Richiami di TERMOFLUIDODINAMICA EQUAZIONI DI CONSERVAZIONE PER UN FLUIDO MONOFASE		
BILANCIO	EQUAZIONE	NOTE
GENERALE	$\frac{\P}{\P t} (\mathbf{r}c) + \vec{\nabla} \circ (\mathbf{r}c \vec{\mathbf{v}}) = \vec{\nabla} \circ \vec{J} + \mathbf{r}\mathbf{j}$	 dove, r = densità del fluido monofase; c = valore della proprietà per unità di massa; J ∘ n = ritmo di perdita di c per unità di area di S_m per gli effetti di superficie; j = ritmo di introduzioni di c per unità di massa dentro il volume V_m.
MASSA	$\frac{\P \mathbf{r}}{\P t} + \vec{\nabla} \circ (\mathbf{r} \vec{\mathbf{v}}) = 0 \qquad \text{oppure} \qquad \frac{D \mathbf{r}}{D t} = 0$	dove, • $\mathbf{r} = \mathbf{r} (p,T)$ • $\frac{Dc}{Dt} = \frac{\int c}{\int t} + \vec{v} \cdot (\vec{\nabla} c)$
QUANTITA' DI MOTO	$\mathbf{r} \frac{\P \vec{\mathbf{v}}}{\P t} + \mathbf{r} \vec{\mathbf{v}} \circ (\vec{\nabla} \vec{\mathbf{v}}) = -\vec{\nabla} p + \vec{\nabla} \circ \vec{\mathbf{t}} + \mathbf{r} \vec{\mathbf{g}}$	dove, • il primo membro è stato ottenuto sfruttatando l'equazione di conservazione della massa: $ \frac{1}{\sqrt[q]{t}} (\mathbf{r} \vec{\mathbf{v}}) + \vec{\nabla} \circ (\mathbf{r} \vec{\mathbf{v}} \vec{\mathbf{v}}) = \mathbf{r} \frac{\sqrt[q]{t}}{\sqrt[q]{t}} + \mathbf{r} \vec{\mathbf{v}} \circ (\vec{\nabla} \vec{\mathbf{v}}) $
	$\mathbf{r} \frac{\mathbf{l} \vec{\mathbf{v}}}{\mathbf{l} t} + \mathbf{r} \vec{\mathbf{v}} \circ (\vec{\nabla} \vec{\mathbf{v}}) = -\vec{\nabla} p + \mathbf{m} \nabla^2 \vec{\mathbf{v}} + \mathbf{r} \vec{\mathbf{g}}, \qquad (\mathbf{r} \in \mathbf{m} \text{ costanti})$	• $(\vec{\mathbf{v}} \vec{\mathbf{v}}) = (\vec{\nabla} \vec{\mathbf{v}})$ rappresentano un prodotto diadico tra due vettori: $C = (\vec{a} \vec{b}) \implies c_{i j} = a_i b_j$
ENERGIA TOTALE	$\boxed{\mathbf{r}\frac{\P}{\P t}\left(\hat{u}+\frac{1}{2}\mathbf{v}^{2}\right)+\mathbf{r}\vec{\mathbf{v}}\circ\vec{\nabla}\left(\hat{u}+\frac{1}{2}\mathbf{v}^{2}\right)=-\vec{\nabla}\circ\vec{q}'+q'''-\vec{\nabla}\circ\left(p\vec{\mathbf{v}}\right)+\vec{\nabla}\circ\left(\overline{\boldsymbol{t}}\circ\vec{\mathbf{v}}\right)+\vec{\mathbf{v}}\circ\mathbf{r}\vec{g}}$	dove, • il primo membro è stato ottenuto sfruttando l'equazione di conservazione della massa.
ENERGIA MECCANICA	$r \frac{\P}{\P t} \left(\frac{1}{2} \mathbf{v}^2 \right) + r \vec{\mathbf{v}} \circ \vec{\nabla} \left(\frac{1}{2} \mathbf{v}^2 \right) = -\vec{\mathbf{v}} \circ \vec{\nabla} p + \vec{\mathbf{v}} \circ \left(\vec{\nabla} \circ \overline{\overline{t}} \right) + \vec{\mathbf{v}} \circ r \vec{\mathbf{g}}$	dove, $ \bullet \text{questa equazione è stata ottenuta moltiplicando scalarmente entrambi i } \\ \text{membri dell'equazione della quantità di moto per } \vec{v} \; . $
ENERGIA TERMODIN.	$\mathbf{r} \frac{\P \ \hat{u}}{\P \ t} + \mathbf{r} \ \vec{\mathbf{v}} \circ \vec{\nabla} \hat{u} = -\vec{\nabla} \circ \vec{q}'' + q''' - p(\vec{\nabla} \circ \vec{\mathbf{v}}) + \mathbf{f}$ $\mathbf{r} \frac{\P \ h}{\P \ t} + \mathbf{r} \ \vec{\mathbf{v}} \circ \vec{\nabla} h = -\vec{\nabla} \circ \vec{q}'' + q''' + \frac{D \ p}{P \ t} + \mathbf{f}$	 dove, questa equazione è stata ottenuta sottraendo membro a membro l'equazione dell'energia meccanica all'equazione dell'energia interna di ristagno; f = t̄ : ∇ v rappresenta la funzione di dissipazione; dh = c_p dT + (1 - b T) t dp;
	$\mathbf{r} c_{p} \frac{\P T}{\P t} + \mathbf{r} c_{p} \vec{\mathbf{v}} \circ \vec{\nabla} T = -\vec{\nabla} \circ \vec{q}'' + q''' + \mathbf{b} T \frac{D p}{D t} + \mathbf{f}$	• $\vec{q}' = -k \vec{\nabla} T$; • Il termine energetico dovuto agli effetti viscosi, f , e quello dovuto all'espansione termica del fluido, $b T \frac{Dp}{Dt}$, sono in genere trascurabili rispetto ai restanti termini.