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Recent studies have shown that the IEEE 802.15.4 MAC protocol suffers from severe limitations, in terms
of reliability and energy efficiency, when the CSMA/CA parameter setting is not appropriate. However,
selecting the optimal setting that guarantees the application reliability requirements, with minimum energy
consumption, is not a trivial task in wireless sensor networks, especially when the operating conditions
change over time. In this paper we propose a Just-in-Time LEarning-based Adaptive Parameter tuning (JIT-
LEAP) algorithm that adapts the CSMA/CA parameter setting to the time-varying operating conditions by
also exploiting the past history to find the most appropriate setting for the current conditions. Following
the approach of active adaptive algorithms, the adaptation mechanism of JIT-LEAP is triggered by a change
detection test only when needed (i.e., in response to a change in the operating conditions). Simulation results
show that the proposed algorithm outperforms other similar algorithms, both in stationary and dynamic
scenarios.

CCS Concepts: • Networks→Network Protocols

Additional Key Words and Phrases: Wireless sensor networks, IEEE 802.15.4, CSMA/CA, active adaptive
algorithms, change detection tests

ACM Reference Format:
Simone Brienza, Manuel Roveri, Domenico De Guglielmo, and Giuseppe Anastasi. 2016. Just-in-time adap-
tive algorithm for optimal parameter setting in 802.15.4 WSNs. ACM Trans. Autonom. Adapt. Syst. 10, 4,
Article 27 (January 2016), 26 pages.
DOI: http://dx.doi.org/10.1145/2818713

1. INTRODUCTION

Wireless sensor networks (WSNs) are composed of a large number of tiny sensor nodes
deployed over a certain geographical area and interconnected through wireless links.
Each node is a low-power device that senses physical information from the surrounding
environment, performs local processing of acquired data, and transmits that data to a
coordinator node referred to as a sink. Given the relatively low-cost, simple installation
and ease of deployment, WSNs are increasingly perceived as an effective technology
for developing distributed sensing systems in a large number of application domains,
ranging from environmental monitoring to logistics, from health care to industrial ap-
plications, from building automation to smart cities. This positive trend is also pushed
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by a number of available communication standards for WSNs [IEEE 2006; ZigBee 2007;
HART 2012; ISA 2009]. Among them, IEEE 802.15.4 [IEEE 2006] is certainly the most
popular one for commercially available, off-the-shelf sensor platforms. A proper choice
of communication protocol is of fundamental importance in WSNs, since sensor nodes
are energy constrained and communication is typically the most energy-consuming
activity [Anastasi et al. 2009].

In this perspective, IEEE 802.15.4 is a standard specifically designed for low-power,
low-rate, low-cost Personal Area Networks (PANs) that defines the physical (PHY) and
Medium Access Control (MAC) layers of the protocol stack. It supports both star and
peer-to-peer topologies, and provides two different operation modes: Beacon Enabled
(BE) and Non-Beacon Enabled (NBE). In this article, we focus on the BE mode, since it
is the most popular one, and provides a power-saving mechanism, based on duty cycling.
In BE mode, nodes periodically wait for the reception of a special control message, called
a Beacon, from the coordinator node. Then, they transmit their data packets using a
slotted Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) algorithm
to access the shared wireless medium.

As mentioned earlier, energy efficiency is typically the most critical aspect to consider
in the design of WSN-based systems. However, in many application domains, additional
requirements, such as reliability and timeliness, must be taken into account [Zurawski
2009]. In this respect, several studies [Yedavalli and Krishnamachari 2008; Singh
et al. 2008; Pollin et al. 2008; Anastasi et al. 2011] have highlighted that 802.15.4
WSNs suffer from severe limitations in terms of reliability (i.e., low packet delivery
probability) and timeliness (i.e., high packet latency). These limitations are mainly due
to the CSMA/CA algorithm used by the 802.15.4 MAC protocol. As is well known, the
packet delivery probability of CSMA/CA protocols degrades sharply when the number
of nodes increases. In the 802.15.4 MAC, this degradation is even stronger than in
other similar MAC protocols due to the default CSMA/CA parameter values suggested
by the standard. Anastasi et al. [2011] have shown that these default values are not
appropriate, even when the number of sensor nodes is low. The delivery probability
can be increased by using higher CSMA/CA parameter values. However, this comes at
the cost of a higher latency and energy consumption. Hence, an appropriate parameter
setting should be found, depending on the application requirements.

Ideally, the CSMA/CA parameter setting should be chosen to guarantee the reliability
(and timeliness) requirements of the application with minimum energy consumption at
sensor nodes. However, in real WSNs, the identification of such an optimal setting is not
a trivial task, as reliability and timeliness strongly depend on a number of time-varying
factors—such as number of sensor nodes, offered load, and packet error rate (PER)—
that can neither be controlled nor predicted. Several solutions have been proposed to
identify the optimal CSMA/CA setting in 802.15.4 WSNs. They can be broadly classified
as model-based strategies [Park et al. 2009; Park et al. 2013], and measurement-based
strategies [DiFrancesco et al. 2011; Brienza et al. 2013a]. A detailed analysis of the
related literature is presented in Section 2, in which we also emphasize the limitations
of the existing solutions.

To overcome these limitations, in this article, we propose a Just-in-Time LEarning-
based Adaptive Parameter tuning (JIT-LEAP) algorithm. JIT-LEAP follows a
measurement-based approach; hence, it does not make any assumption on the chan-
nel conditions and does not require any a priori information about the WSN (e.g.,
number of nodes). This makes it suitable for real-life scenarios in which operating
conditions may change over time. JIT-LEAP allows nodes to derive the optimal setting
autonomously, that is, by relying only on local measurements. Furthermore, it avoids
unnecessary energy waste and, by learning from past history, is able to speed up the
selection of the optimal setting. Following an active approach for adaptive algorithms,
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JIT-LEAP relies on a change detection test to monitor network conditions and trigger
the adaptation mechanism only when necessary [Boracchi and Roveri 2014]. In ad-
dition, a theoretically grounded statistical technique is considered to characterize the
operating conditions of a network once a change has been detected (this is fundamental
to identifying previously encountered network conditions).

In summary, this article makes the following contributions. We propose a just-in-time
adaptive algorithm for the CSMA/CA parameter setting in 802.15.4 WSNs that is prac-
tical and suitable for real-life scenarios. To the best of our knowledge, JIT-LEAP is the
first solution combining a statistical change detection test and a learning mechanism
to promptly detect changes in the operating conditions and speed up the adaptation.
We show, by simulation, that JIT-LEAP outperforms all the previous solutions meant
to identify the optimal CSMA/CA setting in 802.15.4 WSNs.

The rest of the article is organized as follows. Section 2 presents related work. Sec-
tion 3 describes the 802.15.4 standard. Section 4 formulates the problem addressed
in this article in a formal way. Section 5 presents the JIT-LEAP algorithm. Section 6
describes the simulation setup, while Section 7 presents the simulation results. Con-
clusions are drawn in Section 8.

2. RELATED WORK

IEEE 802.15.4 WSNs (in BE mode) have been extensively studied in the past; many pro-
posals have been presented to improve their performance and/or introduce additional
features not provided by the standard. A thorough review of the main proposed solu-
tions is available in Khanafer et al. [2014], in which a taxonomy is also provided, based
on eight different categories: Priority-based, QoS-based, Hidden Node Resolution-
based, IEEE 802.11-based, Duty Cycle-based, Backoff-based, Parameter Tuning-based
and Cross-Layer–based.

Priority-based and QoS-based solutions aim at adding functionalities and flexibility
to the IEEE 802.15.4 MAC protocol in order to provide better support to time-sensitive
applications. This can be achieved by allowing priorities among sensor nodes [Kim and
Kang 2010] or enhancing the GTS mechanism (see Section 3) [Na et al. 2008]. On a
similar basis, Hidden Node Resolution-based approaches [Koubaa et al. 2009; Sheu
et al. 2009] enhance the 802.15.4 MAC protocol to make it more aware of the existence
of hidden nodes. This reduces the number of collisions and allows better utilization
of communication and energy resources. All the solutions belonging to the previous
classes typically introduce modifications in the standard MAC protocol.

