is a signature for a message m, then s = m*d mod n where m* = R(m).
- Proof.
 - Since ed = 1 (mod ϕ), se = m*ed = m* (mod n). Finally, R⁻¹(m*) = R⁻¹(R(m)) = m.

Possible attacks

Integer factorization

- Factorization of *n* lead to total break.
- A should choose p and q so that factoring n is a computationally infeasible task

Multiplicative property of RSA: requirement on R

A necessary condition for avoiding existential forgery is that R
must not satisfy the multiplicative property.

Reblocking problem. If Alice wants to send Bob a secret and signed message to Bob then it must be $n_A < n_B$

- There are various ways to solve the problem
 - reordering: the operation with the smaller modulus is performed first; however the preferred order is always to sign first and encrypt later
 - **two moduli for entity**: each entity has two moduli; moduli for signing (e.g., t-bits) are always smaller of all possible moduli for encryption (e.g., t+1-bits)
 - ad-hoc format of the moduli

Redundancy function

- A suitable redundancy function is necessary in order to avoid existential forgery
- IOS/IEC 9796 (1991) defines a mapping that takes a k-bit integer and maps it into a 2k-bits integer
- The RSA digital signature scheme with appendix
 - MD5 (128 bit)
 - PKCS#1 specifies a redundancy function mapping 128-bit integer to a k-bit integer, where k is the modulus size (k ≥ 512, k = 768, 1024)

Performance characteristics

- Let |p|= |q|= k then
- signature generation requires O(k³) bit operations
- signature verification, in the case of small public exponent, requires O(k²) bit operations
- Suggested value for e in practice are 3 and 2¹⁶+1. Of course, p and q must be chosen so that gcd(e, (p − 1)(q − 1)) = 1.
- The RSA signature scheme is ideally suited to situations where signature verification is the predominant operation being performed.
 - Example. A trusted third party creates a public-key certificate for an entity
 A. This requires only one signature generation, and this signature may be verified many times by various other entities

Parameter selection

- bitsize of the modulus: miminum 768; at least 1024 for signatures of longer lifetime or critical for overall security of a large network (i.e., the private key of a certification authority)
- No weaknesses have been reported when the public exponent e is chosen to be a small number such as 3 or 2¹⁶+1.
- It is not recommended to restrict the size of the private exponent d in order to improve the efficiency of signature generation

Bandwidth efficiency

- By definition, BWE = $log2 (|M_S|) / log2 (|M_R|)$
- For (RSA, ISO/IEC 9796), BWE = 0.5, that is, with a 1024-bits modulus can be signed 512-bits messages

System wide parameters

- Each entity must have a distinct RSA modulus; it is insecure to use a system-wide modulus
- The public exponent e can be a system-wide parameter, and is in many applications. In this case, the low exponent attack must be considered

Short vs. long messages

- Suppose n is a 2k-bit RSA modulus which is used to sign k-bit messages (i.e., BWE is 0.5)
- Suppose entity A wishes to sign a kt-bit message m
- For t = 1 RSA with message recovery is more efficient;
- For t > 1, RSA with appendix is more efficient

RSA, hash functions and forgery

- Digital signature and preimage resistance
 - Go to here.

DIGITAL SIGNATURES BASED ON ELGAMAL

Discrete Logarithm Systems

- Let p be a prime, q a prime divisor of p−1 and g∈[1, p−1] has order q
- Let x be the *private key* selected at random from [1, *q*–1]
- Let y be the corresponding public key $y = g^x \mod p$

Discrete Logarithm Problem (DLP)

• Given (p, q, g) and y, determine x

Signature

- select $k \in \mathbb{Z}_{p-1}^*$ randomly
- $r = g^k \mod p$, $s = (h(m)-xr)k^{-1} \mod (p-1)$
- The pair (*r*, *s*) is the digital signature for *m*

Verification

- Verify that $1 \le r \le p-1$; if not reject the signature
- Compute $v_1 = y^r r^s \mod p$
- Compute h(m) and $v_2 = g^{h(m)} \mod p$
- Accept the signature only if $v_1 = v_2$.

Proof

- If the digital signature (r, s) has been produced by Alice then $s = (h(m)-xr)k^{-1} \mod (p-1)$.
- Multiplying both sides by k gives ks = (h(m)-xr) mod (p-1).
 Rearranging yields h(m)=ks+xr mod (p-1).
- This implies that $g^{h(m)} \equiv g^{ar+ks} \equiv (g^x)^r r^s \mod p$
- Thus $v_1 = v_2$ as required.

Security

- In order to forge a signature, an adversary can select k at random, compute r = g^k mod p. Than he has to compute s = (h(m)−xr)k⁻¹ mod (p−1). If the DLP is computationally infeasible, the adversary can do no better than to choose an s at random; the success probability is 1/p which is negligible for large p.
- A different k must be selected for different messages otherwise the secret key x can be revealed
- If no hash function h is used, an adversary can easily mount an existential forgery attack.
- If the check on *r* is not done, an adversary can sign messages of its choice provided it has one valid signature produced by Alice

AUTHENTICATION VS NON-REPUDIATION

Non-repudiation

- Non-repudiation prevents a signer from signing a document and subsequently being able to successfully deny having done so.
- Non-repudiation vs authentication of origin
 - Authentication (based on symmetric cyptography) allows a party to convince **itself** or a **mutually trusted party** of the integrity/authenticity of a given message at a given time t_0
 - Non-repudiation (based on public-key cyptography) allows a party to convince **others** at any time $t_1 \ge t_0$ of the integrity/authenticity of a given message at time t_0

Alice's digital signature for a given message depends on the message and a secret known to Alice only (the private key)

Non-repudiation

- Data origin authentication as provided by a digital signature is valid only while the secrecy of the signer's private key is maintained
- A threat that must be addressed is a signer who intentionally discloses his private key, and thereafter claims that a previously valid signature was forged
- This threat may be addressed by
 - preventing direct access to the key
 - use of a trusted timestamp agent
 - use of a trusted notary agent

Thanks for attention!