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Basic Concept of Pipelining

• Circuit technology and hardware arrangement  
influence the speed of execution for programs

• All computer units benefit from faster circuits
• Pipelining involves arranging the hardware to 

perform multiple operations simultaneously
– Similar to assembly line where product moves 

through stations that perform specific tasks
– Same total time for each item, but different tasks 

are overlapped for different items (or instructions 
in processors)



Pipelining in a Computer
• Focus on pipelining of instruction execution
• 5-stage organization consists of:

Fetch,  Decode,  Compute,  Memory,  Write
• We’ve seen how instructions are fetched & 

executed one at a time with only one stage active 
in any cycle

• With pipelining, multiple stages are active 
simultaneously for different instructions

• Still 5 cycles to execute, but rate reaches
1 instruction per cycle
– Ideally, one instruction is completed at each cycle



“Ideal situation”



Pipeline Organization

• Use program counter (PC) to fetch instructions
– A new instruction enters pipeline every cycle

• Carry along instruction-specific information as  
instructions flow through the different stages

• Use interstage buffers to hold this information
– These buffers incorporate RA, RB, RZ, RM, RY, IR, 

and PC-Temp registers
– The buffers also hold control signal settings 



1 Fetch

2 Decode

3 Compute

4 Memory

5 Write



Pipelining Issues
• Consider two successive instructions Ij and Ij+1. 

Assume that the destination register of Ij matches 
one of the source registers of Ij+1
– Result of Ij is written to destination in cycle 5
– But Ij+1 reads old value of register in cycle 3

• Due to pipelining, Ij+1 computation is incorrect. So 
stall (delay) Ij+1 until Ij writes the new value

• Condition requiring this stall is a data hazard

Decode



Data Dependencies

• Now consider the specific instructions
Add R2, R3, #100
Subtract R9, R2, #30

• Destination R2 of Add is a source for Subtract
• There is a data dependency between them 

because R2 carries data from Add to Subtract
• On non-pipelined datapath, result is available

in R2 because Add completes before Subtract



Stalling the Pipeline

• With pipelined execution, old value is still in 
register R2 when Subtract is in Decode stage

• So stall Subtract for 3 cycles in Decode stage
• New value of R2 is then available in cycle 6



Details for Stalling the Pipeline (1)

• Control circuitry must recognize dependency 
while Subtract is being decoded in cycle 3

• Interstage buffers carry register identifiers for 
source(s) and destination of instructions

• In cycle 3, compare destination identifier in 
Compute stage against source(s) in Decode

• R2 matches, so Subtract kept in Decode
while Add is allowed to continue normally



Details for Stalling the Pipeline (2)

• Stall the Subtract instruction for 3 cycles by 
holding interstage buffer B1 contents steady

• But what happens after Add leaves Compute?
• Control signals are set in cycles 3 to 5 to create 

an implicit NOP (No-operation) in Compute
• NOP control signals in interstage buffer B2 

create a cycle of idle time in each later stage
• The idle time from each NOP is called a bubble



1 2 3 4 5 6 7 8 9

Add Sub Sub Sub Sub

Add Nop Nop Nop Sub

Add Nop Nop Nop Sub

Add Nop Nop Nop Sub

clock cycle

Data hazard 
is detected

R2 is
written

Add R2, R3, #100
Subtract R9, R2, #30

No write in the 
register

R9 is
written

No write in the 
memory



Operand Forwarding

• Operand forwarding handles dependencies 
without the penalty of stalling the pipeline

• For the preceding sequence of instructions, 
new value for R2 is available at end of cycle 3

• Forward value to where it is needed in cycle 4



Add R2, R3, #100
Subtract R9, R2, #30

What happens if instr. 
are NOT consecutive?