IEEE 802.11-based approaches [Lee et al. 2009] apply strategies conceived for im-
proving the performance of 802.11 Wireless LANs to 802.15.4 WSNs. The main draw-
back of these solutions is that they have not been designed considering energy efficiency
as a primary concern. Hence, they are not suitable for most WSNs.

Duty-cycle–based approaches [Kwon and Chae 2006; Lee et al. 2007; Neugebauer
et al. 2005] dynamically adapt the duty cycle of sensor nodes to traffic conditions.
Increasing the duty cycle gives sensor nodes more chances to transmit and, hence,
reduces the contention for channel access. However, such solutions are ineffective when
a large number of sensor nodes is transmitting simultaneously (e.g., periodic or event-
driven traffic). Furthermore, energy consumption increases with the duty cycle.

Backoff-based approaches [Lee et al. 2009; Khan et al. 2010; Khanafer et al. 2011]
propose modifications to the backoff algorithm of 802.15.4 CSMA/CA. Basically, they
adapt the backoff window size depending on network congestion and wireless medium
conditions. The proposed modifications can actually increase the throughput and reduce
the delay. However, they are not standard-compliant; hence, they cannot be adopted
by sensor platforms implementing the MAC-layer functionalities in hardware or not
allowing changes to the MAC protocol.
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Finally, Parameter Tuning-based [Zhao et al. 2010; Rao and Marandin 2006; Park
et al. 2009; Park et al. 2013] and Cross-Layer–based [DiFrancesco et al. 2011; Brienza
et al. 2013a] solutions improve the performance/reliability of 802.15.4 WSNs by appro-
priately tuning the CSMA/CA parameters. The difference between the two categories
is that, in Cross-Layer–based solutions, CSMA/CA parameters (i.e., MAC-layer param-
eters) are tuned by also exploiting information provided by other layers in the protocol
stack (e.g., application, or network layer). Since both classes rely on the same basic
idea (i.e., parameter tuning), for simplicity, hereafter we will refer to them generically
as solutions based on parameter tuning. Such solutions do not modify the MAC proto-
col; hence, they can be implemented on any sensor platform. JIT-LEAP belongs to this
category.

The idea of tuning CSMA/CA parameters is motivated by a number of studies
[Yedavalli and Krishnamachari 2008; Singh et al. 2008; Pollin et al. 2008; Anastasi
et al. 2011] showing that the 802.15.4 MAC has severe limitations in terms of relia-
bility and timeliness, mainly due to an improper setting of its CSMA/CA algorithm.
Specifically, Anastasi et al. [2011] have shown that unreliability in 802.15.4 WSNs is
exacerbated by the default CSMA/CA parameter values suggested by the standard,
that are inappropriate, even when the number of sensor nodes is low. Using more ap-
propriate (i.e., higher) parameter values improves reliability at the cost of increased
latency and energy consumption.

Solutions based on parameter tuning can be further distinguished, depending on
the number of CSMA/CA parameters that they consider and the methodology that
they use for their tuning. Some solutions [Zhao et al. 2010; Rao and Marandin 2006]
focus on a single CSMA/CA parameter (e.g., macMinBE). However, adjusting a single
parameter may not be sufficient to meet the reliability requirements of the application
[Anastasi et al. 2011]. For this reason, other solutions [Park et al. 2009; Park et al.
2013; DiFrancesco et al. 2011; Brienza et al. 2013a] consider the whole set of CSMA/CA
parameters. JIT-LEAP also falls in the latter category; hence, hereafter, we will focus on
such solutions. Regarding the methodology used for parameter tuning, according to the
taxonomy introduced in Brienza et al. [2013b], the proposed solutions can be classified
as model-based offline computation [Park et al. 2009], model-based adaptation [Park
et al. 2013], and measurements-based adaptation [DiFrancesco et al. 2011; Brienza
et al. 2013a].

Model-based strategies rely on an analytical model of the WSN to derive the optimal
parameter setting under the current operating conditions. This is done either by solving
the analytical model offline [Park et al. 2009] or by using it to dynamically adapt to time-
varying operating conditions [Park et al. 2013]. Model-based approaches have a number
of limitations. First, the effectiveness in providing the optimal setting depends on the
accuracy of the analytical model. Typically, simplifying assumptions are introduced
to make the model tractable. Furthermore, the model usually requires some input
parameters, which may not be available in a real environment. For instance, the model
used in Park et al. [2009] and Park et al. [2013] assumes ideal channel conditions
and requires knowing in advance the number of network nodes. In contrast, JIT-LEAP
considers a real communication channel in which packet errors/losses can occur, and
does not require any input parameter. Hence, it is suitable for real-life scenarios.

Measurement-based approaches [DiFrancesco et al. 2011; Brienza et al. 2013a] do not
require any network model; instead, they rely on measurements acquired by sensor
nodes. For instance, ADAPT [DiFrancesco et al. 2011] is a heuristic algorithm that
allows sensor nodes to autonomously adjust the CSMA/CA parameters according to
local measurements of the packet delivery probability. Specifically, parameter values
are increased or decreased depending on the delivery probability experienced by the
node. However, ADAPT tends to oscillate between two or more parameter sets and never
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Fig. 1. Superframe structure.

stabilizes, thus consuming more energy than necessary. Furthermore, it is memoryless.
This means that, if the same operating conditions repeat over time, the algorithm is
not able to recall the previously calculated optimal parameter setting and re-executes
the adaptation procedure.

Like ADAPT, JIT-LEAP follows a measurement-based approach, though the analyzed
quantities are different. In addition, it also exploits the knowledge acquired through a
learning mechanism to select the optimal parameter setting based on the past history.
JIT-LEAP belongs to the class of active adaptive algorithms [Alippi 2014] since it
relies on a trigger mechanism to activate the adaptation phase only when needed.
In contrast to passive algorithms (e.g., Park et al. [2013]), in which the adaptation
mechanism is always on, active algorithms are generally faster in adapting to new
conditions, providing better performance and lower energy consumption. Formally,
ADAPT is an active algorithm, as the adaptation mechanism is activated only when
the locally estimated packet delivery probability is below/over a predefined threshold.
In practice, ADAPT tends to change the parameter setting at (almost) every step, thus
behaving similarly to passive algorithms.

The JIT-LEAP algorithm presented in this article extends a previous LEarning-based
Adaptive Parameter (LEAP) tuning algorithm presented in Brienza et al. [2013a]. While
LEAP assumes ideal channel conditions (i.e., error/loss free channel), JIT-LEAP over-
comes this limitation by explicitly taking into account packet losses and transmission
errors. This makes it suitable for real-life scenarios. In addition, unlike LEAP, JIT-
LEAP relies on a theoretically grounded mechanism to detect changes in the operating
conditions, based on a statistical Change Detection Test (CDT). This allows signifi-
cant reduction of the number of false-positive detections and the identification of even
small variations in the operating conditions. Hence, the parameter setting provided
by JIT-LEAP is more stable and accurate, allowing strict adherence to the application
requirements.

3. 802.15.4 MAC PROTOCOL

The 802.15.4 MAC in BE mode provides a power-management mechanism, based on a
duty cycle, and relies on a superframe structure bounded by Beacons, that is, special
messages transmitted periodically by coordinator nodes (Figure 1). The time interval
between two consecutive Beacons is called the Beacon Interval (BI), and each super-
frame consists of an Active Period and an Inactive Period. During the Active Period,
sensor nodes can communicate with their coordinator. In the Inactive Period, they enter
a low-power state to save energy. The Active Period is further divided into a Contention
Access Period (CAP) and a Collision Free Period (CFP). During the CAP, nodes use a
slotted CSMA/CA algorithm for channel access; during the CFP, they use Guaranteed
Time Slots (GTSs) in a Time Division Multiple Access (TDMA) style.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 4, Article 27, Publication date: January 2016.



