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 RSA and the factorization problem 
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Asymmetric Encryption Scheme 
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Let us consider two families of algorithms representing invertible 
transformations:  

such that: 

I.  ∀ e ∈ K, ∃ a unique d ∈ K, such that Dd is the inverse of Ee 

II.  ∀ m ∈ M, ∀ c ∈ C, Ee(m) and Dd(c) are easy to compute 
III.  Known e ∈ K and c ∈ C, it is computationally infeasible to find the 

message m ∈ M such that Ee(m) = c 
IV.  Known e ∈ K, it is computationally infeasible to determine the 

corresponding key d 
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Public key encryption 

Because of properties III and IV, 

  decryption key d MUST be kept secret 

  encryption key e CAN be made public without 
compromising the security of the decryption key 
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2-party comm with asymmetric encryption 

key source 

Dd(m) 
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Ee(c) 
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Alice Bob 
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unsecure channel 

adversary 

unsecure channel 

  The encryption key e can be sent on the same channel on which the 
ciphertext c is being transmitted 

  It is necessary to authenticate public keys to achieve data origin 
authentication of the public keys themselves 

d 
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Types of attack 

Objectives of adversary 
•  break the system: recover plaintext from ciphertext  
•  completely break the system: recover the key 

Types of attacks 
•  No asymmetric cipher is perfect 
•  Since the encryption keys are public knowledge, a passive 

adversary can always mount a chosen-plaintext attack 
•  A stronger attack is a chosen-ciphertext attack where  

an active adversary selects ciphertext of its choice, and  
then obtains by some means (from the victim) the 
corresponding plain-tex 
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THE RSA CRYPTOSYSTEM 
A case study 

Network Security 6 
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Rivest Shamir Adleman (1978) 

Key generation 
1.  Generate two large, distinct primes p, q (100÷200 decimal 

digits) 
2.  Compute n = p×q and φ = (p-1)×(q-1) 
3.  Select a random number 1 < e < φ such that gcd(e, φ) = 1 
4.  Compute the unique integer 1 < d < φ such that  

ed ≡ 1 mod φ 
5.   (d, n) is the private key 
6.   (e, n) is the public key 

At the end of key generation, p and q must be destroyed 
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RSA encryption and decryption 

Encryption. To generate c from m, Bob should do the following 
1.  Obtain A's authentic public key (n, e) 
2.  Represent the message as an integer m in  

the interval [0, n-1] (0  ≤ m < n) 
3.  Compute c =me mod n 
4.  Send c to A 

Decryption. To recover m from c, Alice should do the following 
1.  Use the private key d to recover m = cd mod n 
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Example with artificially small numbers 
Key generation 
  Let p = 47 e q = 71 

 n = p × q = 3337 
 φ= (p-1) × (q-1)= 46 ×70 = 3220 

  Let e = 79 
 ed ≡ 1 mod φ(n)  
 79× d ≡ 1 mod 3220  
 d = 1019 

Encryption 
Let m = 9666683 
Divide m into blocks mi < n 
m1 = 966; m2 = 668; m3 = 3 
Compute 
c1 = 96679 mod 3337 = 2276 
c2 = 66879 mod 3337 = 2423 
c3 = 379 mod 3337 = 158 
c = c1c2c3 = 2276 2423 158 
Decryption 
m1 = 22761019 mod 3337 = 966 
m2 = 24231019 mod 3337 = 668 
m3 = 1581019 mod 3337 = 3 
m = 966 668 3 
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How to encrypt/decrypt efficiently 

  Let a and b be two k-bit integers 
•  a + b can be done in time O(k) 
•  a × b can be done in O(k2) 

  Let c be an (at most) 2k-bit integer 
•  c mod a can be done in O(k2) 

  Let d be a k-bit integer 
•  a × b mod d can be done in O(k2) 
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How to encrypt/decrypt efficiently 

  Let a and b be two k-bit integers 
•  Addition a + b can be done in time O(k) 
•  Subtraction a – b can be can be done in time O(k) 
•  Multiplication a × b can be done in O(k2) 
•  Division a = q × b + r can be done in time O(k2) 
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How to encrypt/decrypt efficiently 

  Bit complexity of basic operations in Zn 

Operation Bit complexity 
Modular Addition (a + b) mod n  O(log n) 
Modular Subtraction (a – b) mod n O(log n) 
Modular Multiplication (a × b) mod n O((log n)2) 
Modular inversion a-1 mod n O((log n)2) 
Modular exponentiation ak mod n, k < n O((log n)3) 
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How to encrypt/decrypt efficiently 

