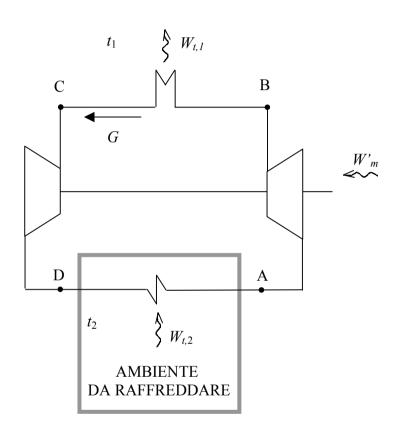
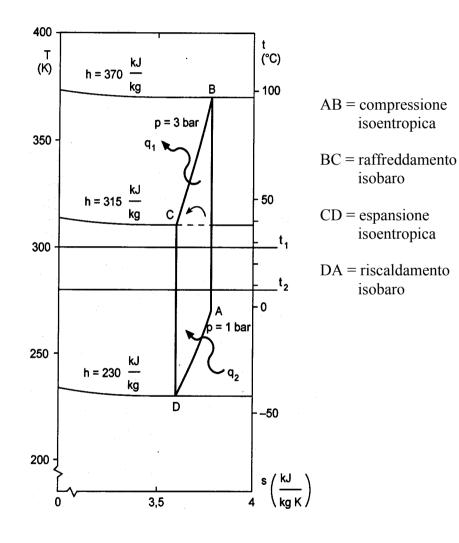

IMPIANTI FRIGORIFERI

- Lo scopo degli impianti frigoriferi è quello di mantenere un ambiente ad una temperatura t_2 minore di quella esterna t_1 . La temperatura t_2 dipende dalla particolare applicazione, mentre la t_1 è la temperatura dell'ambiente circostante.
- Per far questo è necessario sottrarre dall'ambiente da raffreddare una potenza $W_{t,2}$ (detta **potenza** frigorifera) pari alla potenza termica che entra spontaneamente dall'esterno attraverso le pareti.

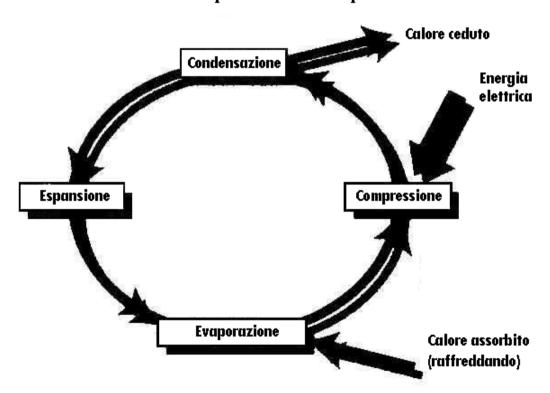

• Per raffreddare un ambiente occorre spendere energia; si definisce **coefficiente di prestazione** (COP_f) o efficienza frigorifera (ε) di un impianto frigorifero il rapporto tra la potenza frigorifera (effetto utile) e la potenza spesa:

$$COP_f \equiv \frac{W_{t,2}}{|\text{Potenza spesa}|}$$

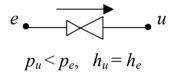

CLASSIFICAZIONE DEGLI IMPIANTI FRIGORIFERI

TII	PO	Temperatura minima [°C]	Pressione alla temperatura minima [bar]	Potenza frigorifera [kW]	
A compressione di gas (aria)		-25	1	10	
A compressione	Ciclo semplice	-25		Con compressore volumetrico • 0.1÷30 ermetico • 30÷250 semiermetico • 250÷500 aperto	
di vapore	Ciclo a doppia compressione e doppia laminazione	-60	> 1	 400÷3000 a viti 3÷350 rotativo Con compressore centrifugo 300÷6000 chiuso 	
	Cicli in cascata	-150		• 300÷30000 aperto	
A compressione di vapore d'acqua	Ciclo semplice	0	0.006	30÷3000	
	In salamoia	-20	0.0013	30-3000	
Ad assorbimento (fluido frigorigeno + solvente)	H ₂ O/LiBr	0	0.01	350÷5000	
	NH ₃ /H ₂ O	-60	0.2	5000÷10000	
Ad effetto termoelettrico (Peltier)		-103	-	< 7	

