
SISTEMI EMBEDDED

Computer Organization
“Central” Processing Unit (CPU)

Federico Baronti Last version: 20180515

Processing Unit

• A processor reads program instructions from
the computer’s memory and executes them.
This includes the following basic phases:
– Fetching and decoding the instruction
– Executing the instruction, which includes:

1. Reading one or more registers (in the register file)
2. Doing some computation (in the ALU)
3. Accessing the memory
4. Writing a register (in the register file)

da
ta

pa
th

Processor’s building blocks
• PC provides instruction

address
• Instruction is fetched

into IR
• Instruction address

generator updates PC
• ALU performs some

computation during
execution

• Control circuitry
interprets instruction
and generates control
signals to perform the
actions needed.

A digital processing system
• datapath

A multi-stage digital processing system
• datapath

Why multi-stage?
• Processing moves from one stage to the next

in each clock cycle
• Such a multi-stage system is the basis for

pipelined operation
– High-performance processors have a pipelined

organization
– Pipelining enables the execution of successive

instructions to be overlapped
• We will get back to pipeline later. Let’s now

focus on the basics of the multi-stage
architecture of a RISC-style processor

Instruction execution
• Pipelined organization is most effective if all

instructions can be executed in the same number
of steps.

• Each step is carried out in a separate hardware
stage.

• Processor design will be illustrated using five
hardware stages.

• How can instruction execution be divided into
five steps?
– Let’s start from some representative RISC instructions

A memory access instruction:
Load R5, X(R7)

1. Fetch the instruction and increment the
program counter.

2. Decode the instruction and read the contents
of register R7 in the register file.

3. Compute the effective address = X + [R7].
4. Read the memory source operand.
5. Load the operand into the destination

register, R5.

A computational instruction:
Add R3, R4, R5

1. Fetch the instruction and increment the program
counter.

2. Decode the instruction and read registers
R4 and R5.

3. Compute the sum [R4] + [R5].
4. No action.
5. Load the result into the destination register, R3.

• Stage 4 (memory access) is not involved in this
instruction.

5-stage Architecture of a
RISC Processor

1. Fetch an instruction and increment the program
counter.

2. Decode the instruction and read registers from
the register file.

3. Perform an ALU operation.
4. Read or write memory data if the instruction

involves a memory operand.
5. Write the result into the destination register.

• This sequence determines the hardware stages
needed.

Hardware components: Register file

• A 2-port register file
is needed to read the
two source registers
at the same time.

• It may be
implemented using a
2-port memory.

Hardware components: ALU (1)
• Both source operands

and the destination
location are in the
register file.

[RA] and [RB] denote
values of registers that
are identified by
addresses A and B

new [RC] denotes the
result that is stored to
the register identified
by address C

[RA]
new [RC]

[RB]

Hardware components: ALU (2)

• In this case, one of
the source
operands is the
immediate value
in the IR.

[RA]

new [RC]

A 5-stage implementation of
a RISC processor

• Instruction processing
moves from stage to stage
in every clock cycle,
starting with fetch.

• The instruction is decoded
and the source registers
are read in stage 2.

• Computation takes place in
the ALU in stage 3.

A 5-stage implementation of
a RISC processor

• …

• If a memory operation is
involved, it takes place in
stage 4.

• The result of the
instruction is written in
the destination register
in stage 5.

The datapath – Stages 2 to 5

• Register file,
used in stages 2 and 5
– (Inter-stage registers RA, RB, RZ,

RM, RY needed to carry data
from one stage to the next)

• ALU stage

• Memory stage

• Final stage to store result
to the register file

Memory stage
• For a calculation

instruction:
– MuxY selects [RZ] to be

placed in RY.
• For a memory

instruction:
– RZ provides memory

address, and MuxY
selects read data to be
placed in RY.

– RM provides data for a
memory write operation.

• In subroutine calls or
exception handling:
– Input 2 of MuxY is used

(return address stored in
the register file)

Instruction Fetch Stage (1)
• MuxMA selects the PC

when fetching
instructions (RZ in the
Memory Stage – we are
assuming no Harvard
architecture)

• The Instruction address
generator increments
the PC after fetching an
instruction
– It also generates branch

and subroutine
addresses.

Instruction Fetch Stage (2)
• When an instruction is

read, it is placed in IR.
• The control circuitry

decodes the
instruction.
– It generates the

control signals that
drive all units.

• The Immediate block
extends the immediate
operand to 32 bits,
according to the type
of instruction.

