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Nios Il Main Characteristics

RISC-style architecture (all instructions are 32-bit long)
32-bit data word
Byte-addressable memory space:

— with little-endian addressing scheme (lower byte addresses
used for less significant bytes)

— The LOAD and STORE instructions can transfer data in word,
half-word, and byte

Data are handled in word, half-word, and byte
32 general-purpose registers, 32-bit long
Several additional control registers



Nios Il Other Characteristics (1)

Optional shadow register sets

32 interrupt sources (Internal interrupt
controller)

External interrupt controller interface for
more interrupt sources

Single-instruction 32 x 32 multiply and divide
producing a 32-bit result

Dedicated instructions for computing 64-bit
and 128-bit products of multiplication



Nios Il Other Characteristics (2)

Floating-point instructions for single-precision
floating-point operations

Single-instruction barrel shifter

Hardware-assisted debug module enabling

processor start, stop, step, and trace under
control of the Nios Il software development
tools

Optional memory management unit (MMU) to
support operating systems that require MMUs



Nios Il Characteristics (3)

Optional memory protection unit (MPU)

Software development environment based on the
GNU C/C++ tool chain and the Nios Il Software
Build Tools (SBT) for Eclipse

Integration with Altera's SignalTap® Il Embedded
Logic Analyzer, enabling real-time analysis of
instructions and data along with other signals in
the FPGA design

Instruction set architecture (ISA) compatible
across all Nios |l processor versions

— Performance up to 250 DMIPS



Nios Il Implementation Versions (1)

economy standard fast
Core
Feature
Nios ll/e Nios Il/s Nios II/f
Objective Minimal core size Small core size Fast execution speed
DMIPS/MHz (1) 0.15 0.74 1.16
Performance Max. DMIPS (2) 31 127 218
Max. fyax (2) 200 MHz 165 MHz 185 MHz
Without MMU or MPU:
< 1800 LEs;
<900 ALMs
With MMU:
< 700 LEs; < 1400 LEs;
Area < 3000 LEs;
< 350 ALMs <700 ALMs
<1500 ALMs
With MPU:
<2400 LEs;
<1200 ALMs
Pipeline 1 stage 5 stages 6 stages
2 GB without MMU
External Address Space 2 GB 2 GB _
4 GB with MMU




Nios Il Implementation Versions (2)

Core
Feature
Nios ll/e Nios Il/s Nios II/f
Cache - 512 bytes to 64 KB 512 bytes to 64 KB
Instruction Pipelined Memory Access - Yes Yes
Bus Branch Prediction - Static Dynamic
Tightly-Coupled Memory - Optional Optional
Cache - - 512 bytes to 64 KB
Pipelined Memory Access - - -
m |/0 instructions
Data Bus ,
Cache Bypass Methods - - m Bit-31 cache bypass
m Optional MMU
Tightly-Coupled Memory - - Optional
Hardware Multiply - 3-cycle (3) 1-cycle (3)
Arithmetic Hardware Divide - Optional Optional
Logic Unit . , _ 1-cycle barrel
Shifter 1 cycle-per-bit 3-cycle shift (3) _
shifter (3)
JTAG interface, run control, Optional Optional Optional
JTAG Debug software breakpoints
Module Hardware Breakpoints - Optional Optional
Off-Chip Trace Buffer ~ Optional Optional
Memory Management Unit - - Optional
Memory Protection Unit - - Optional




Dhrystone Benchmark (1)

* Problem: compare processors with (very) different
architectures in a way representative of real-world
applications

— MIPS are unsuitable to compare RISC with CISC processors,
which have very different instruction sets

 Dhrystone benchmark was first published in Ada back
to 1984

* Now the C version of Dhrystone is largely used in
industry



Dhrystone Benchmark (2)

* Dhrystone code dominated by simple integer
arithmetic operations, string operations, logic
decisions, and memory accesses

 Dhrystone result is determined by measuring the
average time a processor takes to perform many
iterations of a single loop containing a fixed
sequence of instructions that make up the
penchmark

