
Network Security

Elements of Applied Cryptography
Public key encryption

  Public key cryptosystem

 RSA and the factorization problem

 RSA in practice

 Other asymmetric ciphers

© Gianluca Dini Network Security 2

Asymmetric Encryption Scheme

{ }
{ }

Encryption transformations : : , :

Decryption transformations : : , :
e e

d d

E e E

D d D

∈ →

∈ →

K M C

K C M

Let us consider two families of algorithms representing invertible
transformations:

such that:

I.  ∀ e ∈ K, ∃ a unique d ∈ K, such that Dd is the inverse of Ee

II.  ∀ m ∈ M, ∀ c ∈ C, Ee(m) and Dd(c) are easy to compute
III.  Known e ∈ K and c ∈ C, it is computationally infeasible to find the

message m ∈ M such that Ee(m) = c
IV.  Known e ∈ K, it is computationally infeasible to determine the

corresponding key d

© Gianluca Dini Network Security 3

Public key encryption

Because of properties III and IV,

  decryption key d MUST be kept secret

  encryption key e CAN be made public without
compromising the security of the decryption key

© Gianluca Dini Network Security 4

2-party comm with asymmetric encryption

key source

Dd(m)

m

Ee(c)

m

Alice Bob

c

e

unsecure channel

adversary

unsecure channel

  The encryption key e can be sent on the same channel on which the
ciphertext c is being transmitted

  It is necessary to authenticate public keys to achieve data origin
authentication of the public keys themselves

d

© Gianluca Dini Network Security 5

Types of attack

Objectives of adversary
•  break the system: recover plaintext from ciphertext
•  completely break the system: recover the key

Types of attacks
•  No asymmetric cipher is perfect
•  Since the encryption keys are public knowledge, a passive

adversary can always mount a chosen-plaintext attack
•  A stronger attack is a chosen-ciphertext attack where

an active adversary selects ciphertext of its choice, and
then obtains by some means (from the victim) the
corresponding plain-tex

© Gianluca Dini

THE RSA CRYPTOSYSTEM
A case study

Network Security 6

© Gianluca Dini Network Security 7

Rivest Shamir Adleman (1978)

Key generation
1.  Generate two large, distinct primes p, q (100÷200 decimal

digits)
2.  Compute n = p×q and φ = (p-1)×(q-1)
3.  Select a random number 1 < e < φ such that gcd(e, φ) = 1
4.  Compute the unique integer 1 < d < φ such that

ed ≡ 1 mod φ
5.   (d, n) is the private key
6.   (e, n) is the public key

At the end of key generation, p and q must be destroyed

© Gianluca Dini Network Security 8

RSA encryption and decryption

Encryption. To generate c from m, Bob should do the following
1.  Obtain A's authentic public key (n, e)
2.  Represent the message as an integer m in

the interval [0, n-1] (0 ≤ m < n)
3.  Compute c =me mod n
4.  Send c to A

Decryption. To recover m from c, Alice should do the following
1.  Use the private key d to recover m = cd mod n

© Gianluca Dini Network Security 9

Example with artificially small numbers
Key generation
  Let p = 47 e q = 71

 n = p × q = 3337
 φ= (p-1) × (q-1)= 46 ×70 = 3220

  Let e = 79
 ed ≡ 1 mod φ(n)
 79× d ≡ 1 mod 3220
 d = 1019

Encryption
Let m = 9666683
Divide m into blocks mi < n
m1 = 966; m2 = 668; m3 = 3
Compute
c1 = 96679 mod 3337 = 2276
c2 = 66879 mod 3337 = 2423
c3 = 379 mod 3337 = 158
c = c1c2c3 = 2276 2423 158
Decryption
m1 = 22761019 mod 3337 = 966
m2 = 24231019 mod 3337 = 668
m3 = 1581019 mod 3337 = 3
m = 966 668 3

© Gianluca Dini Network Security 10

How to encrypt/decrypt efficiently

  Let a and b be two k-bit integers
•  a + b can be done in time O(k)
•  a × b can be done in O(k2)

  Let c be an (at most) 2k-bit integer
•  c mod a can be done in O(k2)

  Let d be a k-bit integer
•  a × b mod d can be done in O(k2)

© Gianluca Dini Network Security 11

How to encrypt/decrypt efficiently

  Let a and b be two k-bit integers
•  Addition a + b can be done in time O(k)
•  Subtraction a – b can be can be done in time O(k)
•  Multiplication a × b can be done in O(k2)
•  Division a = q × b + r can be done in time O(k2)