  RSA requires modular exponentiation cd mod n 
•  Let n have k bits in its binary representation, k = log n + 1 

  Grade-school algorithm requires (d-1) modular multiplications 
•  d is as large as φ which is exponentially large with respect to k 
•  The grade-school algorithm is inefficient 

  Square-and-multiply algorithm requires 2r modular multiplications 
where r is the number of bits in the binary representation of d 

•  As r ≤ k then the algorithm can be done in O(k3) 
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How to encrypt and decrypt efficiently 
Exponentiation by repeated squaring and multiplication: me mod n 
requires at most 2log2(e) multiplications and 2log2(e) divisions 

Let ek-1, ek-2, …, e2, e1, e0, where k = log2 e,  the binary representation of e 

( )

( )

( )

( )( )

− −
− −

− −
− −

− −
− −

− −
− −

− −

+ + + + +
= ≡

≡

≡

  ≡ 
 

  
     

L

L

L

L

L

1 2 2
1 2 2 1 0

1 2 2
01 2 2 1

2 3
01 2 2 1

3 4
01 2 2 1

01 2 2 1

2 2 2 2

2 2 2 2

2
2 2 2

22
2 2

2222

mod mod

mod

mod

mod

mod

k k
k k

k k
k k

k k
k k

k k
k k

k k

e e e e ee

ee e e e

ee e e e

ee e e e

ee e e e

m n m n

m m m m m n

m m m m m n

m m m m m n

m m m m m n

c ← 1 
for (i = k-1; i >= 0; i --) { 

  c ← c2 mod n; 
 if (ei == 1) 
   c ← c×m mod n; 

} 
•  always k square operations 

•  at most k modular multiplications 
(equal to the number of 1 in the binary 
representation of e) 
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How to find a large prime 

repeat 
 b ← randomOdd(); 

until isPrime(b); 

 Primality tests do not try to factor the number under test 
•  probabilistic primality test (Solovay-Strassen, Miller-Rabin) 

polynomial in log n 
•  true primality test (O(n12) in 2002)) 

On average (log x)/2 odd numbers must be tested 
before a prime b < x can be found 

  Given e, d can be computed efficiently by means of the extended 
Euclid algorithm 

  It follows that keys can be generated efficiently (polytime) 
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Factoring 
  FACTORING. Given n > 0, find its prime factorization; that is, write    

 where pi are pairwise distinct primes and each ei ≥ 1,  

   Primality testing vs. factoring. Deciding whether an integer is composite or 
prime seems to be, in general, much easier than the factoring problem 

  Factoring algorithms 
•  Brute force 
•  Special purpose 
•  General purpose 
•  Elliptic Curve 
•  Factoring on Quantum Computer  

(for the moment only a theorethical construct) 

= L1 2
1 2

ke e e
kn p p p
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Factoring algorithms 
  Brute Force 

•  Unfeasible if n large and p=q 

  General purpose 
•  the running times depend solely on the size of n 
•  Quadratic sieve 
•  General number field sieve  

  Special purpose 
•  the running times depend on certain properties of n (lead to the introduction of strong 

primes) 
•  Trial division 
•  Pollard's rho algorithm 
•  Pollard's p - 1 algorithm 

  Elliptic curve algorithm 
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Running times 

Trial division: ( )O n

Quadratic sieve: ( ) ( )( )( )•ln lnlnn nO e

General number field sieve: 
( ) ( )( ) × • 

 
 
 
 

231.923 ln lnlnn n
O e
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Security of RSA 

The RSA Problem (RSAP) 
  DEFINITION. The RSA Problem (RSAP): recovering plaintext m 

from ciphertext c, given the public information (n, e) 

  FACT. RSAP ≤P FACTORING 
•  FACTORING is at least as difficult as RSAP or, equivalently,  
•  RSAP is not harder than FACTORING 

  It is widely believed that the RSA and the integer factorization 
problems are computationally equivalent, although no proof of 
this is known. 
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Security of RSA 

RSAP from yet another viewpoint… 
•  A possible way to decrypt c = me mod n is to compute the e-th 

root of c 
•  Computing the e-th root is a computationally easy problem 

iff n is prime 
•  If n is not prime the problem of computing the  

e-th root is equivalent to factoring 
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Security of RSA 

Relationship between Factoring and totally breaking 
RSA 

•  A possible way to completely break RSA is to discover Φ(n) 
•  Computing Φ(n) is computationally equivalent to  

factoring n 
•  Given p and q, s.t. n =pq, computing Φ(n) is immediate. 
•  Let Φ(n) be given.   