27:6 S. Brienza et al.

Fig. 2. 802.15.4 slotted CSMA/CA algorithm.

3.1. CSMA/CA Algorithm

In the slotted CSMA/CA algorithm, used during CAP, time is divided into slots of equal
duration (backoff slots) and all the operations are aligned with them. Upon receiving
a data packet to transmit, each node executes a backoff stage, that is, it waits for a
random number of backoff slots (backoff time), then performs two consecutive Clear
Channel Assessments (CCAs) to check the channel state. If the channel is found idle in
both CCAs, the node transmits its packet. Otherwise, it must perform a new backoff
stage. After the transmission of a packet, the sensor node waits for the acknowledgment
from the recipient. If the acknowledgment is not received within a predefined timeout,
a retransmission is triggered. The transmission of a packet may result either in a
success (if an acknowledgment is eventually received) or in a packet drop. A packet
is dropped when either the maximum number of consecutive backoff stages or the
maximum number of retransmissions is exceeded.

Figure 2 presents the slotted CSMA-CA algorithm by detailing the sequence of ac-
tions performed by a sensor node to transmit a packet. Each node maintains a number
of state variables: contention window size (CW), number of backoff stages (NB), backoff
exponent (BE) and number of retransmissions (NR). CW specifies the number of CCAs
still to perform in the current backoff stage. It is initialized to 2; hence, the sensor node
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Table I. CSMA/CA Parameters and Values [IEEE 802.15.4 2006]

PARAMETER VALUES DESCRIPTION

MACMAXFRAMERETRIES Range: 0-7
Default: 3

Maximum number of retransmissions

MACMAXCSMABACKOFFS Range: 0–5
Default: 4

Maximum number of backoff stages–1

MACMAXBE Range: 3–8
Default: 5

Maximum backoff window exponent

MACMINBE Range: 0–7
Default: 3

Minimum backoff window exponent

has to perform two consecutive CCAs before starting the packet transmission. BOE de-
fines the maximum (random) backoff delay a node will wait at each backoff stage before
checking the channel state. It is initialized to macMinBE and incremented every time
the channel is found busy during the CCAs, that is, before starting a new backoff stage
(however BE cannot exceed macMaxBE). Basically, the number of backoff slots to wait
in a backoff stage is randomly chosen in the interval [0; 2BE −1]. NB indicates the num-
ber of backoff stages performed for the current transmission attempt. If NB exceeds the
maximum allowed value macMaxCSMABackoffs, the packet is dropped. Finally, NR
indicates the number of retransmissions for the current packet and is incremented ev-
ery time the acknowledgement is not received. If NR exceeds the macMaxFrameRetries
parameter, the packet is dropped.

From the previous description, it emerges that the CSMA/CA behavior is regulated
by four parameters, listed in Table I, together with the range of values allowed by the
802.15.4 standard.

DiFrancesco et al. [2011] show that, in a star topology, the packet delivery proba-
bility provided by CSMA/CA increases monotonically with the values of macMinBE,
macMaxCSMABackoffs, and macMaxFrameRetries. However, its increase becomes neg-
ligible after certain values of the aforementioned parameters. They also show that in-
creasing macMinBE is more energy efficient than increasing macMaxCSMABackoffs
(i.e., it improves the packet delivery probability with a lower energy consumption),
whereas increasing macMaxCSMABackoffs is more energy efficient than increasing
macMaxFrameRetries. These conclusions are at the basis of the design of the JIT-LEAP
algorithm (as described in Section 5).

4. PROBLEM FORMULATION

In the following, we refer to a WSN with a star topology, including a sink node (acting
as the coordinator) and a number of sensor nodes. We consider a periodic reporting
application in which data gathered by a sensor node are reported to the sink at each BI.
We assume that data/acknowledgment packets transmitted by nodes may be corrupted
or lost. Despite that, the application requires a certain reliability level (expressed as
percentage of data packets correctly delivered to the sink), that must be guaranteed
with minimum energy consumption. To formulate the problem in a more formal way,
we define the following indexes:

—Packet delivery ratio (D): the ratio between the number of data packets correctly
delivered to the sink by a sensor node and the total number of packets generated by
that node. It measures the long-term reliability experienced by a sensor node, and is
requested to be higher than a minimum value Dmin.

—Miss ratio (M): the fraction of times that the packet delivery ratio—calculated by
a sensor node over the current BI—drops below Dmin. It measures the inability to
achieve short-term reliability and should not exceed a predefined threshold Mmax.
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—Average energy consumption per packet (EP): the total energy consumed by a sensor
node divided by the total number of packets generated by that node. It measures the
energy efficiency.

Let D(par), M(par), and EP(par) denote the delivery ratio, miss ratio, and average
energy consumption, respectively, experienced by a sensor node when using a set of
CSMA/CA parameter values denoted by par. Hence, the problem of optimal parameter
setting can be formulated as ⎧⎨

⎩
minimizeEP (par)

D (par) ≥ Dmin

M (par) ≤ Mmax
. (1)

A possible approach for solving this problem is through the derivation of an analytical
model of the WSN and the computation of the optimal CSMA/CA parameter setting
that satisfy Equation (1). This is very close to the approach used in Park et al. [2009],
in which the authors consider delivery ratio and latency (instead of miss ratio). As
emphasized in Section 2, the use of a model-based approach has some limitations that
make it unsuitable for real-life scenarios. In this article, we use a heuristic solution,
following a measurement-based approach that leverages a change-detection test and a
learning algorithm to identify the optimal setting adaptively.

5. JIT-LEAP ALGORITHM DESCRIPTION

In this section, we describe the proposed JIT-LEAP algorithm. We start with a high-
level presentation (Section 5.1). Then, we detail the different phases of the algorithm
(Sections 5.2 through 5.5). Finally, we describe some optimization mechanisms for
improving its energy efficiency (Section 5.6).

5.1. Basic Ideas

The goal of JIT-LEAP is to select the set of CSMA/CA parameter values (depending
on the current operating conditions) that satisfy the reliability requirements of the
application with minimum energy consumption at sensor nodes. To this end, it also
exploits the knowledge learned from past history (if any). Figure 3 details the actions
performed by JIT-LEAP during each BI. First, each node characterizes the current
network conditions by measuring some quantities related to network congestion and
channel unreliability (see Section 5.2). In addition, each node derives the estimates
of delivery ratio and miss ratio experienced in the current BI and inserts them into
a specific data structure called Experienced-Performance Table (see Sections 5.2 and
5.3). The latter table is used to store the performance experienced, with each set
of parameters, since the last change in the network conditions. Then, the algorithm
behaves in different ways depending on its current operating phase, namely, Adaptive
Tuning or Change Detection Phase.

1) Adaptive Tuning Phase (right side of Figure 3). When no information about the cur-
rent operating conditions is available (e.g., at startup), the sensor node executes an
Adaptive Tuning algorithm similar to ADAPT [DiFrancesco et al. 2011]. CSMA/CA
parameter values increase when the reliability experienced by the sensor node (in
terms of D and M) does not satisfy the application requirements, and decrease oth-
erwise. After a number of steps, the Adaptive Tuning algorithm starts oscillating
between two parameter sets. This means that the most appropriate setting for the
current conditions has been reached. Hence, this information is inserted into an ap-
propriate data structure, called Learning Table (details to follow) which indicates,
for each parameter set, the optimal set to be used if a certain network condition is
encountered. Then, the algorithm moves to the Change Detection Phase.
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Fig. 3. Actions performed by JIT-LEAP during each Beacon Interval.