Principio di funzionamento



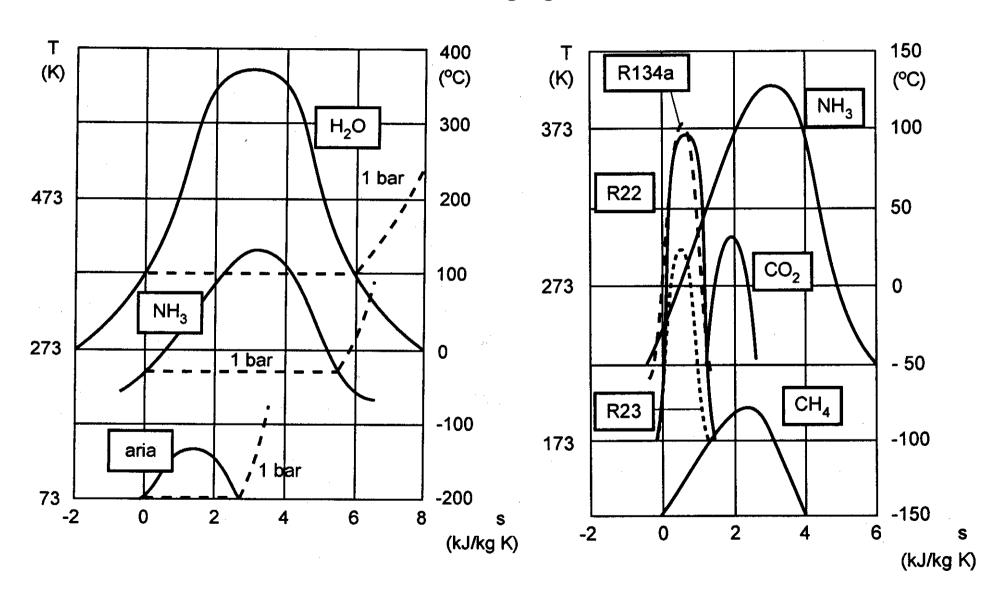
$$COP_f \equiv \frac{W_{t,2}}{\left|W_m'\right|} \quad \left(COP_{f,Carnot} \equiv \frac{T_2}{T_1 - T_2}\right)$$



Principio di funzionamento

Ciclo a compressione di vapore

• E' conveniente eseguire l'espansione in una valvola di laminazione eliminando la turbina molto costosa.



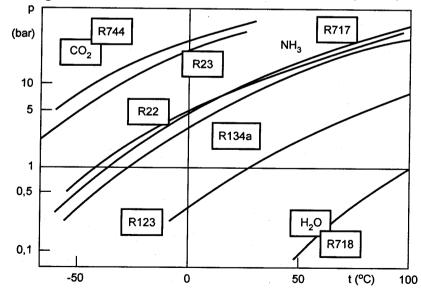
 Dal punto di vista impiantistico il processo di laminazione (isoentalpico) deve produrre un abbassamento di temperatura del fluido di lavoro; cioè deve avere un coefficiente di Joule-Thomson positivo:

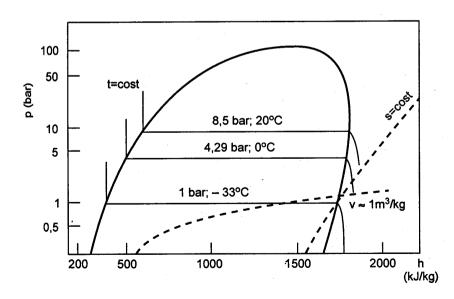
$$\alpha_{JT} \equiv \left(\frac{\partial T}{\partial p}\right)_h > 0$$

• Gli impianti frigoriferi a compressione di vapore operano sfruttando il fatto che quando un liquido evapora assorbe calore per poi cederlo quando condensa.