From Φ(n) = (p-1)(q-1) = n – (p+q) + 1, determine x1 = (p+q).  
From (p – q)2 = (p + q)2 – 4n, determine x2 = (p – q).   
Finally, p = (x1 + x2)/2 and q = (x1 – x2)/2. 
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Security of RSA 

•  A possible way to completely break RSA is an exhaustive attack 
to the private key d 

•  This attack could be more difficult than factoring because, 
according to the choice for e, d can be much greater than p and 
q. 
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Security of RSA: relation to factoring 

  The problem of computing the RSA decryption exponent d from 
the public key (n, e) and the problem of factoring n are 
computationally equivalent 

  If the adversary could somehow factor n, then he could 
subsequently compute the private key d efficiently 

  If the adversary could somehow compute d, then it could 
subsequently factor n efficiently 
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RSA in practice 

  RSA is substantially slower than symmetric encryption 
•  RSA is used for the transport of symmetric-keys and for the encryption 

of small quantities 

  Recommended size of the modulus 
•  512 bit: marginal security 
•  768 bit: recommended  
•  1024 bit: long-term security 
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RSA in practice 

Selecting primes p and q 
•  p and q should be selected so that factoring  

n = pq is computationally infeasible, therefore 

•  p and q should be sufficiently large and about the 
same bitlenght (to avoid the elliptic curve factoring 
algorithm) 

•  p - q should be not too small 
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RSA in practice 

  Exponent e should be small or with a small number of 1's 
•  e = 3  

[1 modular multiplication + 1 modular squaring] 
subject to small encryption exponent attack 

•  e = 216 + 1  (Fermat's number)  
[1 modular multiplication + 16 modular squarings] 
resistant to small encryption exponent attacks 

  Decryption exponent d should be roughly the same size as n 
•  Otherwise, if d is small, it could be possible to obtain d from the public 

information (n, e) or from a brute force attack 



© Gianluca Dini Network Security 27 

RSA: low exponent attack 

(n1, 3) 

(n2, 3) 

(n3, 3) 

ci = m3 mod ni 

c1 
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1 1

2 2

3 3
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mod
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x c n
x c n
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
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 ≡

•  If n1, n2 ed n3 are pairwise coprime, 
use CRT to find x = m3 mod n1n2n3 

•  As m < ni by RSA encryption 
definition then 

•   m3 < n1n2n3, then x = m3 

•  Thus an eavesdropper recovers m 
by computing the integer cube root 
of x (non modular!) 
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Common modulus attack 

n 

(n, e1) (n, e5) (n, e2) (n, e3) (n, e4) 

• Mr Lou Cipher can efficiently 
factor n from d5 and then 

• compute all di 
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Chosen-plaintext attack (small message) 

      

  

    

The adversary encrypts all possible bids (232) until he finds an 
offer Θ such that Ee(Θ) ≡ c 

Thus, the adversary sends a bid containing the minimal offer to 
win the auction: Θ′  = Θ + 1 

Salting is a solution 

A, c auctioneer’s public key = (n, e) 
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Adaptive chosen-ciphertext attack 

  A chosen-ciphertext attack is one where the adversary 
selects the ciphertext and is then given the corresponding 
plaintext.  

•  One way to mount such an attack is for the adversary to gain access 
to the equipment used for decryption (but not the decryption key, 
which may be securely embedded in the equipment). The objective 
is then to be able, without access to such equipment, to deduce the 
plaintext from (different) ciphertext. 