E.g.
Add R2, R3, #100
Or             R4, R5, R6
Subtract R9, R2, #30



Add R2, R3, #100
Or             R4, R5, R6
Subtract R9, R2, #30

33

RY



Software Handling of Dependencies

• Compiler can generate & analyze instructions
• Data dependencies are evident from registers
• Compiler puts three explicit NOP instructions 

between instructions having a dependency
• Delay ensures new value available in register 

but causes total execution time to increase
• Compiler can optimize by moving instructions 

into NOP slots (if data dependencies permit)
– Leading to a smaller code size and shorter 

execution time



Add R2, R3, #100
Subtract R9, R2, #30

Compiler



Memory Delays (1)

• Memory delays can also cause pipeline stalls
• A cache memory holds instructions and data 

from the main memory, but is faster to access
• With a cache, typical access time is one cycle
• But a cache miss requires accessing slower 

main memory with a much longer delay
• In pipeline, memory delay for one instruction 

causes subsequent instructions to be delayed



Memory Delays (2)

• Example considering a memory access time of 
3 clock cycles



Memory Delays (3)

• Even with a cache hit, a Load instruction may  
cause a short delay due to a data dependency

• One-cycle stall required for correct value to be 
forwarded to instruction needing that value

• Optimize with useful instruction to fill delay

operand forwarding



Branch Delays
• Ideal pipelining: fetch each new instruction while 

the previous instruction is being decoded

• Branch instructions may alter execution 
sequence, but they must be processed to know 
the effect

• Any delay for determining branch outcome may 
lead to an increase in total execution time

• Techniques to mitigate this effect are desired
• Understand branch behavior to find solutions

1 2 3 4 5 6 7

Ij F D C M W

Ij+1 F D C M W

Ij+2 F D C M W



Unconditional Branches (1)

• Consider instructions Ij, Ij+1, Ij+2 in sequence
– Ij is an unconditional branch with target Ik

• The target address, calculated using offset (which 
is available after the Decode stage) and [PC]+4, is 
known after the Compute stage

• In pipeline, target Ik is known for Ij in cycle 4, but 
instructions Ij+1 , Ij+2 fetched in cycles 2 & 3

• Target Ik should have followed Ij immediately, so 
discard Ij+1 , Ij+2 and incur into a two-cycle penalty



Unconditional Branches (2)



Effect of branch penalty 

• Ideally, 1 instr. per cycle w/ pipelining

• Branch instr. are executed frequently
– Roughly pBR = 20 % of the instr. executed by the 

processor (may be significantly larger than the 
number of branch instr. in the code, because of loops)

– A 2-cycle branch penalty increases the average 
number of cycles S per instr. by 40 %
• S = (1 – pBR) x 1 + pBR x ( 1 + 2) = 1 + 2 x pBR = 1.4

• S = 1 + δBR, δBR = 2 x pBR = 0.4

– Things are a little bit better, as not all the conditional 
branches will be taken



Reducing the Branch Penalty (1)

• In pipeline, adder for PC in the Instruction 
Address Generator block is used every cycle, so it 
cannot calculate the branch target address

Needs to be 
duplicate for 
pipeline execution

Reducing the Branch Penalty (1)

• In pipeline, adder for PC in the Instruction 
Address Generator block is used every cycle, so it 
cannot calculate the branch target address

Needs to be 
duplicate for 
pipeline execution



Reducing the Branch Penalty (2)

• In pipeline, adder for PC in the Instruction 
Address Generator block is used every cycle, so it 
cannot calculate the branch target address

• So introduce a second adder just for branches 
and place this second adder in the Decode stage 
to enable earlier determination of target address

• For previous example, now only Ij+1 is fetched
• Only one instruction needs to be discarded
• The branch penalty for UNCONDITIONAL 

branches is reduced to one cycle



Reducing the Branch Penalty (3)
Unconditional branch



Conditional Branches

• Consider a conditional branch instruction:
– Branch_if_[R5]=[R6] LOOP

• Requires not only target address calculation, but 
also requires comparison for condition

• In the 5-stage architecture, ALU performs the 
comparison

• Target address now calculated in Decode stage
• To maintain one-cycle penalty, a comparator just 

for branches must be inserted in Decode stage
– Higher hardware complexity



The Branch Delay Slot (1)

• Let both branch decision and target address  
be determined in Decode stage of pipeline

• Instruction immediately following a branch is 
always fetched, regardless of branch decision

• That next instruction is discarded with penalty, 
except when conditional branch is not taken
– Non-uniform behaviour between the two cases

• The location immediately following the branch 
is called the branch delay slot



The Branch Delay Slot (2)
• Instead of conditionally discarding instruction in 

delay slot, always let it complete execution 
• Let compiler find an instruction before branch to 

move into slot, if data dependencies permit
– Called delayed branching due to reordering

• If useful instruction put in slot, penalty is zero
• If not possible, insert explicit NOP in delay slot for 

one-cycle penalty, whether or not taken
• Benefits of delayed branching depends on the 

possibility for the compiler to fill the branch delay 
slot (this happens for more than 70 % of the 
cases in many programs)





Branch Prediction

• A branch is decided in Decode stage (cycle 2) 
while following instruction is always fetched

• Following instruction may require discarding 
(or with delayed branching, it may be a NOP)

• Instead of discarding the following instruction, 
can we anticipate the actual next instruction?