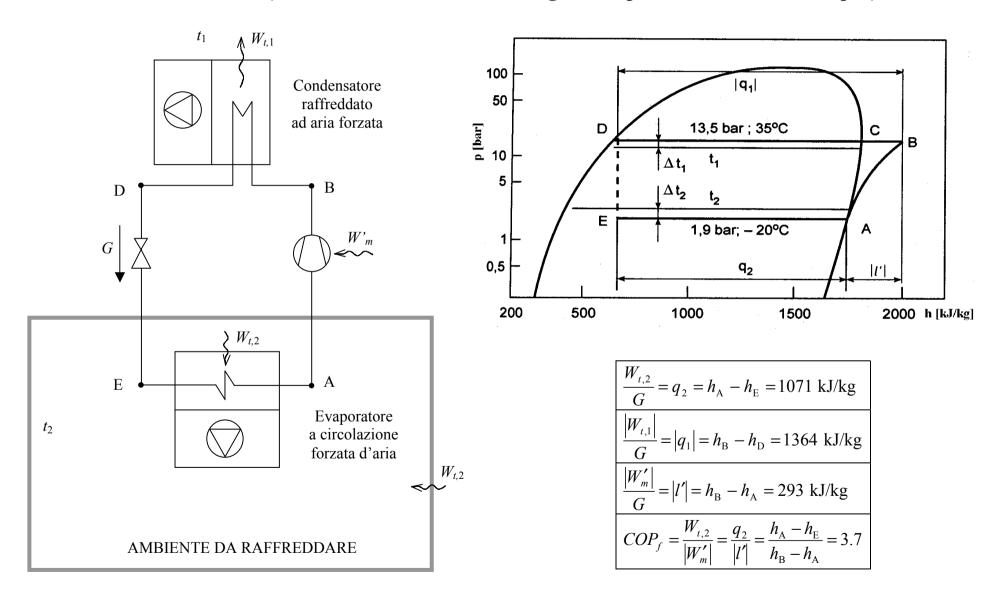
Fluidi frigorigeni

Fluidi frigorigeni

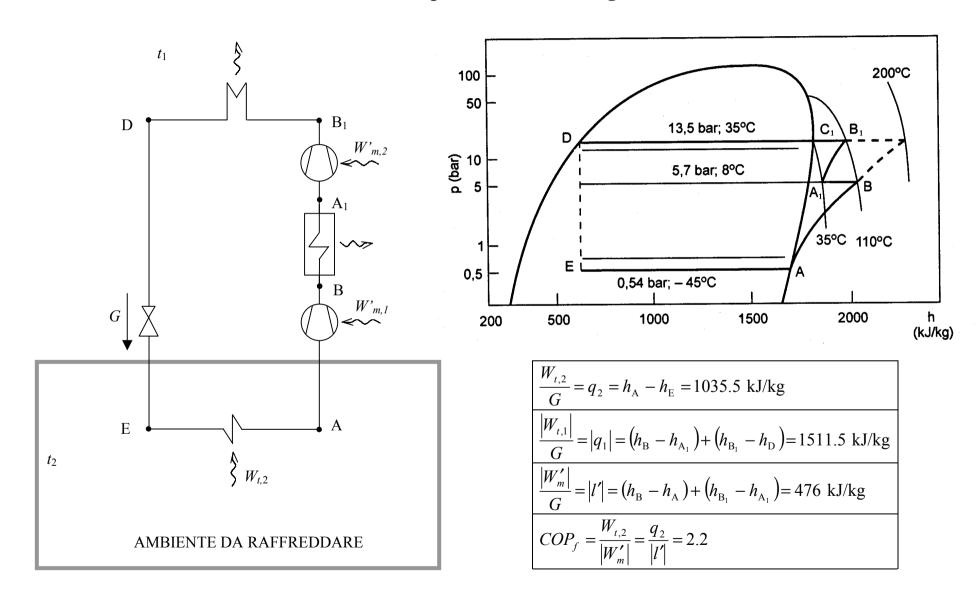

TIPO		Formula chimica	satura	one di azione ar]	Volume specifico [m³/kg]	Calore latente di vaporiz. [kJ/kg]	Produz. frig. volumetrica [kJ/m³]	ODP	GWP	
			-10 °C	25 °C	−10 °C	1 bar	-10÷25 °C			
	Vapore d'acqua (R718)		H_2O		0.0317		2257		0	0
ALI	Ammoniaca (R717)		NH ₃	2.899	10.00	0.419	1369	2700	0	<1
UR	Anidride carbonica (R744)		CO ₂							1
NAT	Ammoniaca (R717) Anidride carbonica (R744) Propano (R290)		C ₃ H ₈							3
Idrocarburi in genere		-								
	CFC (cloro-fluoro-carburi)	R11	CFCl ₃	0.257	1.064	0.612	182	267	1	4000
		R12	CF ₂ Cl ₂	2.193	6.517	0.077	162	1608	0.9÷1	8500
ICI		R13	CF ₃ Cl	15.202	35.5	0.010	150		?	?
SINTETICI	HCFC	R22	CHF ₂ Cl	3.545	10.438	0.065	234	2623	0.04÷0.06	1700
SIN	(idro-cloro-fluoro- carburi)	R123	CHCl ₂ CF ₃	0.204	0.913	0.690	170	215	0.01÷0.02	93
	HFC (idro-fluoro-carburi)	R407C	mixture							1500
		R134a	C ₂ H ₂ F ₄	2.005	6.655	0.100	217	1589	0	1300

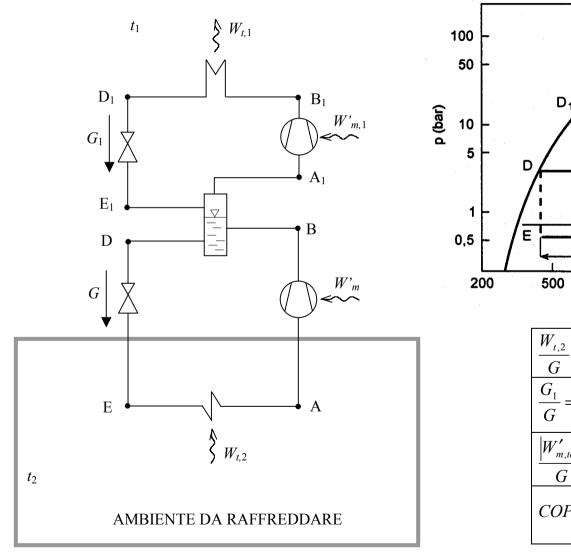

L'ODP (Potenzialità di Distruzione dell'Ozono) è espressa convenzionalmente con riferimento alla massa del fluido frigorigeno R11

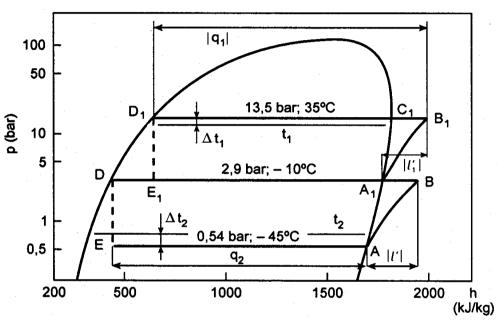
Fluidi frigorigeni


Un fluido frigorigeno dovrebbe avere:

- alta temperatura critica ben al di sopra della temperatura di condensazione che si realizza nel ciclo;
- bassa temperatura di solidificazione in modo da non solidificare nelle normali condizioni di funzionamento;
- alto calore di vaporizzazione per produrre un elevato effetto frigorifero q_2 ;
- pressioni di esercizio le più bassi possibili al fine di evitare costruzioni eccessivamente pesanti e costose (la pressione di evaporazione dovrebbe essere appena al di sopra di quella atmosferica);
- composizione chimica stabile;
- alta produzione frigorifera volumetrica q_2/v_v in modo da richiedere, a parità di potenza frigorifera, una portata volumetrica di fluido frigorigeno la più bassa possibile;
- assenza di caratteristiche tossiche, irritanti, e infiammabili;
- basso potenzialità di distruzione dell'ozono (ODP) e bassa potenzialità di effetto serra (GWP).