 Dhrystone compares the performance of the
orocessor under benchmark to that of a
reference machine




Dhrystone MIPS (1)

* The industry has adopted the VAX 11/780 as the
reference, namely 1 MIP machine. The VAX
11/780 achieves 1757 Dhrystones per second

 DMIPS figure of a computer is calculated by
measuring the number of Dhrystones per second

performed by the computer, and dividing it by
1757

— So "80 DMIPS” means "80 Dhrystone VAX MIPS”,
which implies 80 times faster than a VAX 11/780
* A DMIPS/MHz rating takes this normalization
process one step further, enabling comparison of
processor performance at different clock rates



Dhrystone MIPS (2)

* Dhrystone numbers actually reflect the
performance of the C compiler and libraries,
probably more than the performance of the
processor itself. Also, lack of independent
certification means that customers are
dependent on processor vendors to quote
accurate and meaningful Dhrystone data.



“And of course, the very success of a benchmark
program is a danger in that people may tune
their compilers and/or hardware to it, and with
this action make it less useful.”

Reinhold P. Weicker, Siemens AG, April 1989
Author of the Dhrystone Benchmark




Nios Il registers (1)

* General-purpose registers (r0-r31)

Register Name Function Register Name Function
r0 Zero 0x00000000 rl6 Callee-saved register
rl at Assembler temporary rl7 Callee-saved register
r2 Return value ris Callee-saved register
r3 Return value r19 Callee-saved register
rd Register arguments r20 Callee-saved register
r5 Register arguments r2l Callee-saved register
r6 Register arguments r22 Callee-saved register
r7 Register arguments r23 Callee-saved register
r8 Caller-saved register r24 et Exception temporary
r9 Caller-saved register r25 bt Breakpoint temporary (7)
rl0 Caller-saved register r26 9p Global pointer
rll Caller-saved register r27 sp Stack pointer
rl2 Caller-saved register r28 fp Frame pointer
rl3 Caller-saved register r29 ea Exception return address
rl4 Caller-saved register r30 ba Breakpoint return address (2)
rl5 Caller-saved register r3l ra Return address




Nios Il registers (2)

* Control registers

Register Name Register Contents
0 status Refer to Table 3—7 on page 3—12
1 estatus Refer to Table 3-9 on page 3-14
2 bstatus Refer to Table 3—10 on page 3—-15
3 ienable Internal interrupt-enable bits (3)
4 ipending Pending internal interrupt bits (3)
5 cpuid Unique processor identifier
6 Reserved Reserved
7 exception Refer to Table 3—12 on page 3-16
8 pteaddr (1) Refer to Table 3—13 on page 3—-16
9 tlbacc (1) Refer to Table 3—15 on page 3—-17
10 tlbmisc (1) Refer to Table 3—17 on page 3—-18
11 Reserved Reserved
12 badaddr Refer to Table 3—19 on page 3-21
13 config (2) Refer to Table 3—21 on page 3-21
14 mpubase (2) Refer to Table 3—-23 on page 3-22
15 mpuacc (2) Refer to Table 3-25 on page 3-23
16-31 Reserved Reserved




Status register (1)

31 (30|29 |28 |27 |26 |25 (24|23 |22 |21 |20 19 (18|17 |16 |15 |14 (13 |12 |11 |10| 9 (8 |7 | 6 | 5| 4|3 | 2 0
M — m
Reserved Hls PRS CRS IL T | & O
| = 2
Bit Description Access Reset | Available
EIC
RSIE is the register set interrupt-enable bit. When set to 1, this bit allows interface
— Fhe processor to service external mtgrrupts'requestmg the' register set that Read/Write 1 and shadow
is currently in use. When set to 0, this bit disallows servicing of such register
interrupts. sets
only (4)
NMI is the nonmaskable interrupt mode bit. The processor sets NMI to 1 . EIC
NMI . : ' Read 0 interface
when it takes a nonmaskable interrupt.
only (3)
PRS is the previous register set field. The processor copies the CRS field to
the PRS field upon one of the following events:
m Ina processor with no MMU, on any exception
m Ina processor with an MMU, on one of the following:
m Break exception
= Nonbreak exception when status.EH is zero
The processor copies CRS to PRS immediately after copying the status Shadow
PRS register to estatus, bstatus 0Or sstatus. Read/Write 0 regliter
The number of significant bits in the crs and pRrs fields depends on the Sets
number of shadow register sets implemented in the Nios Il core. The value only (3)
of CrRS and PRS can range from 0 to n-1, where n is the number of
implemented register sets. The processor core implements the number of
significant bits needed to represent n-1. Unused high-order bits are always
read as 0, and must be written as 0.
| Ensure that system software writes only valid register set numbers to
the PRs field. Processor behavior is undefined with an unimplemented
register set number.