© Gianluca Dini Network Security 12

How to encrypt/decrypt efficiently

  Bit complexity of basic operations in Zn

Operation Bit complexity
Modular Addition (a + b) mod n O(log n)
Modular Subtraction (a – b) mod n O(log n)
Modular Multiplication (a × b) mod n O((log n)2)
Modular inversion a-1 mod n O((log n)2)
Modular exponentiation ak mod n, k < n O((log n)3)

© Gianluca Dini Network Security 13

How to encrypt/decrypt efficiently

  RSA requires modular exponentiation cd mod n
•  Let n have k bits in its binary representation, k = log n + 1

  Grade-school algorithm requires (d-1) modular multiplications
•  d is as large as φ which is exponentially large with respect to k
•  The grade-school algorithm is inefficient

  Square-and-multiply algorithm requires 2r modular multiplications
where r is the number of bits in the binary representation of d

•  As r ≤ k then the algorithm can be done in O(k3)

© Gianluca Dini Network Security 14

How to encrypt and decrypt efficiently
Exponentiation by repeated squaring and multiplication: me mod n
requires at most 2log2(e) multiplications and 2log2(e) divisions

Let ek-1, ek-2, …, e2, e1, e0, where k = log2 e, the binary representation of e

()

()

()

()()

− −
− −

− −
− −

− −
− −

− −
− −

− −

+ + + + +
= ≡

≡

≡

  ≡ 
 

  
     

L

L

L

L

L

1 2 2
1 2 2 1 0

1 2 2
01 2 2 1

2 3
01 2 2 1

3 4
01 2 2 1

01 2 2 1

2 2 2 2

2 2 2 2

2
2 2 2

22
2 2

2222

mod mod

mod

mod

mod

mod

k k
k k

k k
k k

k k
k k

k k
k k

k k

e e e e ee

ee e e e

ee e e e

ee e e e

ee e e e

m n m n

m m m m m n

m m m m m n

m m m m m n

m m m m m n

c ← 1
for (i = k-1; i >= 0; i --) {

 c ← c2 mod n;
 if (ei == 1)
 c ← c×m mod n;

}
•  always k square operations

•  at most k modular multiplications
(equal to the number of 1 in the binary
representation of e)

© Gianluca Dini Network Security 15

How to find a large prime

repeat
 b ← randomOdd();

until isPrime(b);

 Primality tests do not try to factor the number under test
•  probabilistic primality test (Solovay-Strassen, Miller-Rabin)

polynomial in log n
•  true primality test (O(n12) in 2002))

On average (log x)/2 odd numbers must be tested
before a prime b < x can be found

  Given e, d can be computed efficiently by means of the extended
Euclid algorithm

  It follows that keys can be generated efficiently (polytime)

© Gianluca Dini Network Security 16

Factoring
  FACTORING. Given n > 0, find its prime factorization; that is, write

 where pi are pairwise distinct primes and each ei ≥ 1,

  Primality testing vs. factoring. Deciding whether an integer is composite or
prime seems to be, in general, much easier than the factoring problem

  Factoring algorithms
•  Brute force
•  Special purpose
•  General purpose
•  Elliptic Curve
•  Factoring on Quantum Computer

(for the moment only a theorethical construct)

= L1 2
1 2

ke e e
kn p p p

© Gianluca Dini Network Security 17

Factoring algorithms
  Brute Force

•  Unfeasible if n large and p=q

  General purpose
•  the running times depend solely on the size of n
•  Quadratic sieve
•  General number field sieve

  Special purpose
•  the running times depend on certain properties of n (lead to the introduction of strong

primes)
•  Trial division
•  Pollard's rho algorithm
•  Pollard's p - 1 algorithm

  Elliptic curve algorithm

© Gianluca Dini Network Security 18

Running times

Trial division: ()O n

Quadratic sieve: () ()()()•ln lnlnn nO e

General number field sieve:
() ()() × • 

 
 
 
 

231.923 ln lnlnn n
O e

© Gianluca Dini Network Security 19

Security of RSA

The RSA Problem (RSAP)
  DEFINITION. The RSA Problem (RSAP): recovering plaintext m

from ciphertext c, given the public information (n, e)

  FACT. RSAP ≤P FACTORING
•  FACTORING is at least as difficult as RSAP or, equivalently,
•  RSAP is not harder than FACTORING

  It is widely believed that the RSA and the integer factorization
problems are computationally equivalent, although no proof of
this is known.