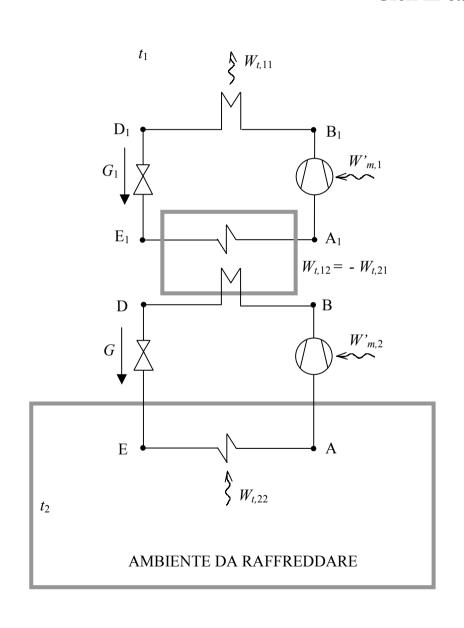


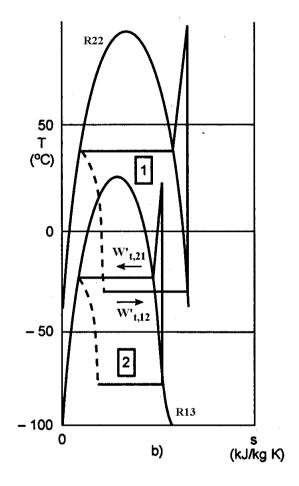

Ciclo standard (schema relativo ad un ciclo frigorifero per un condizionatore split)



Ciclo con compressione interrefrigerata

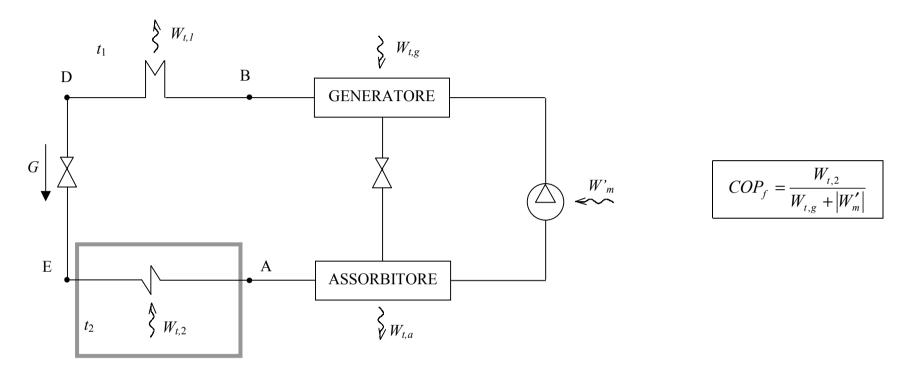
Ciclo con doppia compressione e doppia laminazione


$$\frac{W_{t,2}}{G} = q_2 = h_A - h_E = 1247 \text{ kJ/kg}$$

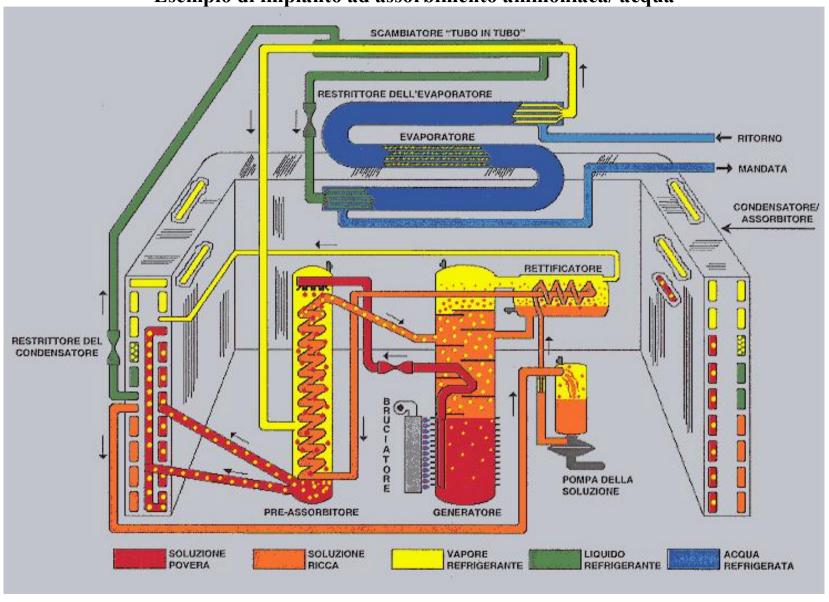

$$\frac{G_1}{G} = \frac{h_B - h_D}{h_{A_1} - h_{E_1}} = 1.33$$

$$\frac{|W'_{m,tot}|}{G} = |l'| + \frac{G_1}{G}|l'_1| = 520 \text{ kJ/kg}$$

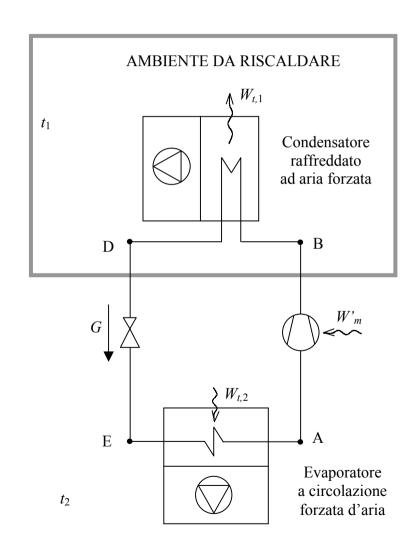
$$COP_f = \frac{W_{t,2}}{|W'_{m,tot}|} = \frac{q_2}{|l'| + G_1 / G|l'_1|} = 2.4$$

