
LABORATORIO ELETTRONICA DIGITALE:	01_09_B	Data:	26/05/2009
Nome_		Esito:	
Tempo a disposizione: 1 ora			

TEMA

Si consideri la porta NOR CMOS realizzata in tecnologia "ED", il cui schema elettrico è riportato in figura. Si richiede di completare la scheda con i risultati ottenuti dalle opportune simulazioni effettuate. Si ritengano trascurabili, almeno in prima approssimazione, le capacità associate alle diffusioni di source e drain.

a. Analisi statica a vuoto: si consideri l'ingresso A, mantenendo l'ingresso B nello stato neutro per la porta.

$V_{I\!L}$	
V_{IH}	
V_{OL}	
V_{OH}	

 b. Analisi statica a carico: si considerino in ingresso i livelli elettrici pieni (0 e 5 V).

V_{OLmax} @ $IOL = 1 \text{ mA}$	
V_{OHmin} @ $ IOH = 1 \text{ mA}$	

c. Analisi dinamica: si colleghi una capacità $C_L = 0.6$ pF in uscita. Si faccia variare il segnale d'ingresso A tra 0 e 5 V con tempi di salita e discesa uguali e pari a 600 ps, mantenendo l'altro ingresso nello stato neutro per la porta. Valutare i tempi di propagazione t_{pHL} , t_{pLH} e l'energia E fornita dall'alimentatore a seguito di una commutazione in discesa del segnale d'ingresso.

$t_{pHL} (C_L = 0.6 \text{ pF})$	
$t_{pLH} (C_L = 0.6 \text{ pF})$	
$E (C_L = 0.6 \text{ pF})$	

d. Determinare la larghezza W_N dei transistori NMOS in modo tale che la tensione di uscita

 V_{OLmax} @ IOL = 1 mA sia pari a 0.4 V.

W_N	