Instruction address generator
• Connections to

registers RY and RA
are used to support
subroutine call and
return instructions

Example: Add R3, R4, R5
1. Memory address ←[PC],

Read memory,
IR←Memory data,
PC ← [PC] + 4

2. Decode instruction,
RA ← [R4], RB ← [R5]

3. RZ ← [RA] + [RB]
4. RY ← [RZ]
5. R3 ← [RY]

Example: Load R5, X(R7)
1. Memory address ← [PC],

Read memory,
IR ← Memory data,
PC ← [PC] + 4

2. Decode instruction,
RA ← [R7]

3. RZ ← [RA] + Immediate
value X

4. Memory address ←[RZ],
Read memory,
RY ← Memory data

5. R5 ← [RY]

= X

Example: Store R6, X(R8)
1. Memory address ← [PC],

Read memory,
IR ← Memory data,
PC ← [PC] + 4

2. Decode instruction,
RA ← [R8], RB ← [R6]

3. RZ ← [RA] + Immediate
value X, RM ← [RB]

4. Memory address ←[RZ],
Memory data ← [RM],
Write memory

5. No action

Unconditional branch

1. Memory address ←[PC], Read memory,
IR ← Memory data, PC ←[PC] + 4

2. Decode instruction
3. PC ← [PC] + Branch offset
4. No action
5. No action

Conditional branch:
Branch_if_[R5]=[R6] LOOP

1. Memory address ← [PC], Read memory,
IR ← Memory data, PC ←[PC] + 4

2. Decode instruction, RA ← [R5], RB ←[R6]
3. Compare [RA] to [RB],

If [RA] = [RB], then
PC ← [PC] + Branch offset

4. No action
5. No action

Subroutine call with indirection:
Call_register R9

1. Memory address ← [PC], Read memory,
IR ← Memory data, PC ←[PC] + 4

2. Decode instruction, RA ← [R9]
3. PC-Temp ← [PC],

PC ← [RA]
4. RY ← [PC-Temp]
5. Register LINK ← [RY]

Control signals

• Select multiplexer inputs to route the flow of
data

• Set the function performed by the ALU

• Determine when data are written into the PC,
the IR, the register file, and the memory

Register file control signals

R

I

Instruction
Format

Generated by decoding
the OPCODE field of the
instruction hold in the
IR register

ALU control signals

Generated by decoding
the OPCODE field of the
instruction hold in the
IR register Analyzed by the

CONTROL CIRCUITRY
during the execution
of a branch
instruction

Result selection

Generated by decoding
the OPCODE field of the
instruction hold in the
IR register

Memory access
• When data are found in the cache, access to

memory can be completed in one clock cycle.
• Otherwise, read and write operations may

require several clock cycles to load data from
main memory into the cache.

• A control signal is needed to indicate that
memory function has been completed (MFC).
E.g., for step 1:

1. Memory address ← [PC], Read memory,
Wait for MFC,
IR ← Memory data, PC ← [PC] + 4

Memory and IR control signals

MuxY

Memory and IR control signals

MuxY

1. Imm 16-bit sign
extended

2. Imm 16-bit
unsigned extended

3. Imm 16-bit “high”
extended

4. Imm 26-bit in CALL
instr. which is
special extended

Control signals of instruction address
generator

Control signal generation
• Circuitry must be implemented to generate control

signals so actions take place in correct sequence and at
correct time.

• There are two basic approaches:
hardwired control and microprogramming

• Hardwired control involves implementing circuitry that
considers step (ring) counter, IR, ALU result, and
external inputs.

• Step (Ring) counter keeps track of execution progress,
one clock cycle for each of the five steps described
(unless a memory access takes longer than one cycle).

Hardwired generation of control signals

E.g.
RF_wtite = T5&(ALU | Load | Call);
PC_enable = T1&MFC | T3&(BR | Ret | Call);

CISC processors

• CISC-style processors have more complex
instructions.

• The full set of instructions cannot all be
implemented in a fixed number of steps.

• Execution steps for different instructions do not
all follow a prescribed sequence of actions.

• Hardware organization should therefore enable
a flexible flow of data and actions to
accommodate CISC.

Hardware organization for a CISC
computer Main difference between

5-stage RISC organization
and CISC organization,
where a datapath cannot
be identified easilyHold temporary results

during instruction
execution

Bus
• An example of an interconnection network.
• When functional units are connected to a

common bus, tri-state drivers are needed.

Register Enable

A 3-bus interconnection network

1. Memory address ← [PC],
Read memory, Wait for
MFC, IR ← Memory data,
PC ← [PC] + 4

2. Decode instruction
3. R5 ← [R5] + [R6]

Example 1: Add R5, R6

A 3-bus interconnection network

1. Memory address ← [PC], Read
memory, Wait for MFC,
IR ← Memory data,
PC ← [PC] + 4

2. Decode instruction
3. Memory address ← [PC], Read

memory, Wait for MFC,
Temp1 ← Memory data,
PC ← [PC] + 4

4. Temp2 ← [Temp1] + [R7]
5. Memory address ← [Temp2], Read

memory, Wait for MFC, Temp1 ←
Memory data

6. Temp1 ←[Temp1] AND [R9]
7. Memory address ← [Temp2],

Memory data ← [Temp1], Write
memory, Wait for MFC

Example 2: And X(R7), R9

X is stored as a second word of the
instruction

References

• C. Hamacher, Z. Vranesic, S. Zaky, N. Manjikian
"Computer Organization and Embedded Systems,”
McGraw-Hill International Edition
– Chapter V: Basic Processing Unit