© Gianluca Dini Network Security 20

Security of RSA

RSAP from yet another viewpoint…
•  A possible way to decrypt c = me mod n is to compute the e-th

root of c
•  Computing the e-th root is a computationally easy problem

iff n is prime
•  If n is not prime the problem of computing the

e-th root is equivalent to factoring

© Gianluca Dini Network Security 21

Security of RSA

Relationship between Factoring and totally breaking
RSA

•  A possible way to completely break RSA is to discover Φ(n)
•  Computing Φ(n) is computationally equivalent to

factoring n
•  Given p and q, s.t. n =pq, computing Φ(n) is immediate.
•  Let Φ(n) be given.

From Φ(n) = (p-1)(q-1) = n – (p+q) + 1, determine x1 = (p+q).
From (p – q)2 = (p + q)2 – 4n, determine x2 = (p – q).
Finally, p = (x1 + x2)/2 and q = (x1 – x2)/2.

© Gianluca Dini Network Security 22

Security of RSA

•  A possible way to completely break RSA is an exhaustive attack
to the private key d

•  This attack could be more difficult than factoring because,
according to the choice for e, d can be much greater than p and
q.

© Gianluca Dini Network Security 23

Security of RSA: relation to factoring

  The problem of computing the RSA decryption exponent d from
the public key (n, e) and the problem of factoring n are
computationally equivalent

  If the adversary could somehow factor n, then he could
subsequently compute the private key d efficiently

  If the adversary could somehow compute d, then it could
subsequently factor n efficiently

© Gianluca Dini Network Security 24

RSA in practice

  RSA is substantially slower than symmetric encryption
•  RSA is used for the transport of symmetric-keys and for the encryption

of small quantities

  Recommended size of the modulus
•  512 bit: marginal security
•  768 bit: recommended
•  1024 bit: long-term security

© Gianluca Dini Network Security 25

RSA in practice

Selecting primes p and q
•  p and q should be selected so that factoring

n = pq is computationally infeasible, therefore

•  p and q should be sufficiently large and about the
same bitlenght (to avoid the elliptic curve factoring
algorithm)

•  p - q should be not too small

© Gianluca Dini Network Security 26

RSA in practice

  Exponent e should be small or with a small number of 1's
•  e = 3

[1 modular multiplication + 1 modular squaring]
subject to small encryption exponent attack

•  e = 216 + 1 (Fermat's number)
[1 modular multiplication + 16 modular squarings]
resistant to small encryption exponent attacks

  Decryption exponent d should be roughly the same size as n
•  Otherwise, if d is small, it could be possible to obtain d from the public

information (n, e) or from a brute force attack

© Gianluca Dini Network Security 27

RSA: low exponent attack

(n1, 3)

(n2, 3)

(n3, 3)

ci = m3 mod ni

c1

c2

c3

1 1

2 2

3 3

mod
mod
mod

x c n
x c n
x c n

≡


≡
 ≡

•  If n1, n2 ed n3 are pairwise coprime,
use CRT to find x = m3 mod n1n2n3

•  As m < ni by RSA encryption
definition then

•  m3 < n1n2n3, then x = m3

•  Thus an eavesdropper recovers m
by computing the integer cube root
of x (non modular!)

© Gianluca Dini Network Security 28

Common modulus attack

n

(n, e1) (n, e5) (n, e2) (n, e3) (n, e4)

• Mr Lou Cipher can efficiently
factor n from d5 and then

• compute all di

© Gianluca Dini Network Security 29

Chosen-plaintext attack (small message)

The adversary encrypts all possible bids (232) until he finds an
offer Θ such that Ee(Θ) ≡ c

Thus, the adversary sends a bid containing the minimal offer to
win the auction: Θ′ = Θ + 1

Salting is a solution

A, c auctioneer’s public key = (n, e)

© Gianluca Dini Network Security 30

Adaptive chosen-ciphertext attack

  A chosen-ciphertext attack is one where the adversary
selects the ciphertext and is then given the corresponding
plaintext.

•  One way to mount such an attack is for the adversary to gain access
to the equipment used for decryption (but not the decryption key,
which may be securely embedded in the equipment). The objective
is then to be able, without access to such equipment, to deduce the
plaintext from (different) ciphertext.