2) Change Detection Phase (left side of Figure 3). This phase aims at detecting possible
changes in the operating conditions, to trigger the adaptation to the new conditions.
To this end, a Change Detection Test (CDT), that is, an online statistical test, is per-
formed to detect possible variations in the operating conditions measuring network
congestion and channel unreliability. If no change is detected, the current CSMA/CA
parameter values used by the sensor node are not updated and no further actions
are performed. Conversely, if a change is detected, JIT-LEAP first identifies the
new operating conditions, then determines the new optimal setting. If similar con-
ditions have already been experienced in the past, the learning mechanism allows
immediate reactivation of the optimal setting previously used. Specifically, upon
detecting a change, the algorithm checks if there is an entry in the Learning Table
corresponding to the current set and the new network conditions. The following two
outcomes can occur.
—The Learning Table contains an entry matching the new operating conditions

with the corresponding optimal setting. Therefore, the node sets up the optimal
parameter values suggested by the table (in just one step, or leap). Afterwards,
the Change Detection phase restarts.

—There is no entry in the Learning Table for the new operating conditions. There-
fore, a new Adaptive Tuning phase starts.

In the next sections, we will detail the data structures used by JIT-LEAP and the
actions carried out during the Adaptive Tuning and Change Detection phases.

5.2. State Assessment and Data Structures

We use s(t) = [pb(t), pf (t), par(t)] to store the state of the sensor network, as perceived
by a generic sensor node, at a given BI t. Specifically, par(t) is the used set of CSMA/CA
parameter values, pb(t) denotes the probability of finding the channel busy during a
channel access, and pf (t) gives the probability that a packet transmission fails (i.e.,
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the sensor node does not receive the related acknowledgment). In particular, pb is
a measure of the congestion experienced by the sensor node and depends on factors
such as number of sensor nodes and offered load. It also depends on the CSMA/CA
parameter setting used by the sensor node, that is, par. On the contrary, pf measures
communication unreliability and mainly depends on wireless medium unreliability
(i.e., the Packet Error Rate, PER). However, it also depends on network congestion,
since a transmission can fail due to a collision. Despite pb and pf depending on many
different factors, for simplicity, we will use the terms pb(t) and pf (t) to indicate their
values at BI t.

The state vector s(t) is derived by the sensor node as follows. The CSMA/CA pa-
rameter values (i.e., par(t)) are known. pb(t) can be measured locally as pb(t) =
p1

b + (
1 − p1

b

) × p2
b, where p1

b (p2
b) is the probability of finding the channel busy during

the first (second) CCA operation. In practice, p1
b and p2

b are estimated by calculating
the fraction of CCA operations resulting in a busy channel in the current BI. Similarly,
pf (t) is computed as the fraction of transmissions for which the acknowledgment was
missed during the current BI.

At each sensor node, JIT-LEAP uses the following data structures to store
information.

—Experienced-Performance Table. A table with an entry for each CSMA/CA parameter
setting used since the last change in the operating conditions (or network startup).
The table is cleared whenever a new change is detected. Each entry has the following
format: 〈par, D, M, F, count〉, where D (M) represents the delivery ratio (miss ratio)
experienced by the sensor node with the par parameter set. F denotes the Trans-
mission Failure Ratio, defined as the ratio between the number of transmissions
for which the acknowledgment was missed and the total number of transmissions
performed by the sensor node using the par parameter set. Finally, count indicates
the number of times the corresponding parameter set has been used so far.

—Training Buffer. A data structure containing the last W experienced states. It is
needed for training the CDT, both at network startup and after a change detection.

—State Sample. Whenever the CDT detects a change in the operating conditions,
it estimates the BI τ when the change more likely occurred. Then, it calculates
the mean value and standard deviation of pb and pf over the BIs between τ and
the instant when the change has been detected. These values characterize the new
operating conditions. Thus, they are inserted into a proper data structure, called
State Sample, that will be used to build the Learning Table at the end of the next
Adaptive Tuning phase.

—Learning Table. This data structure is created at the end of the first Adaptive Tun-
ing phase and updated after each Adaptive Tuning phase on the basis of the State
Sample. The Learning Table contains information about each operating condition ex-
perienced during the past history, and the corresponding optimal setting, according
to the previously acquired knowledge. Each entry in the table has the following for-
mat: 〈par, elem1, elem2, . . . , elemi, . . .〉, where elemi = 〈[pi

b min, pi
b max

]
, [pi

f min, pi
f max],

new_set〉 for any i. Basically, each operating condition is represented by an element
elem, where the two intervals [pb min, pb max] and [pf min, pf max] indicate the range of
pb and pf characterizing that specific operating condition. Therefore, the table tells
that, whenever the estimated values of pb and pf fall within the previously men-
tioned intervals, and the parameter set par is used, the new optimal setting must
be new_set. Examples on how to access and use the Learning Table are given later.

5.3. Experienced-Performance Table Update

As anticipated in Section 5.1, CSMA/CA parameter values are increased or decreased
depending on the current estimates of delivery ratio and miss ratio (i.e., D and M). For
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this reason, for each used set, the algorithm stores, inside the Experienced-Performance
Table, the value of D and M experienced with that set. At each BI, the entry corre-
sponding to the current set is updated, as follows:

D = D̄ + D · count
count + 1

M = M̄ + M · count
count + 1

.

D̄ and M̄ represent the delivery ratio and miss ratio measured in the current BI,
while count tracks the number of times the corresponding set has been used so far (it
is increased after each update). This way, the estimates of D and M are increasingly
more accurate over time.

If the channel is ideal (i.e., PER = 0), D̄ can be obtained as D̄ = PACK/Pgen, where
Pgen is the number of packets generated by the sensor node and PACK is the number of
received acknowledgments. Furthermore, if D̄ > Dmin, then M̄ = 0; otherwise M̄ = 1. If
the channel is not ideal (i.e., PER > 0), the previous formula for D̄ underestimates the
delivery ratio, since a packet may have been delivered correctly to the sink even if the
corresponding acknowledgment was missed by the sensor node. To correctly estimate
the delivery ratio, when PER > 0, we also need to take into account the packets dropped
due to exceeded number of retransmissions, but correctly received by the sink. Let PMFR
denote the total number of packets dropped due to exceeded number of retransmissions
and ± be the probability that a dropped packet is received correctly by the sink. The
delivery ratio can be estimated as D̄ = PACK+PMF R·α

Pgen
. The value of PMFR is provided by

the MAC layer, while ± can be derived using the following claim.

CLAIM 1. Assuming that (i) packet transmission errors are independent from each
other, and (ii) the PER is the same for both data packets and acknowledgments, then

α = 1 −
(

F − PER
(1 − PER)F

)macMAXFrameRetries+1

,

where F denotes the transmission failure ratio, that is, the probability that a packet
transmission fails for any reason.

PROOF. See Appendix A.

The previous claim allows derivation of α, once PER and F are known. PER is es-
timated by the sensor node by computing the ratio between the number of missed
Beacons and the number of expected Beacons. Instead, the transmission failure ra-
tio F is estimated by taking an approach similar to that used for estimating D.
As mentioned earlier, for each used parameter set, the corresponding entry in the
Experienced-Performance Table also includes a field F. The latter is updated, at each
BI, as F = F̄+F·count

count+1 , where F̄ is the ratio between the number of missed acknowledg-
ments and the total number of transmissions (including retransmissions) performed
by the sensor node in the current BI.

5.4. Adaptive Tuning Phase

5.4.1. CSMA/CA Parameters Change. As shown in Figure 3, initially, JIT-LEAP starts
with a simple Adaptive Tuning algorithm to dynamically adjust CSMA/CA param-
eters, as it has no information about the past history. This algorithm increases or
decreases one parameter at a time, depending on the experienced reliability, as follows.
At each BI, the sensor node updates the estimates of delivery ratio D and miss ratio M
with measurements taken in the current BI. If at least one of these estimates does not
satisfy the application requirements, the value of a CSMA/CA parameter is increased
by considering, first, macMinBE, then, macMaxCSMABackoffs (macMaxBE is kept to a
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Table II. Ordered CSMA Parameter Sets

INDEX MAXBE MINBE MAXCSMABACKOFFS MAXFRAMERETRIES

1 MAXBEMAX MINBEMIN MAXCSMABACKOFFSMIN MAXFRAMERETRIESMIN

2 MAXBEMAX MINBEMIN+1 MAXCSMABACKOFFSMIN MAXFRAMERETRIESMIN

3 MAXBEMAX MINBEMIN+2 MAXCSMABACKOFFSMIN MAXFRAMERETRIESMIN

. . . . . . . . . . . . . . .