• Two aims: (a) predict the branch decision
(b) use prediction earlier in cycle 1



Static Branch Prediction

• Simplest approach: assume branch not taken
– Penalty if prediction disproved during Decode

• If branches are “random”, accuracy is 50%
• But a branch at end of a loop is usually taken
– So for backward branch, always predict taken
– Instead, always predict not taken for forward branch

• Expect higher accuracy for this special case, but 
what about accuracy for other branches?
– For the last iteration of loops, the static prediction is 

wrong



Dynamic Branch Prediction
• Idea: track branch decisions during execution 

for dynamic prediction to improve accuracy
• Simplest approach: use most recent outcome 

for likely taken (LT) or likely not-taken (LNT)
• For branch at end of loop, we mispredict in 

last pass, and in first pass if loop is re-entered
• Avoid misprediction for loop re-entry with 

four states (ST, LT, LNT, SNT) for strongly/likely
• Must be wrong twice to change prediction



In LT and ST states 
branch is predicted as 
TAKEN

In LNT and SNT states 
branch is predicted 
NOT TAKEN  



Branch Target Buffer
• Prediction only provides a presumed decision
• Decode stage computes target in cycle 2
• But we need target (and prediction) in cycle 1
• Branch target buffer stores target address and 

history from last execution of each branch. Each 
element of the buffer contains: the address of 
the branch instr., the state of the branch 
prediction alg and the branch target address

• In cycle 1, use branch instruction address to look 
up target and use history for prediction

• Fetch in cycle 2 using prediction; if mispredict
detected during Decode, correct it in cycle 3



Performance Evaluation
• For a non-pipelined proc., the instr. throughput 

(#instr. per second) is:
– Fnp = R/S, where R is the clock freq. and S is the 

average number of cycles to execute one instr.
For the 5-stage architecture, S = 5 assuming that every 
memory access can be performed in one cycle (no 
cache misses).

• For a pipelined proc., throughput F is increased 
by instr. execution overlapping. Ideally, S can be 
reduced to 1 (one instr. per cycle). This implies no 
pipeline stalls.
– How can we quantify the effect of pipeline stalls and 

branch penalties on achieved instr. throughput?



Effect of Stalls 

• Let’s consider a proc. w/ operand forwarding (in 
hardware). Stalls occur when data dependency is 
related to a Load instr., which causes a 1-cycle 
stall
– E.g. if freq. of Load instr. pLD = 25 %, freq. of data 

dependency after a Load pLD-dep = 40 %, then 
throughput F is reduced to:
• F = R/(1 + δstall) where δstall = 1xpLDxpLD-dep= 0.1
• Thus, F = R/1.1 = 0.91R

– The compiler can improve performance by trying to 
reduce pLD-dep



Effect of Branch Penalty 

• Let’s consider a proc. w/ branch decision and 
branch target address evaluation in the 
Decode stage. When branch is mispredicted, 
there is 1-cycle penalty.
– E.g. if freq. of branch instr. pBR = 20 %, prediction 

accuracy pBR-pred = 90 %, then throughput F is 
reduced to:
• F = R/(1 + δBR_penalty) where

δBR_penalty = 1xpBRx (1- pBR-pred) = 0.02
• Thus, F = R/1.02 = 0.98R

– δBR_penalty adds to δstall



Effect of Cache Misses
• When a cache miss occurs, there is a penalty due 

to the access of a slower memory which stalls the 
pipeline for Nmiss cycles.
– E.g. if freq. of cache misses during fetch

pmiss-fetch = 5 %, freq. of cache misses during mem 
access pmiss-mem = 10 %, freq. of Load and Store instr. 
pLD-ST = 30 %, Nmiss = 15, then throughput F is reduced 
to:
• F = R/(1 + δcache-miss) where

δcache-miss = Nmiss (pmiss-fetch + pLD-ST x pmiss-mem)
= 15x(0.05 + 0.03) = 1.2

• Thus F = R/2.2 = 0.45R
– δcache-miss adds to δBR_penalty and δstall.
– Thus, overall F = R/2.32 = 0.42R

Cache misses are the dominant factor.