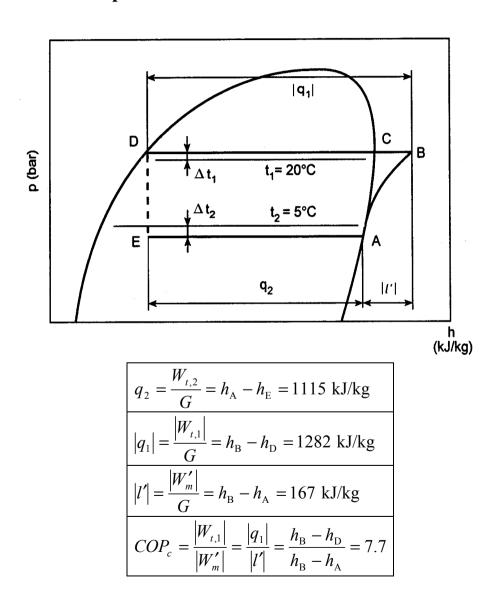

IMPIANTI FRIGORIFERI A COMPRESSIONE DI VAPORE Cicli in cascata

$$COP_{f} = \frac{1}{\left(1 + \frac{1}{COP_{f,1}}\right) \left(1 + \frac{1}{COP_{f,2}}\right) - 1}$$


IMPIANTI FRIGORIFERI AD ASSORBIMENTO

- In A il fluido frigorigeno (ammoniaca), nello stato di vapore saturo secco, entra nell'assorbitore dove viene messo a contatto con acqua a temperatura ambiente; l'acqua assorbe l'ammoniaca e la soluzione viene portata alla pressione del condensatore mediante una pompa con piccola spesa di potenza meccanica.
- Nel generatore si fornisce calore alla soluzione che si impoverisce del soluto (l'ammoniaca) inviato al condensatore; il solvente dopo il trafilamento torna all'assorbitore e riacquista la capacità di riassorbire l'ammoniaca proveniente dall'evaporatore. Il processo di diluizione dell'ammoniaca in acqua è esotermico per cui bisogna sottrarre calore nell'assorbitore, di solito usando lo stesso fluido refrigerante del condensatore.


IMPIANTI FRIGORIFERI AD ASSORBIMENTO


Esempio di impianto ad assorbimento ammoniaca/ acqua

POMPA DI CALORE

Ciclo a compressione di vapore

POMPA DI CALORE

Confronto tra riscaldamento tradizionale (caldaia) e riscaldamento con pompa di calore

- Un COP_c pari a 7.7 sta a significare che per ogni kWh di energia elettrica consumata la pompa di calore renderà 7.7 kWh d'energia termica nell'ambiente da riscaldare: 1 kWh viene fornito dall'energia elettrica consumata e gli altri 6.7 kWh vengono prelevati dall'ambiente. Per una corretta valutazione del consumo energetico occorre considerare l'energia primaria necessaria a produrre il kWh consumato dal compressore.
- Nel caso tradizionale (caldaia) si ha:

$$W_t = \eta_t G_c H$$

dove η_t rappresenta il rendimento medio stagionale dell'impianto a combustione.

• Nel caso del riscaldamento con pompa di calore si ottiene la stessa generazione di calore con lo stesso consumo di combustibile se:

$$W_t = W_{el} COP_c^* = \eta_e G_c H COP_c^*$$

dove η_e rappresenta il rendimento della conversione termoelettrica da potenza primaria a potenza elettrica nell'uso finale.

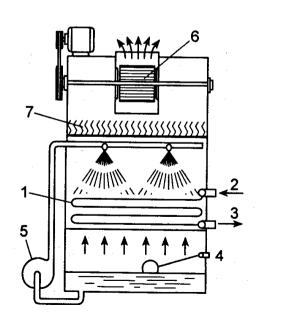
• L'ottenimento della parità termodinamica implica:

$$COP_c^* = \eta_t / \eta_e = 0.85 / 0.33 = 2.6$$

che risulta essere un valore medio stagionale ottenibile dalle moderne pompe di calore.