Status register (2)

Bit Description Access Reset | Available
CRS is the current register set field. CRS indicates which register set is
currently in use. Register set 0 is the normal register set, while register sets
1 and higher are shadow register sets. The processor sets CRS to zero on Sha.dow
CRS any noninterrupt exception. Read (1) 0 resg;;er
The number of significant bits in the CRS and PRs fields depends on the only (3)
number of shadow register sets implemented in the Nios Il core. Unused
high-order bits are always read as 0, and must be written as 0.
IL is the interrupt level field. The IL field controls what level of external EIC
IL maskable interrupts can be serviced. The processor services a maskable Read/Write 0 interface
interrupt only if its requested interrupt level is greater than IL. only (3)
IH is the interrupt handler mode bit. The processor sets IH to one when it : . .
IH . Read/Write 0 interface
takes an external interrupt.
only (3)
EH is the exception handler mode bit. The processor sets EH to one when an
exception occurs (including breaks). Software clears EH to zero when ready MMU
EH (2) | to handle exceptions again. EH is used by the MMU to determine whethera | Read/Write 0 only (3)
TLB miss exception is a fast TLB miss or a double TLB miss. In systems y
without an MMU, EH is always zero.
U is the user mode bit. When U = 1, the processor operates in user mode. MMU or
U (2) When U =0, the processor operates in supervisor mode. In systems without | Read/Write 0 MPU
an MMU, U is always zero. only (3)
PIE is the processor interrupt-enable bit. When PIE = 0, internal and
maskable external interrupts and noninterrupt exceptions are ignored.
PIE When PIE = 1, internal and maskable external interrupts can be taken, Read/Write 0 Always

depending on the status of the interrupt controller. Noninterrupt exceptions
are unaffected by PIE.




Other control registers (1)

The estatus register holds a saved copy of the
status register during nonbreak exception
processing

The bstatus register holds a saved copy of the
status register during break exception processing

The ienable register controls the handling of
internal hardware interrupts

The ipending register indicates the value of the
interrupt signals driven into the processor



Other control registers (2)

* The cpuid register holds a constant value that
is defined in the Nios |l Processor parameter

editor to uniquely identify each processor in a
multiprocessor system

* When the extra exception information option
is enabled, the Nios Il processor provides
information useful to system software for
exception processing in the exception and
badaddr registers when an exception occurs



Addressing Modes (1)

* How operands are specified in an instruction

* Nios 2 proc. supports 5 addressing modes:

— Immediate mode: a 16-bit operand is contained in
the instruction itself. This value is (sign-)extended
to produce a 32-bit operand for (arithmetic)
instructions

— Register mode: the operand is the content of a
register

— Register indirect mode: the effective address of
the operand is the content of a register



Addressing Modes (2)

* Nios 2 proc. supports 5 addressing modes:

— Displacement mode: the effective address of the
operand is obtained by adding the content of a
register and a 16-bit value contained in the
instruction itself.

— Absolute mode: is a particular case of the
Displacement mode when the register is rO

e E.g.add1 r3, r2, 100
the content of r2 is added to 100 and the
result placed in r3



Addressing Modes (3)

Nios Il addressing modes.