. . . MAXBEMAX MINBEMAX MAXCSMABACKOFFSMIN MAXFRAMERETRIESMIN

. . . MAXBEMAX MINBEMAX MAXCSMABACKOFFSMIN+1 MAXFRAMERETRIESMIN

. . . MAXBEMAX MINBEMAX MAXCSMABACKOFFSMIN+2 MAXFRAMERETRIESMIN

. . . . . . . . . . . . . . .

. . . MAXBEMAX MINBEMAX MAXCSMABACKOFFSMAX MAXFRAMERETRIESMIN

. . . MAXBEMAX MINBEMAX MAXCSMABACKOFFSMAX MAXFRAMERETRIESMIN+1

. . . MAXBEMAX MINBEMAX MAXCSMABACKOFFSMAX MAXFRAMERETRIESMIN+2

. . . . . . . . . . . . . . .

IMAX MAXBEMAX MINBEMAX MAXCSMABACKOFFSMAX MAXFRAMERETRIESMAX

fixed value, i.e., MaxBEmax). The retransmission mechanism is initially disabled. Only
when both macMinBE and macMaxCSMABackoffs have reached their maximum value,
macMaxFrameRetries is also progressively increased. Conversely, if both D and M sat-
isfy the application requirements, the set of parameter values is tentatively reduced.
The strategy for decreasing parameters is the opposite. First, macMaxFrameRetries
is progressively reduced until it reaches its minimum value. Then, the same proce-
dure is applied to macMaxCSMABackoffs and, afterwards, to macMinBE. Without
loss in generality, we can assume that CSMA/CA parameter sets are ordered as shown
in Table II. Hence, each parameter setting can be identified by the corresponding index
in the table and the Adaptive Tuning algorithm always moves from a set to an adjacent
one.

5.4.2. Training Buffer and Learning Table Update. The Training Buffer and Learning Table
are also updated during the Adaptive Tuning phase. At each BI t, after estimating pb(t)
and pf (t), the new state s (t) = [pb(t), pf (t), par (t)] is added to the Training Buffer.
Since the Training Buffer has a limited size, when it is full, the new state overwrites
the oldest one, following a FIFO approach. We emphasize that, due to its behavior,
the Adaptive Tuning algorithm tends to oscillate between two adjacent parameter sets
after a (short) transient time. We assume that the Adaptive Tuning phase ends when all
the states stored inside the Training Buffer refer to only two parameter sets. Then, the
Training Buffer is ready to be used for training the CDT, as described later. The most
frequent setting within the Training Buffer is assumed to be the most appropriate set
for the current operating conditions, that is, the “optimal” set according to the Adaptive
Tuning algorithm. Throughout, we will refer to this set as paropt.

Now, a new element can be added in the Learning Table, pointing to the optimal set
paropt. Let us denote by parprev the parameter set used before the current Adaptive
Tuning phase started, that is, before the operating conditions changed. Also, let us
indicate as μb (μ f ) and σb (σ f ) the mean value and standard deviation of pb (pf )
inserted by the CDT into the State Sample. As explained in Section 5.2, these values
have been calculated after the change occurred but before the Adaptive Tuning phase
started. Hence, they characterize the new operating conditions. Therefore, a new entry
corresponding to set-index parprev can be inserted into the Learning Table (if there is
no entry for this set, a new entry is created). The added element is

〈[μb − σb, μb + σb], [μ f − σ f , μ f + σ f ], paropt〉
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In the future, if these operating conditions are encountered again, while the set
parprev is used, the algorithm immediately knows that the set paropt has to be used.
The update of the Learning Table concludes the Adaptive Tuning phase. Then, the
sensor node enters the Change Detection phase.

5.5. Change Detection Phase

5.5.1. Change Detection Test. JIT-LEAP detects possible changes in the operating con-
ditions by inspecting variations in pb and pf. To achieve this goal, among the wide
range of CDTs available in the literature [Basseville et al. 1993; Tartakovsky et al.
2006; Ross et al. 2011; Alippi and Roveri 2008; Kawahara and Sugiyama 2012], we
focus on the family of CDTs based on the Intersection-of-Confidence-Interval (ICI) rule
[Alippi et al. 2011], which is revealed to be particularly effective in several applica-
tion scenarios [Alippi et al. 2013; Boracchi et al. 2014]. In addition, ICI-based CDTs
are theoretically grounded and exhibit a reduced computational complexity, which
makes them particularly suitable for WSNs. Finally, this family of CDTs follows the
“nonparametric” approach, that is, they do not require any a priori information about
the measured state variables or changes that might affect the network. This makes
ICI-based CDTs particularly suitable for time-varying and a priori unknown environ-
ments (such as WSNs). Among the ICI-based CDTs, we focus on the element-wise CDT
[Boracchi and Roveri 2014]. This CDT is able to operate in an element-wise manner,
thanks to a Gaussian transform of measured variables, providing very prompt detec-
tions to changes. The considered Gaussian transform is the Manly transform:

p̄i (t) =
⎧⎨
⎩

eλpi (t) − 1
λ

; λ �= 0

pi (t) ; λ = 0
,

where pi (t) can be either pb (t) or pf (t) and λ ∈ R is the transform parameter. The
Manly transform is applied both to pb (t) and pf (t) to generate the approximately
Gaussian variables p̄b (t) and p̄ f (t). As mentioned earlier, this CDT requires an initial
training sequence to configure the test parameters and the parameter λ of the Manly
transform. Specifically, in our scenario, the CDT is configured on the Training Buffer.
Details about the configuration phase of the CDT can be found in Boracchi and Roveri
[2014]. During the operational life, the CDT is then applied to p̄b (t) and p̄ f (t) to detect
possible variations in their expected values, based on what has been learned during
the training phase.

When a change is detected, the Learning Table is looked up to determine the optimal
set for the new operating conditions. A key requirement for obtaining correct values
from the Learning Table is the ability to correctly characterize the operating conditions
after the change, in terms of the new values of pb and pf . To achieve this goal, once a
change is detected, it is necessary to determine when it occurred. Therefore, a Change-
Point Method (CPM) is applied to the Training Buffer containing the last W acquired
data to identify the time instant at which the operating conditions changed. CPMs are
statistical hypothesis tests [Hawkins et al. 2003] that are able to assess whether a
change point exists in a given sequence of data and to locate it within the sequence.
Specifically, let T̂ be the BI when the change was detected (either in pb or pf ), and let
X be the sequence of the corresponding variable up to T̂ , that is:

X = { p̄D((T̂ − W + 1)), . . . , p̄D(T̂ )},
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Table III. Example of Learning Table

ELEM1 ELEM2
CURRENT SET pb pf new set pb pf new set

par1 [0.30, 0.33] [0.33, 0.52] par2 [0.64, 0.70] [0.29, 0.51] par3
par2 [0.43, 0.51] [0, 0.24] par3
par3 [0.70, 0.75] [0.16, 0.22] par5
par4 [0.64, 0.76] [0.20, 0.43] par8 [0.25, 0.35] [0, 0.15] par1

where p̄D(t) is either pb or pf . The CPM acts as follows. For each BI t, such that
T̂ − W + 1 ≤ t ≤ T̂ , the sequence X is split into two parts:

At = { p̄D(T̂ − W + 1), . . . , p̄D(t)}
Bt = { p̄D(t + 1), . . . , p̄D(T̂ )} ,

and a test statistics (Tt = At, Bt) is computed for all the BIs t with T̂ − W + 1 ≤ t ≤ T̂ .
Let TM be its maximum value, that is:

TM = max
t=T̂ −W+1,...,̂T

Tt.