COMPONENTI DEGLI IMPIANTI FRIGORIFERI

Classificazione e simboli di rappresentazione degli evaporatori e dei condensatori (UNI 9511-4)

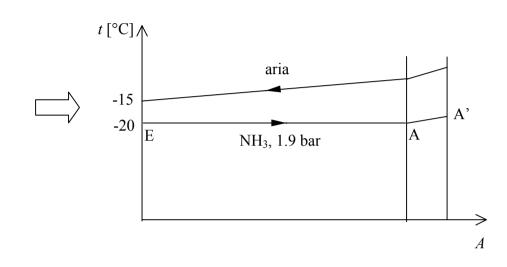

CONDENSATORI	$\overline{}$
Ad aria	
aria forzata	
aria naturale	
Ad acqua	
a fascio tubiero	
evaporativi a circolazione naturale di aria	
evaporativi ad aria forzata	
con torre evaporativa	

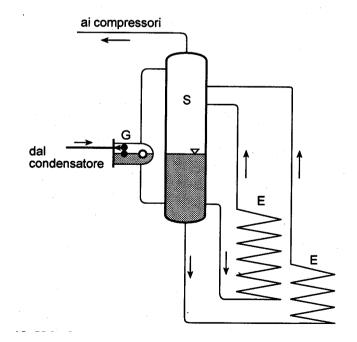

EVAPORATORI	7
A circolazione naturale di aria	
a circolazione forzata di aria	7
Raffreddatore di liquidi	4
raffreddatore a pioggia	£2
immerso	
a fascio tubiero	*

CONDENSATORI PER IMPIANTI FRIGORIFERI

A lato è mostrato l'andamento qualitativo della temperatura in un **condensatore ad acqua**.

I condensatori ad acqua sono realizzati ad esempio mediante scambiatori a tubi e mantello in cui l'acqua scorre all'interno dei tubi ed il fluido frigorigeno scorre nell'intercapedine tra i tubi ed il mantello.


I **condensatori evaporativi** sono intermedi tra condensatore ad acqua e ad aria.

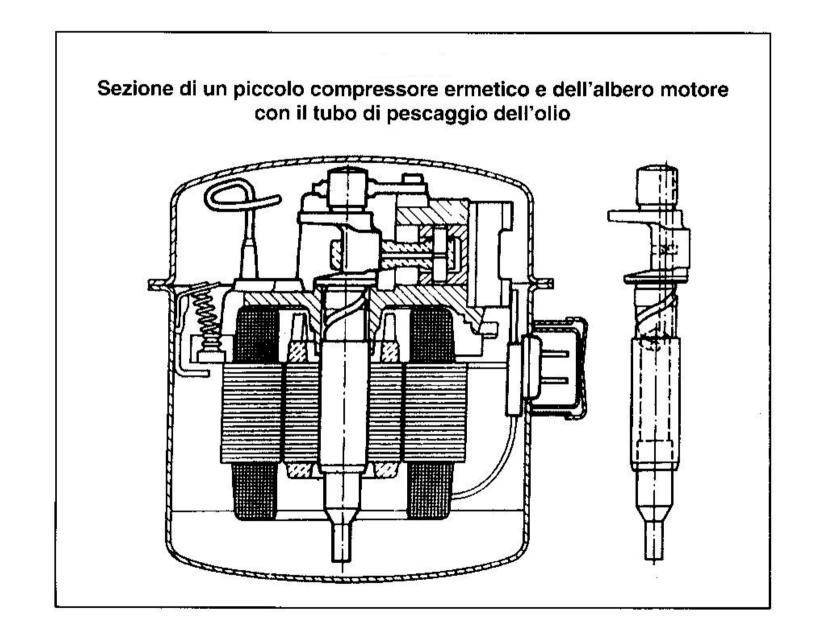

Sulla superficie di scambio lambita da aria (1) viene spruzzata acqua ricircolata (5) che evapora aumentando notevolmente il coefficiente di scambio e quindi consentendo di ridurre le dimensioni.

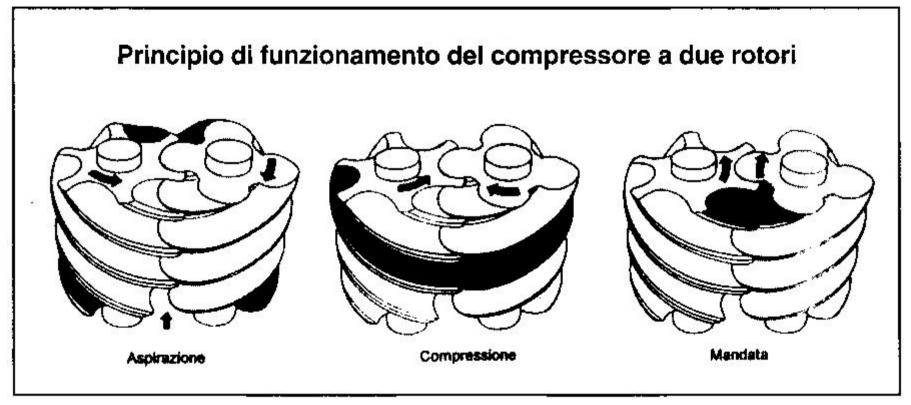
EVAPORATORI PER IMPIANTI FRIGORIFERI

In figura è rappresentato il diagramma caratteristico di un **evaporatore ad aria**. L'aria del locale da refrigerare viene raffreddata dal fluido frigorigeno.