  An adaptive chosen-ciphertext attack is a chosen-
ciphertext attack where the choice of ciphertext may depend 
on the plaintext received from previous requests 
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Homomorphic property of RSA 

  Let m1 and m2 two plaintext messages 

  Let c1 and c2 their respective encryptions 

  Observe that 

( ) ( )≡ ≡1 2 1 2 1 2 mod
e e emm m m c c n

  In other words, the ciphertext of m1m2 is c1c2 
mod n 
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An adaptive chosen-ciphertext attack … 

  Bob decrypts ciphertext except a given 
ciphertext c 

  Mr Lou Cipher wants to determine the 
ciphertext corresponding to c  

•  Mr Lou Cipher selects x, gcd(x, n) =1, at random and sends 
Bob the quantity modec cx n=

c

•  Bob decrypts it, producing ( ) ( )modd d edm c c x mx n= = =

•  Mr Lou Cipher determine m by computing 1modm mx n−=

…based on the homomorphic property of RSA 

The attack can be contrasted by imposing structural constraints on m 
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Hybrid systems 

•  An asymmetric cipher is subject to the  
chosen-plaintex attack 

•  An asymmetric cipher is three orders of magnitude 
slower than a symmetric cipher 

therefore 

•  An asymmetric cipher is often used in conjunction 

with a symmetric one so producing an hybrid system 
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Hybrid systems 

( ) ( ),
B abe ab KE K E F

•  File F is encrypted with a symmetric cipher 

•  Session key is encrypted with an asymmetric cipher 

•  Alice needs an authentic copy of Bob’s public key 

Alice confidentially sends Bob a file F  
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Other asymmetric cryptosystems 

Discrete Logarithm Systems 
  Let p be a prime, q a prime divisor of p–1 and g∈[1, p–1] 

has order q 

  Let x be the private key selected at random from [1, q–1] 

  Let y be the corresponding public key y = gx mod p 

  Discrete Logarithm Problem (DLP) 

  Given (p, q, g) and y, determine x 
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ElGamal encryption scheme 

  Encryption 
•  select k randomly 
•  c1 = gk mod p, c2 = m×yk mod p 
•  send (c1, c2) to recipient 

  Decryption 
•  c1

x = gkx mod p = yk mod p 
•  m = c2×y–k mod p 

  Security 
•  An adversary needs yk mod p. The task of calculating yk mod p from (g, p, q) 

and y is equivalent to DHP and thus based on DLP in  p 
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ElGamal in practice 

  Prime p and generator g can be common system-wide 
  Prime p size 

•  512-bit: marginal 
•  768-bit: recommended  
•  1024-bit or larger: long-term 

  Efficiency 
•  Encryption requires two modular exponentiations  
•  Message expansion by a factor of 2 

  Security 
•  Different random integers k must be used for different messages 
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Ellyptic Curve Cryptography 

  Let p and  Fp 

  Let E be an elliptic curve defined by   
y2 = x3 + ax + b (mod p) where a, b ∈Fp and 4a3+27b2≠0 

  Example. E: y2 = x3 + 2x + 4 (mod p) 

  The set of points E(Fp) with point at infinity ∞ forms an 
additive abelian group 
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Elliptic curves 

  Geometrical approach 

 

Gianluca Dini (Univ. of Pisa) Security in WSN 

Public Key Cryptography Cryptography in 
WSN 
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Elliptic Cryptography (ECC) 

  Algebric Approach 
  Elliptic curves defined on finite field define an Abelian finite 

field 

  Elliptic curve discrete logarithm problem 
  Given points G and Q such that Q=kG, find the integer k 
  No sub-exponential algorithm to solve it is known 

  ECC keys are smaller than RSA ones 

Gianluca Dini (Univ. of Pisa) Security in WSN December 20, 2009 
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Ellyptic Curve Cryptography 

  Let P have order n then the cyclic subgroup generated by P 
is  〈∞. P, 2P,…, (n – 1)P〉 

  p, E, P and n are the public parameters  

  Private key d is selected at random in [1, n–1] 

  Public key is Q =dP 
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Ellyptic Curve Cryptography 

  Encryption 
•  A message m is represented as a point M 
•  C1 = kP; C2 = M + kQ 
•  send (C1; C2) to recipient 

  Decryption 
•  dC1 = d(kP) = kQ 
•  M = C2 – dC1 

  Security 
•  The task of computing kQ from the domain parameters, Q, and 

C1=kP, is the ECDHP 
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Comparison among crypto-systems 

Security level (bits) 

80 
(SKIPJACK) 

112 
(3DES) 

128 
(AES small) 

192 
(AES medium) 

256 
(AES large) 

DL parameter q 

EC parameter n 
160 224 256 384 512 

RSA modulus n 

DL modulus p 
1024 2048 3072 8192 15360 

•  Private key operations are more efficient in EC than in DL or RSA 

•  Public key operations are more efficient in RSA than EC or DL if small exponent e is 
selected for RSA 