When TM is larger than a predefined threshold Hε,T̂ (that depends on the test statistic,
T̂ and a given confidence level ε), there is enough statistical confidence that a change
point exists in X . Let τ be the time instant of this change point, that is:

τ = argmax
t=T̂ −W+1,...,̂T

Tt.

Among the test statistics present in the literature (e.g., Mann and Whitney [1947],
Bartlett and Kendall [1946], Mood [1954], and Lepage [1974]), we focused on Mann
and Whitney [1947] since we are interested in detecting change points affecting the
expected value of X . We emphasize that τ represents an estimate of the BI at which a
change affected the operating conditions. Hence, the new operating conditions can be
computed as follows:

μ = 1

T̂ − τ

T̂∑
i=τ

p̄D (i)

σ = 1

T̂ − τ − 1

T̂∑
i=τ

( p̄D (i) − PD)2

,

where μ and σ are the sample mean and sample variance, respectively, of the state
variable p̄D(t) after the change occurred. The values of μ and σ , for both pb and pf (μb,
σb, μ f and σ f ), represent the new operating conditions and are stored inside the State
Sample.

5.5.2. Learning Table Access. Once a change has been detected, the Learning Table is
checked to verify whether the new conditions have been experienced in the past already.
To this aim, the current set index are used, along with the values of μb and μ f contained
in the State Sample.

Table III shows an example of a Learning Table. Let us assume that par4 is the
current parameter set and that μ̂b and μ̂ f are the values of μb and μ f stored in the
State Sample. Based on the past history, the Learning Table suggests to use par8 as
the new set, if μ̂b is in the range [0.64, 0.76] and μ̂ f is in the range [0.20, 0.43], or par1,
if μ̂b is in the range [0.25, 0.35] and μ̂ f in the range [0, 0.15].
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When the Learning Table does not contain any entry for the values in the State
Sample, JIT-LEAP infers that the current operating conditions have never been expe-
rienced in the past, and a new Adaptive Tuning phase is started to identify the optimal
MAC parameter set. When the optimal set is determined, at the end of the Adaptive
Tuning phase, a new entry is added to the Learning Table by using the data contained
in the State Sample, as previously explained.

5.6. Controlled Tuning Algorithm

The Adaptive Tuning phase aims at identifying the parameter setting that satisfies
the reliability requirements of the application with minimum energy consumption.
However, since CSMA/CA parameters assume discrete values, typically, the delivery
ratio (miss ratio) experienced with the obtained parameter set is significantly above
(below) Dmin (Mmax), thus consuming more energy than necessary. On the other hand,
using a lower set might not satisfy the application requirements.

To reduce energy consumption as much as possible while still satisfying the reliability
constraints, JIT-LEAP uses a Controlled Tuning algorithm (during both the Adaptive
Tuning phase and the Change Detection phase) that finely adjusts the parameter
setting on the sensor node, by switching between two adjacent sets in a controlled way.
The idea is to have a reliability level just above the required value to minimize energy
consumption. The Controlled Tuning algorithm is detailed in Appendix B.

6. SIMULATION SETUP

To evaluate the performance of JIT-LEAP, we relied on the ns2 simulation tool
[Ns-2 2015]. We used simulation in order to make the analysis as general as possi-
ble. However, to validate our simulation results, we also implemented JIT-LEAP in a
real sensor platform and carried out some experiments in a real testbed. The compari-
son between simulation and experimental results is shown in Appendix C (due to space
limitations).

We considered a star network topology, in which sensor nodes are placed in a circle
centered at the sink node (PAN coordinator), 10m away from it. The transmission range
was set to 15m, while the carrier sensing range was set to 30m (according to Anastasi
et al. [2005]). In our analysis, in addition to the reliability and energy efficiency indexes
already introduced in Section 4 (i.e., packet delivery ratio, miss ratio, and average energy
consumption per packet), we also considered the following two performance indexes.

—Average latency, defined as the average time from the beginning of the packet trans-
mission at the source node to when the packet is correctly received by the sink. This
index measures the timeliness in delivering packets.

—Transient time, defined as the time instant, after a change in the operating conditions,
when the packet delivery probability—calculated over the current BI—reaches the
steady-state value for the new operating conditions (with a tolerance of ±3%). This
index measures the ability to adapt to changing conditions.

The energy consumed by a sensor node is calculated according to the model in
Bougard et al. [2008], which is based on the Chipcon CC2420 radio transceiver [Texas
Instruments 2012] commonly used in sensor nodes.

6.1. Algorithms for Comparison

We compared the performance of JIT-LEAP with that of the following algorithms.

—Model-based offline computation [Park et al. 2009]. This algorithm derives the op-
timal setting offline by solving an analytical model of the WSN. The algorithm is
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Table IV. Operating Parameters

PARAMETER VALUE

Bit Rate 250Kbps
Dataframe (payload) size 109 (100)B
ACK frame size 11B
Beacon Order (BO), Superframe Order (SO) 13, 8
MinBEmin, MinBEmax 1, 7
MaxBEmax 10
MaxCSMABackoffsmin, MaxCSMABackoffmax 1, 10
MaxFrameRetriesmin, MaxFrameRetriesmax 0, 3
Power consumption1 56.4mW, 52.2mW,
in RX, TX, idle, sleep mode 1.28mW, 0.06mW
Training Buffer size (W ) 15

executed on the sink node and parameter values are then communicated to sensor
nodes.

—Model-based online adaptation [Park et al. 2013]. This is an adaptive algorithm based
on an analytical model of the WSN, which is a simplified version of that used in the
previous algorithm, hence can be executed at sensor nodes. Sensor nodes measure
some congestion indexes locally and use them as input values for the model to adapt
the CSMA/CA parameter values to time-varying operating conditions.

—ADAPT [DiFrancesco et al. 2011]. ADAPT is a measurement-based heuristic algo-
rithm that dynamically increases/decreases the CSMA/CA parameter values one at
a time in such a way that the measured delivery ratio remains confined within a
region defined by two thresholds Dlow and Dhigh and above the minimum value Dmin

required by the application. ADAPT also includes a control mechanism to achieve the
required reliability in the case of an unreliable channel. Each sensor node measures
the experienced packet error/loss rate and enables retransmissions if the measured
value exceeds a predefined threshold Dloss.

—LEAP [Brienza et al. 2013a]. This is the preliminary version of JIT-LEAP. It assumes
ideal channel conditions and does not rely on a statistical CDT to detect changes.

6.2. Parameter Values and Methodology

Table IV summarizes the operating parameters used in our simulations. Since all the
other algorithms (except LEAP) do not consider miss ratio when deriving the optimal
setting, the operating parameters for these algorithms have been chosen in such a way
as to guarantee both Dmin and Mmax required by the application. This allows a fair com-
parison of the considered algorithms in terms of both energy consumption and latency.

In our simulations, we considered both ideal and noisy channels. In the latter case,
we used the Gilbert-Elliot (GE) model [Gilbert 1960; Elliot 1963] to simulate packet
errors/losses, as it provides a good approximation of fading in real environments [Willig
et al. 2002]. The channel is represented by a continuous-time Markov chain, consisting
of two states: bad and good. In the bad state, no packet can be successfully delivered;
in the good state, all packets are correctly received. Sojourn times in the two states
follow an exponential distribution and their average value determines the average
PER experienced during the entire simulation. To derive the model parameters, we
took an approach similar to De Pellegrini et al. [2006] and Anastasi et al. [2011] and
used values inspired from the real measurements in Willig et al. [2002]. It turns out
that, when the PER is equal to 10%, the average sojourn time in the bad and good

1Power consumptions have been derived from the CC2420 datasheet [Texas Instruments 2012], considering
a voltage equal to 3V and a transmission power of 0dBm.
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Fig. 4. Delivery ratio (left) and miss ratio (right) versus number of sensor nodes.

state is 5.7ms and 46.2ms, respectively. Larger values of the PER are obtained by
changing the average sojourn time in the bad state accordingly, while leaving all the
other parameters unchanged.