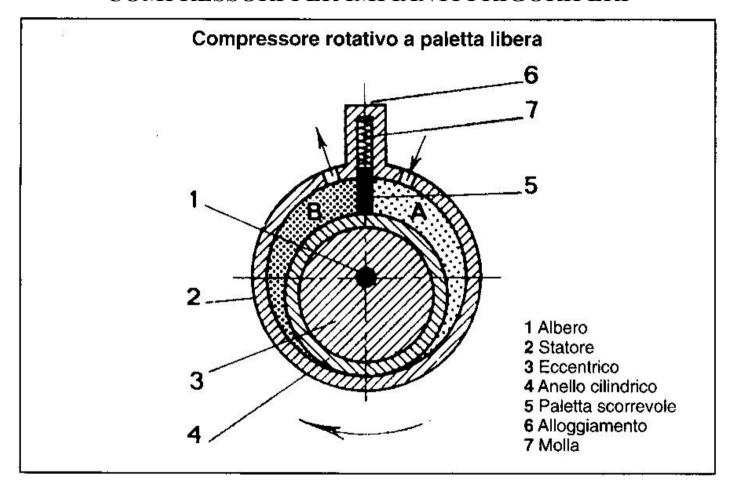
Si può notare un leggero surriscaldamento tipico degli evaporatori a secco, allo scopo di evitare l'ingresso del liquido nel compressore

Gli **evaporatori allagati** sono generatori di vapore che operano a circolazione naturale (o controllata).

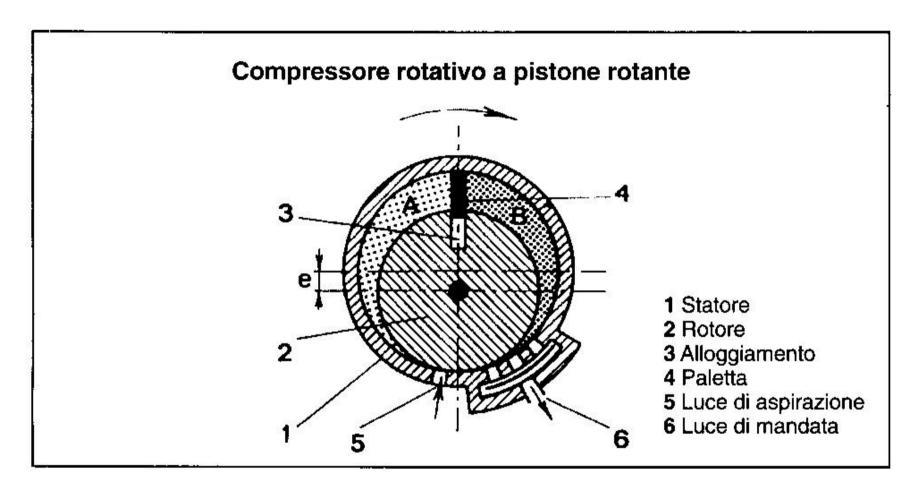

Essi sono molto elastici perché c'è una grande riserva di freddo: in caso di brusco aumento del carico frigorifero, parte del liquido accumulato evapora.

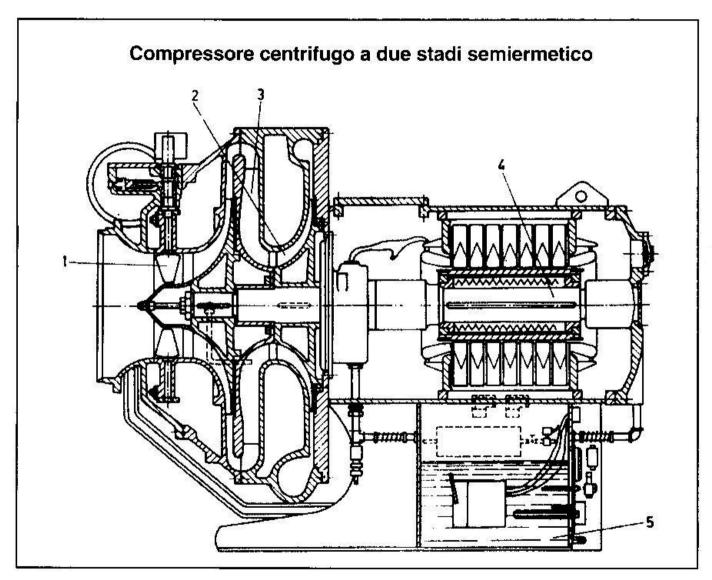

COMPONENTI DEGLI IMPIANTI FRIGORIFERI

Classificazione e simboli di rappresentazione dei compressori e degli organi di laminazione (UNI 9511-4)

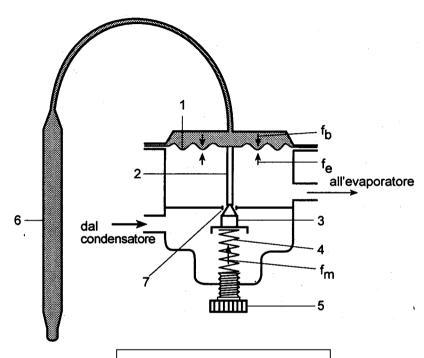

COMPRESSORI		-0-		
compressori volumetrici	alternativi	— <u>F</u>		
	rotativi a un asse	a palette a pistone rotante a spirale orbitante (scroll)		
	rotativi a due assi	a viti		
	assiali			
turbo compressori	radiali	centrifughi	<u></u>	
		centripeti	٦	
eiettori				

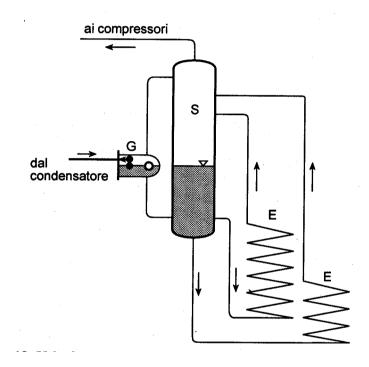
ORGANI DI LAMINAZIONE	
Tubo capillare	·
Valvole di espansione a regolazione manuale	
Valvole automatiche	
valvole di espansione termostatiche con equilibratore esterno	
valvole di espansione con galleggiante su bassa pressione	
valvole di espansione con galleggiante su alta pressione	