Name Assembler syntax Addressing function
Immediate Value Operand = Value
Register ri EA=rn

Register indirect (r1) EA = [ri]
Displacement X(11) EA=1ri] + X
Absolute LOC(10) EA =LOC

EA = effective address
Value = a 16-bit signed number
X = a 16-bit signed displacement value

[ri] indicates the content of the register ri



Instruction formats (1)

e RISC-style instructions (all 32-bit long)
— Load/store architecture for data transfers
— Arithmetic/logic instructions use registers

* Three instruction types:
I-type OP dst reg, src reg, lmmediate
R-type OP dst reg, src regl, src regl
J-type call label or address

* label or address isa 26-bit unsigned immediate
value



Instruction formats (2)

I-type instructions include arithmetic and logical operations

such as addi and andi; branch operations; load and store
operations; and cache management operations.
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R-type instructions include arithmetic and logical operations
such as add, and, nor; comparison operations such as cmpeq
and cmplt
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e J-type instructions such as call and jmpi, transfer execution
anywhere within a 256-MB range
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Load and Store Instructions

For moving data between memory (or 1/0)
and general-purpose registers

Words, half-words, bytes; alignment required
Variants available for I/O (uncached) access
Examples:

1dw r2, 40 (r3) // load word
stb r6, 4(rl2) // store byte

ldhio r?9, (r20) load I/O halfword
signed extended
load byte zero
extended

store word

ldbu r2, -100(r3)

N~ T T T
N~ N T T

stw r/7, 100 (x0)



Arithmetic Instructions

 add, addi (16-bit immediate is sign-extended)
 sub, subi, mul, and muli are similar

 Mult. is unsigned, result is truncated to 32 bits
» div (signed values), divu (unsigned values)

* Examples:

add r2, r3, r4 //(r2 « [r3] + |
muli r6, r7, 4096 //(r6 —« [r7] x 4096)
divu r8, r9, rl0 //(r8 — [r9] / |



Logic Instructions

and, or, xor, nor have 2 register operands

andi, ori, xori, nori have a register operand
and an immediate operand that is
zero-extended from 16 bits to 32 bits

Examples:

or r7, r8, r9 // (r7 « [r8] OR [r9])
andi r4, r5, OxFF //(rd4d — [r5] AND 255)

andhi, orhi, xorhi shift 16-bit immediate left
and clear lower 16 bits to zero



Move Instructions

e Pseudoinstructions provided for convenience:

mov ri, rj => add ri, r0, rjy
movi ri, Valle => addi ri, r0, Vallo
moviu ri, Valle => ori ri, r0, Vallo

* Move Immediate Address for 32-bit value:
movia ri, LABEL => orhi ri, r0, LABEL HI
ori ri, ri, LABEL LO

 LABEL HI is upper 16 bits of LABEL, and
LABEL LO is lower 16 bits of LABEL



Branch and Jump Instructions

Unconditional branch: br LABEL
Instruction encoding uses signed 16-bit byte

offset

Signed/unsigned comparison and branch:

ri, rj, LABEL // signed [ri]<[r7]
bltu ri, rj, LABEL // unsigned [ri]<[r7j]

beq, bne, bge, bgeu, bgt, bgtu, ble, and bleu
Unconditional branch beyond 16-bit offset:

blt

Jjmp

ri

// Jump to address in ri



Subroutine Linkage Instructions

Subroutine call instruction: call LABEL
Saves return address (from PC) in r31 (ra)
Target encoded as 26-bit immediate, Value26

At execution time, 32-bit address derived as:
Jump address: PC,, ,4 : Value26 : 00

Call with target in register: callr ri

Return instruction: ret
— Branches to address saved in r31 (ra)



Parameter Passing & Stack Frames

* Pass parameters in register or using stack

* Build stack frames for private work space and
saving registers when nesting subroutine calls

* Called routine always saves frame ptr r28 (fp)
oefore creating its own private work space

e Return addr r31 (ra) saved to enable nesting

* Use fp with displacement to access stack data:
ldw r4, 8(fp)



Comparison Instructions

Result of comparing two operands is placed in
destination register: 1 (if true) or O (if false)

Less-than comparisons that set ri to O or 1:

cmplt ri, rj, rk // signed [rj] < [rk]
cmpltu ri, rj, rk // unsigned [rj] < [rk]
cmplti ri, rj, Vallée // signed [rj] < Vallé6
cmpltui ri, rj, Vallé //unsigned [r7j]<Vallo

Vall6 is sign- or zero-extended based on type
Similarly for: ...eq.., ...ne.,, ...le.., ...ge.., ...gt..