Number of Pipeline Stages n

• R increases with n (! ∝ #, if n is low)
• However, also $penalty increases with n because

of higher probability of stalls, later branch
decisions, higher cycle penalty,…

• Choose so that ALU determins R (the other
stages need similar times)
– To increase R further piplenine also ALU
– Up to 20 stages to have R in the order of GHz

% = !
1 + $penalty

, R clock frequency



Superscalar Operation

• Introduce multiple execution units to enable 
multiple instruction issue for higher than 1 
instr./cycle throughput

• This organization is for a superscalar processor 
– An “elaborate” fetch unit brings 2 or more instructions 

into an instruction queue in every cycle
– A dispatch unit takes 2 or more instructions from the 

head of the instr. queue in every cycle, decodes them, 
sends them to appropriate execution units

– A completion unit writes results to registers



Superscalar Processor (1)

2 execution units
working in parallel



Superscalar Processor (2)

• Minimum superscalar arrangement consists of  

a Load/Store unit and an arithmetic unit

– Because of Index mode address calculation, 

Load/Store unit has a two-stage pipeline

– Arithmetic unit usually has one stage

• For two execution units, how many operands?

– Up to 4 inputs, so register file has 4 read ports

– Up to 2 results, so also need 2 write ports

(and methods to prevent write to the same reg.)



Superscalar Proc. Instr. Exec. Example



Branches and Data Dependencies (1)

• With no branches or data dependencies, 
interleave arithmetic & memory instructions 
to obtain maximum throughput (2 per cycle)

• But branches do occur and must be handled
– Branches processed entirely by fetch unit to 

determine which instructions enter queue
– Fetch unit uses prediction for all branches
• Necessary because decisions may need values 

produced by other instructions in progress 



Branches and Data Dependencies (2)

• Speculative execution: results of instructions 
not committed until prediction is confirmed

• Requires extra hardware to track speculation 
and to recover in the event of misprediction

• For data dependencies between instructions, 
the execution units have reservation stations
– They buffer register identifiers and operands for 

dispatched instructions awaiting execution
– Broadcast results for stations to capture & use



Out-of-Order Execution

• With instructions buffered at execution units, 
should execution reflect original sequencing?

• If two instructions have no dependencies, 
there are no actual ordering constraints

• This enables out-of-order execution, but then 
leads to imprecise exceptions

• For precise exceptions, results must strictly be 
committed in original order. This requires 
additional  hardware



Execution Completion
• To commit results in original program order, 

superscalar processors can use 2 techniques
– Register renaming uses temporary registers to 

hold new data before it is safe to commit them in 
the register file

– Reorder buffer in commitment unit is where 
dispatched instructions are placed strictly in the 
program order
• Update the actual destination register only for 

instruction at the head of reorder buffer queue 
• Ensures instructions retired in original order



Dispatch Operation

• Dispatch of instruction proceeds only when all 
needed resources available (temp. register, 
space in reservation station & reorder buffer)

• If instruction has some but not all resources, 
should a subsequent instruction proceed?
– Decisions must avoid deadlock conditions

(two instructions need each other’s resources)
– More complex, so easier to use original order, 

particularly with more than 2 execution units



Pipelining in CISC Processors

• Load/Store architecture simplifies pipelining; 

influenced development of RISC processors

• CISC processors introduce complications from 

instructions with multiple memory operands 

and side effects (autoincrement, cond. codes)

• But existing CISC architectures later pipelined 

(with more effort) after development of RISC

• Examples: Freescale ColdFire and Intel IA-32



Concluding Remarks

• Pipelining overlaps activity for 1 instr./cycle
• Combine it with multiple instruction issue

in superscalar processors for +1 instr./cycle
• Potential performance gains depend on:
– Instruction set characteristics
–Design of pipeline hardware
–Ability of compilers to optimize code

• Interaction of these aspects is a key factor
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