Durante la rotazione dei rotori, il fluido viene aspirato attraverso la luce d'immissione riempiendo il volume compreso tra due lobi. Esso aumenta con la rotazione fino allo sviluppo completo. Allorché gli spazi interlobari sono pieni di fluido cessa l'immissione e quindi la fase d'aspirazione. Il fluido racchiuso fra i lobi, durante la rotazione, viene costretto in uno spazio sempre più piccolo causando l'innalzamento della pressione. Allorché i rotori raggiungono una certa posizione il fluido compresso viene messo in comunicazione con una luce di scarico ed inizia la fase di mandata.

Nei compressori rotativi la compressione del fluido aspirato viene eseguito da un organo dotato di moto rotatorio. Nel caso in figura l'albero fa muovere l'anello cilindrico, montato su un eccentrico, che comincia a scorrere dentro lo statore. La paletta scorrevole, spinta sull'anello cilindrico dalla molla, determina due spazi compresi fra lo statore e l'anello cilindrico, i cui volumi variano durante la rotazione dell'albero.

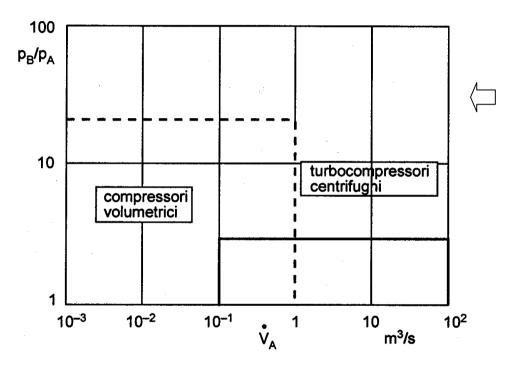

Nel caso in figura la paletta scorre liberamente all'interno di una scanalatura ricavata nel rotore, aderendo costantemente, durante il funzionamento, allo statore. In questo modo il fluido prelevato dalla luce di aspirazione viene compresso e spinto verso la luce di mandata.



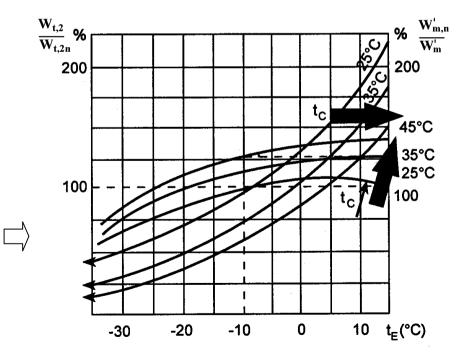
- 1 Alette di prerotazione per la riduzione della potenza
- 2 Girante
- 3 Diffusore
- 4 motore
- 5 serbatoio dell'olio

ORGANI DI LAMINAZIONE

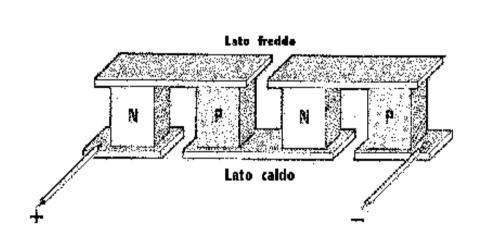
Le valvole a regolazione automatica regolano in modo automatico la portata del fluido frigorigeno.

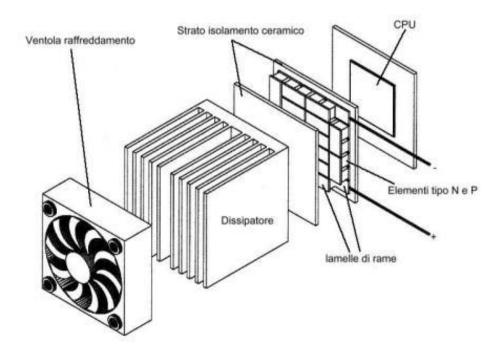


- 1. membrana
- 2. stelo
- 3. otturatore
- 4. molla
- 5. vite di regolazione
- 6. bulbo
- 7. sede


- S separatore liquido-vapore
- E evaporatore allagato
- G galleggiante

Campo di utilizzo dei compressori e curve caratteristiche di un sistema frigorifero


I compressori volumetrici (alternativi e rotativi) sono adatti per minori portate e maggiori rapporti di compressione rispetto ai turbocompressori centrifughi.


Il diagramma a destra riporta un esempio di curve caratteristiche normalizzate di un sistema frigorifero con compressore alternativo, le quali forniscono la potenza frigorifera e la potenza meccanica in funzione della temperatura di evaporazione e di condensazione.

IMPIANTI FRIGORIFERI AD EFFETTO TERMOELETTRICO

- Effetto Peltier: facendo passare una corrente continua attraverso due conduttori di diverso materiale, da un lato viene assorbito calore (parte fredda), e dall'altra viene ceduto (parte calda).
- Una cella di Peltier è composta da più cellette, dalle 30 cellette in su. In commercio si trovano prevalentemente celle del tipo isolato, con la parete superiore ed inferiore in ceramica.