Shift and Rotate Instructions

Shift right logical rj, destination register is ri:
srl ri, rj, rk //shift by amount in rk
srli ri, rj, Valb //shift by immediate wvalue

Shift right arithmetic sra, srai: same as above
except that sign in bit rj;, is preserved

Shift left logical sll, slli
Rotate left rol, roli
Rotate right ror (no immediate version)



Control Instructions

Special instructions to access control registers

Read Control Register instruction:
rdctl ri, ctly // ri « [ctl7]

Write Control Register instruction:
wrctl ctlj, ri // ctlj « [ri]

Instructions trap, eret deal with exceptions
(similar to call, ret but for different purpose)

Additional instructions for cache management



Pseudoinstructions

mov, movi, and movia already discussed;
translated to other instructions by assembler

Subtract immediate is actually add immediate with

negation of constant:
subi ri, rj, Valuel6t => addi ri, rj, -Valuelo6

Also can swap operands for comparisons:
bgt ri, rj, LABEL => Dblt rj, ri, LABEL

Awareness of pseudoinstructions is not critical,
except when examining assembled code



Assembler Directives

* Nios Il assembler directives conform to
those defined by widely used GNU assembler:

.org \Value (code/data origin)
.equ  LABEL, Value (equate to label)
byte expressions (define byte data)
hword expressions (define halfwords)
.word expressions (define word data)
skip  Size (reserve bytes)
.end (end of source code)




Carry/Overflow Detection for Add

Nios Il does not have condition codes (flags)

Arithmetic performed in same manner
for signed and unsigned operands

Detect carry/overflow needs more instructions

Carry: test if unsigned result is less than either
one of the operands:

add rd, r2, r3
cmpltu «rb5, r4d4, r2

Carry bitisin r5



Carry/Overflow Detection for Add

* Overflow: compare signs of operands & result

e Use xor, and to check for same operand signs
and different sign for result:

add zr4, r2, r3
xor rb, r4d, r2
Xor ro6, rd, r3
and 1r5, rb, ro
blt r5, r0, OVERFLOW

» Similar checks for subtract carry/overflow



Input/Output

 Use I/O versions of Load/Store instructions

* Polling for program-controlled output:

movia r6, DATA REG ADDR

mov r7, DATA TO SEND

movia r4, STATUS REG ADDR
Ll:

ldbio r5, (r4)

andi r5, r5, STATUS FLAG BIT

beq r5, r0, L1

stbio r7, (ro)



Example Program

e Vector dot product performs multiplication
and addition operations for array elements

— Vectors A and B stored starting from address AVEC
and BVEC, respectively

— Vector size stored at address N
— Result must be stored at address DOTPROD

— Vector element, vector size and result are 32-bit
wide



movia 12, AVEC
movia 13, BVEC
movia 14, N

ldw 4, (rd)
mov rd, 10

/* 12 points to vector A.

/* 13 points to vector B.

/* Get the address N.

/¥ 14 serves as a counter.

/* 15 accumulates the dot product.

LOOP: Idw 16, (12) /* Get next element of vector A.
ldw 17, (r3) /* Get next element of vector B.
mul 18, 16, 1’/ /* Compute the product of next pair.
add 3, 15, 18 /* Add to previous sum.
addi 2,12, 4 /* Increment pointer to vector A.
addi r3.13. 4 /* Increment pointer to vector B.
subi 4. 14, 1 /* Decrement the counter.
bgt r4, r0), LOOP /* Loop again if not done.
movia 12, DOTPROD /* Store dot product
Stw 1, (r2) /* In memory.

\r A\ \r \r \r \r \r A\ \r \r \r \r \r A\ \r
- - - - - D - - - - - - - - -
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