We also assumed that each sensor node generates 10 data packets at every BI. All
these packets are simultaneously passed down to the MAC layer at the beginning of
each BI.

For each simulated scenario, we performed 10 independent replications, each consist-
ing of 1000 BIs. For each replication, we discarded the initial transient interval (10%
of the overall duration) during which nodes associate to the PAN coordinator and start
generating packets. The results presented in the next section are averaged over all
replications. We also derived confidence intervals using the independent replications
method and 95% confidence level. In some cases, the confidence intervals are too small
to be observed in the figures.

7. SIMULATION RESULTS

Our analysis is divided into two parts. In the first part, we compare the considered
algorithms in stationary conditions, that is, we assume that the operating conditions
do not change over time. In the second part, we consider dynamic scenarios with time-
varying operating conditions. Since the two model-based algorithms (and LEAP as
well) assume ideal channel conditions, in our analysis—both in stationary and dynamic
scenarios—we initially assume that packet errors/losses never occur (i.e., PER = 0).
Then, we restrict our analysis to ADAPT and JIT-LEAP only, and investigate the impact
of PER on their performance.

In our simulations, we assumed that the application requires a packet delivery ratio
D ≥ 80% and a miss ratio M ≤ 20%, for any sensor node (i.e., Dmin = 0.80 and
Dmax = 0.20). Obviously, these thresholds are somehow arbitrary, as they strongly
depend on the specific application. However, we performed additional simulations with
different thresholds (omitted for space limitations), and we achieved results in line
with those presented here.

7.1. Analysis in Stationary Conditions

As mentioned earlier, we start our analysis in stationary conditions assuming an ideal
channel. Figure 4 shows the delivery ratio and miss ratio of a generic sensor node, for
an increasing size of the WSN. All the algorithms satisfy the reliability requirements,
both in terms of D and M, with the only exception of LEAP, which exhibits a miss
ratio slightly above Mmax. The offline algorithm provides the highest delivery ratio
and the lowest miss ratio. However, it also exhibits the largest latency and energy
consumption, as shown in Figure 5. ADAPT provides a delivery ratio between the two

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 4, Article 27, Publication date: January 2016.



27:18 S. Brienza et al.

Fig. 5. Average per-packet energy consumption (left), and average latency (right) versus number of sensor
nodes.

thresholds, Dlow and Dhigh, that have been determined to satisfy also the miss ratio
constraint. The model-based adaptive algorithm and JIT-LEAP have similar perfor-
mance in terms of delivery ratio and miss ratio. However, due to the Controlled Tuning
algorithm, JIT-LEAP provides a delivery ratio (miss ratio) very close to Dmin (Mmax).
This allows JIT-LEAP to reduce the energy consumption, as shown in Figure 5 (left).
We emphasize that JIT-LEAP is the best solution in terms of energy consumption. In
terms of latency (Figure 5, right), the model-based adaptive algorithm has the best
performance. This is because the latter algorithm tends to improve the delivery ra-
tio by increasing the number of retransmissions (macMaxFrameRetries), whereas the
other algorithms achieve the same result by increasing the number of backoff stages
(macMaxCSMABackoffs). When a packet is retransmitted, the Backoff Exponent (BE)
is reinitialized to its minimum value. Instead, when a new backoff stage is started, the
BE is doubled (unless it has reached its maximum value). However, the lower latency
introduced by the model-based adaptive algorithm is paid in terms of higher energy
consumption. This is because increasing the number of retransmissions is more energy
consuming than increasing the number of backoff stages [DiFrancesco et al. 2011]. Fi-
nally, JIT-LEAP performs significantly better than both ADAPT and the model-based
offline algorithm, also in terms of latency.

Figures 4 and 5 show that LEAP and JIT-LEAP exhibit a similar trend for all the
performance indexes. However, LEAP exhibits a higher miss ratio and slightly exceeds
the maximum value Mmax. This is because the mechanism used by LEAP to detect
changes in the operating conditions results in more false positives than the CDT used
by JIT-LEAP. In our simulations, we observed a percentage of wrong detections (vs.
the total number of detections) less than 1% for JIT-LEAP and close to 7% for LEAP.
This means that, even in stationary conditions, LEAP can erroneously detect changes,
thus triggering unnecessary variations in the CSMA/CA parameter setting. Given the
higher stability of JIT-LEAP and its accuracy in determining the best set of MAC
parameter values, it is more suitable than LEAP for all those critical applications that
require minimum guaranteed reliability levels.

In the second set of simulations in stationary conditions, we consider a nonideal chan-
nel. Specifically, we consider different values for the average PER experienced over the
simulation run. In this set of simulations, the number of sensor nodes is constant and
equal to 30. As anticipated, this analysis does not consider both model-based algo-
rithms and LEAP, since they assume ideal channel conditions. Therefore, the analysis
is restricted to JIT-LEAP and ADAPT. The capacity of working under lossy channel
conditions makes these two solutions much more convenient than the others, since
they can be effectively used in real-life scenarios in which packet errors/losses occur

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 4, Article 27, Publication date: January 2016.



Just-in-Time Adaptive Algorithm for Optimal Parameter Setting in 802.15.4 WSNs 27:19

Fig. 6. Delivery ratio (left) and miss ratio (right) versus Packet Error Rate.

Fig. 7. Average per-packet energy consumption (left), and average latency (right) versus Packet Error Rate.

and PER changes over time. Indeed, Figure 6 shows that both JIT-LEAP and ADAPT
satisfy the reliability requirements (in terms of D and M). However, JIT-LEAP outper-
forms ADAPT in terms of energy consumption and latency. The difference is mainly
due to the way that the two algorithms estimate the delivery ratio experienced by a
sensor node. Specifically, JIT-LEAP relies on a more effective mechanism (as explained
in Section 5.3), since—when an acknowledgment is missed—it distinguishes between
packet loss/corruption and acknowledgment loss/corruption. Conversely, ADAPT does
not consider the effect of lost/corrupted acknowledgments; thus, it underestimates the
delivery ratio experienced by the sensor node. Hence, it tends to use CSMA/CA param-
eter values higher than necessary, which result in higher energy consumption (up to
20%) and latency (see Figure 7).

7.2. Analysis in Dynamic Conditions

We now turn our attention to dynamic scenarios, in which operating conditions vary
over time. We limit our analysis to adaptive algorithms, since the model-based offline
algorithm is not suited for such scenarios.

In the first set of simulations, we consider a scenario in which the number of active
sensor nodes changes over time. We assume that 10 sensor nodes are always active,
while 50 more nodes activate and deactivate simultaneously and periodically, every
300 BIs. Our goal is to investigate how the different algorithms react to such changes.
The results presented here refer to nodes that are always active. Figure 8 shows the
transient time taken by the various algorithms to adapt to the new operating conditions.
We analyzed separately the transient originated by an increase and a decrease in the
number of active nodes (left and right sides of Figure 8, respectively). As a general
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Fig. 8. Transient time when the number of active nodes increases (left) and decreases (right).

remark, transient times experienced by JIT-LEAP and LEAP tend to become shorter
and shorter as time elapses, while they remain approximately constant for the other
algorithms. This is due to the learning mechanism used by JIT-LEAP and LEAP. When
the WSN passes through similar operating conditions experienced in the past, they
are able to find out the optimal setting by exploiting the information available in the
Learning Table.