  An adaptive chosen-ciphertext attack is a chosen-
ciphertext attack where the choice of ciphertext may depend
on the plaintext received from previous requests

© Gianluca Dini Network Security 31

Homomorphic property of RSA

  Let m1 and m2 two plaintext messages

  Let c1 and c2 their respective encryptions

  Observe that

() ()≡ ≡1 2 1 2 1 2 mod
e e emm m m c c n

  In other words, the ciphertext of m1m2 is c1c2
mod n

© Gianluca Dini Network Security 32

An adaptive chosen-ciphertext attack …

  Bob decrypts ciphertext except a given
ciphertext c

  Mr Lou Cipher wants to determine the
ciphertext corresponding to c

•  Mr Lou Cipher selects x, gcd(x, n) =1, at random and sends
Bob the quantity modec cx n=

c

•  Bob decrypts it, producing () ()modd d edm c c x mx n= = =

•  Mr Lou Cipher determine m by computing 1modm mx n−=

…based on the homomorphic property of RSA

The attack can be contrasted by imposing structural constraints on m

© Gianluca Dini Network Security 33

Hybrid systems

•  An asymmetric cipher is subject to the
chosen-plaintex attack

•  An asymmetric cipher is three orders of magnitude
slower than a symmetric cipher

therefore

•  An asymmetric cipher is often used in conjunction

with a symmetric one so producing an hybrid system

© Gianluca Dini Network Security 34

Hybrid systems

() (),
B abe ab KE K E F

•  File F is encrypted with a symmetric cipher

•  Session key is encrypted with an asymmetric cipher

•  Alice needs an authentic copy of Bob’s public key

Alice confidentially sends Bob a file F

© Gianluca Dini Network Security 35

Other asymmetric cryptosystems

Discrete Logarithm Systems
  Let p be a prime, q a prime divisor of p–1 and g∈[1, p–1]

has order q

  Let x be the private key selected at random from [1, q–1]

  Let y be the corresponding public key y = gx mod p

  Discrete Logarithm Problem (DLP)

  Given (p, q, g) and y, determine x

© Gianluca Dini Network Security 36

ElGamal encryption scheme

  Encryption
•  select k randomly
•  c1 = gk mod p, c2 = m×yk mod p
•  send (c1, c2) to recipient

  Decryption
•  c1

x = gkx mod p = yk mod p
•  m = c2×y–k mod p

  Security
•  An adversary needs yk mod p. The task of calculating yk mod p from (g, p, q)

and y is equivalent to DHP and thus based on DLP in p

© Gianluca Dini Network Security 37

ElGamal in practice

  Prime p and generator g can be common system-wide
  Prime p size

•  512-bit: marginal
•  768-bit: recommended
•  1024-bit or larger: long-term

  Efficiency
•  Encryption requires two modular exponentiations
•  Message expansion by a factor of 2

  Security
•  Different random integers k must be used for different messages

© Gianluca Dini Network Security 38

Ellyptic Curve Cryptography

  Let p and Fp

  Let E be an elliptic curve defined by
y2 = x3 + ax + b (mod p) where a, b ∈Fp and 4a3+27b2≠0

  Example. E: y2 = x3 + 2x + 4 (mod p)

  The set of points E(Fp) with point at infinity ∞ forms an
additive abelian group

© Gianluca Dini
39

Elliptic curves

  Geometrical approach

Gianluca Dini (Univ. of Pisa) Security in WSN

Public Key Cryptography Cryptography in
WSN

© Gianluca Dini
40

Elliptic Cryptography (ECC)

  Algebric Approach
  Elliptic curves defined on finite field define an Abelian finite

field

  Elliptic curve discrete logarithm problem
  Given points G and Q such that Q=kG, find the integer k
  No sub-exponential algorithm to solve it is known

  ECC keys are smaller than RSA ones

Gianluca Dini (Univ. of Pisa) Security in WSN December 20, 2009

© Gianluca Dini Network Security 41

Ellyptic Curve Cryptography

  Let P have order n then the cyclic subgroup generated by P
is 〈∞. P, 2P,…, (n – 1)P〉

  p, E, P and n are the public parameters

  Private key d is selected at random in [1, n–1]

  Public key is Q =dP

© Gianluca Dini Network Security 42

Ellyptic Curve Cryptography

  Encryption
•  A message m is represented as a point M
•  C1 = kP; C2 = M + kQ
•  send (C1; C2) to recipient

  Decryption
•  dC1 = d(kP) = kQ
•  M = C2 – dC1

  Security
•  The task of computing kQ from the domain parameters, Q, and

C1=kP, is the ECDHP

© Gianluca Dini Network Security 43

Comparison among crypto-systems

Security level (bits)

80
(SKIPJACK)

112
(3DES)

128
(AES small)

192
(AES medium)

256
(AES large)

DL parameter q

EC parameter n
160 224 256 384 512

RSA modulus n

DL modulus p
1024 2048 3072 8192 15360

•  Private key operations are more efficient in EC than in DL or RSA

•  Public key operations are more efficient in RSA than EC or DL if small exponent e is
selected for RSA