Let us now focus on deactivation events (Figure 8, right). After a number of steps, JIT-
LEAP and LEAP become significantly faster than the other two algorithms. In ADAPT,
the transient time depends on the number of active sensor nodes, as the algorithm
converges to the optimal setting step by step, and a larger network generally requires
higher CSMA/CA parameter values to achieve the same reliability. The model-based
adaptive algorithm converges in about 5 BIs as the optimal setting is derived by using
samples measured in the previous m BIs (we used m = 4 in our simulations). However,
both ADAPT and the model-based adaptive algorithm exhibits some drawbacks. The
latter assumes to know in advance the number of (active) sensor nodes in the WSN. This
is generally difficult to predict and may become a serious issue in dynamic scenarios.
In our simulations, we ran the algorithm using the maximum number of sensor nodes
(i.e., 60). This means that, when there are only 10 nodes, the provided setting is not
optimal and sensor nodes consume more energy than necessary. Conversely, running
the algorithm with the minimum number of nodes (i.e., 10) has negative drawbacks
as well. When the number of active nodes is larger, the algorithm may not satisfy
the reliability constraints required by the applications. Similarly, ADAPT requires the
definition of the two thresholds Dlow and Dhigh that strictly depend both on reliability
requirements (Mmax and Dmin) and network congestion. When the number of sensor
nodes increases, the two thresholds should take larger values in order to guarantee the
same levels of D and M. As outlined earlier, in our simulations, we referred to the worst
case (60 active nodes) to define the threshold values to satisfy the reliability constraints
both with 10 and 60 nodes. JIT-LEAP and LEAP do not suffer from such limitations, as
they do not require any input parameter. This leads to significant benefits, especially
in terms of energy consumption. Figure 9 compares the delivery ratio (left) and energy
consumption (right) of the different algorithms before and after an increase in the
number of sensor nodes has occurred. JIT-LEAP and LEAP are characterized by a
delivery ratio that is the closest to the application requirement (80%), and provide the
lowest energy consumption. This is because they use a more appropriate (i.e., lower)
parameter setting than the other algorithms. For the same reason, when the number
of sensor nodes changes abruptly, the parameter setting used by JIT-LEAP and LEAP
is the least appropriate to the new conditions. Hence, they experience the biggest drop
in the delivery ratio, as shown in Figure 9 (left).
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Fig. 9. Delivery ratio (left) and energy per packet (right) when the number of active nodes increases.

Fig. 10. Transient time when the Packet Error Rate increases (left) and decreases (right).

As a final remark, we need to point out that JIT-LEAP and LEAP exhibit similar
performance under ideal channel conditions, both in terms of transient time and energy
consumption. However, once again, the introduction of the CDT makes JIT-LEAP much
more stable in the choice of parameter setting and, thus, more reliable. As shown in
Figure 9 (left), in the interval 400 to 450, LEAP moves to a nonappropriate setting,
thus temporarily violating the reliability requirements, due to some false positives in
the detection of changes. Conversely, the problem does not occur with JIT-LEAP.

In the second set of simulations, we consider a scenario in which the average PER
changes over time during the simulation run (conversely, the number of sensor nodes
is constant and equal to 30). Specifically, we assume that PER changes periodically
(every 300 BIs) and abruptly, from 0% to 30% and vice versa. Similar to the analysis
in stationary conditions with nonideal channels, this part of the analysis is limited
to ADAPT and JIT-LEAP. As shown in Figure 10, ADAPT exhibits shorter transient
times than JIT-LEAP. This difference can be explained as follows. In ADAPT, retrans-
missions are generally disabled (macMaxFrameRetries = 0) and are enabled only
when a packet error/loss rate larger than Dloss is experienced2. When this occurs,
macMaxFrameRetries is set to the maximum value allowed by ADAPT (i.e., 3). Obvi-
ously, such an approach makes ADAPT very reactive. However, since retransmissions
are very energy consuming [DiFrancesco et al. 2011], this approach also introduces a
larger energy consumption (see Figure 11, right). On the contrary, JIT-LEAP derives
the exact value of macMaxFrameRetries in order to satisfy the reliability constraints
required by the application. In addition, as explained earlier, ADAPT tends to underes-
timate the delivery ratio experienced by the sensor node, thus consuming more energy
than necessary. For all these reasons, JIT-LEAP matches the application requirement

2In our simulations we considered Dloss = 1 − (
Dlow + Dhight) /2.
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Fig. 11. Delivery ratio (left) and energy per packet (right) when the Packet Error Rate increases.

Table V. Memory Occupancy

MODEL-BASED ADAPTATION

JIT-LEAP LEAP ADAPT Online computation Lookup table OFFLINE COMPUTATION

�KB �KB �1B �10B 1–1KB 0B

(Dmin) more closely than ADAPT and outperforms ADAPT in terms of energy efficiency,
as shown in Figure 11.

7.3. Resource Usage

We conclude our analysis by looking at the computational resource usage required by
the considered algorithms. As a preliminary remark, we observe that the model-based
offline algorithm does not require any computational/memory resource, since it is run
offline. Thus, we will focus on the remaining algorithms.

In terms of computational cost, ADAPT has the lowest cost, as it only requires a few
simple operations to update the estimates. For the model-based adaptive algorithm, the
authors suggest two implementations. In the first (used in our simulations), the optimal
setting is obtained by solving the analytical model at the sensor node, thus resulting in
a significant computational load. In the second implementation, the optimal parameter
values are computed offline and stored on the sensor node in a lookup table. Obviously,
the latter approach requires no computational cost but introduces a high memory
occupancy. Finally, JIT-LEAP is particularly suitable to be executed on sensor nodes.
Like ADAPT and LEAP, it has a lightweight Adaptive Tuning phase. The CDT is a light
task as well, as it requires few simple calculations over the state variables. Only the
CDT training and CPM are a bit more computationally intensive operations; however,
they are performed only when a change is detected. Hence, they introduce a slight
additional computational load in a small fraction of BIs.

Let us now analyze the memory footprint. Table V shows the memory occupancy
of the considered algorithms. Among the adaptive algorithms, ADAPT exhibits the
smallest footprint, since it needs to store only some statistics and estimates. For the
model-based adaptive algorithm, both versions require the node to store the measured
congestion indexes (which takes about 100B). When the computation of the optimal
set is carried out offline, memory occupancy is much higher, due to the lookup table.
The memory occupancy of JIT-LEAP and LEAP is similar and strongly depends on the
considered scenario, as the algorithms store data about each used parameter set and
experienced operating condition. More specifically, in JIT-LEAP, as shown in Figure 12,
the Learning Table is the more consuming data structure, and its size increases if
the operating conditions change frequently. Let M denote the maximum number of
elements for each entry, and N the maximum number of entries (i.e., the number of
possible parameter sets). Hence, the size S of the Learning Table is S = N ·M ·E, where
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Fig. 12. Memory occupancy in JIT-LEAP.

E denotes the size of each element. In JIT-LEAP, N is constant and equal to 19, while
E = 5B. Assuming M = 10, it yields S = 950B. Figure 12 shows the memory space
required by each data structure. In our simulations, both in stationary and dynamic
scenarios, the observed footprint of JIT-LEAP was well below 1KB.

8. CONCLUSIONS

In this article, we have proposed a new Just-in-Time learning-based algorithm, called
JIT-LEAP, for deriving the optimal CSMA/CA parameter setting in IEEE 802.15.4 sen-
sor networks. The proposed algorithm adapts the CSMA/CA parameters to satisfy the
reliability constraints required by the application, with minimum energy consumption,
on the basis of the reliability experienced by the sensor nodes. Unlike many similar
adaptive algorithms, it exploits a learning mechanism to speed up the transient time
when the network operating conditions have already been experienced in the past.
JIT-LEAP extends a previous learning-based algorithm (LEAP) by explicitly consider-
ing packet errors/losses and introducing a statistical test for detecting changes in the
operating conditions. We have analyzed our algorithm both in stationary and dynamic
scenarios. Our results show that JIT-LEAP behaves better than the other algorithms
in the literature, since it allows satisfying of reliability requirements of applications
while providing the minimum energy consumption, both for ideal and lossy channels.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.
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