SISTEMI EMBEDDED

(Software) Exceptions and
(Hardware) Interrupts

Federico Baronti Last version: 20180418

Exceptions and Interrupts

* Exception: a transfer of control away from a
program’s normal flow of execution, caused by
an event, either internal or external to the
processor, which requires immediate
attention

. an exception caused by an explicit
request signal from an external device
(hardware/interrupt exception)

Exception types (1)

* Reset exception: occurs when the Nios |l
processor is reset. Control is transferred to the
reset address specified when generating the
Nios |l processor core

* Break exception: occurs when the JTAG debug
module requests control. Control is
transferred to the break address automatically
set when generating the Nios Il processor core

Exception types (2)

* Instruction-related exception: occurs when
one of several internal conditions occurs.
Control is transferred to the general exception
address specified when generating the Nios |
processor core (Software exception)

. occurs when a peripheral
device signals a condition requiring service.
Control is transferred to the general exception
address (or to a specific address in case of
vectored interrupt handling)

Break exceptions

e A is a transfer of control away
from a program’s normal flow of execution

e Software debugging tools can take control of the
Nios Il processor via the JTAG debug module to
implement debug and diagnostic features, such
as breakpoints and watchpoints

 The processor enters the break processing state
under one of the following conditions:

— The processor executes the break instruction
(software break)

— The JTAG debug module asserts a hardware break

Instruction-related exceptions

e Occur during execution of Nios Il instructions

— Trap instruction: software-invoked exception.
Useful to “call” OS services without knowing the
routine run-time addresses

— Break Instruction
— lllegal instruction
— Unimplemented instruction

— Division error

Interrupt exceptions

* A peripheral device can request an interrupt
by asserting an Interrupt ReQuest (IRQ) signal.
IRQs interact with the Nios Il processor
through an interrupt controller

 The Nios Il processor can be configured with
one of the following interrupt controller
options:

— The internal interrupt controller

— The external interrupt controller interface

Example of a Nios Il System

SDRAM
Memory

Flash
Memory

SRAM
Memory

JTAG connection
to software debugger

o X
3 3
JTAG x ©
— Debug Module
[S—
Data » TXD
- — = UART < RXD
Nios I
Processor Core Inst.
-— , &> Timer1
S
©
(T
S =P Timer2
(]
> SLEL > =
Controller 8
5 . . LCD
é <= LCD Display Driver < Screen
On-Chip ROM ’—b - B
uttons,
& [€P»| General-Purpose |/O |um—p LEDs, etc.
Tristate bridge to Ethernet
T — > <4=P Ethernet Interface || MAC/PHY
|- __________ 1
External Interrupt 1 CompactFlash Compact
| e T
: Controller | Interface « Flash

Nios |l Processor Core Architecture

Nios Il Processor Core
General Tightly Coupled
reset q gr ng?:Im Purpose ¢ Instruction Memory
clock ongo e Registers B
Cpu_resetrequest Address Control Instruction .
cpu_resettaken G - : Cache
< BLEELI Registers , Tightly Coupled
) JIAG Instruction Memory
interface JTAG . Shadow
to software | Debug Module ~ EXception Register .
debugger Controller Sets e |nstruction Bus
irq[31..0]
. Igstrqc’uon Memory
eic_port_data[44..0] > External S Management
| Unit
eic_port valid > cC r Memo_ry
Nterface Prote(;tlon
Unit Translation
Lookaside
Data Buffer
Regions <¢—P Data Bus
Tightly Coupled
Cllj/séom Custom > Data Memory
Sianal <¢=P-| Instruction Asithmetic Data
ignals i
g Logec Logic Unit Cache :
L]
— Tightly Coupled
Data Memory
Required Optional

Module Module

Reset signals

reset

Reset

This is a global hardware reset signal that forces the processor core to reset
immediately.

cpu_resetrequest

Reset

This is an optional, local reset signal that causes the processor to reset without
affecting other components in the Nios Il system. The processor finishes executing any
instructions in the pipeline, and then enters the reset state. This process can take
several clock cycles, so be sure to continue asserting the cpu resetrequest signal
until the processor core asserts a cou resettaken signal.

The processor core asserts a cpou resettaken signal for 1 cycle when the reset is
complete and then periodically if cpu resetrequest remains asserted. The processor
remains in the reset state for as long as cpu resetrequest is asserted. While the
processor is in the reset state, it periodically reads from the reset address. It discards
the result of the read, and remains in the reset state.

The processor does not respond to cpu resetrequest when the processor is under
the control of the JTAG debug module, that is, when the processor is paused. The
processor responds to the cpu resetrequest signal if the signal is asserted when
the JTAG debug module relinquishes control, both momentarily during each single step
as well as when you resume execution.

Some definitions

* Exception latency: the time elapsed
between the event that causes the exception
and the

execution of the first instruction at the handler
address

* Exception response time: the time
elapsed between the event that causes the
exception and

the execution of non-overhead exception code,
which is specific to the exception type
— May include the time needed to save general purpose

registers and to determine the cause of the exception
(for NON VECTORED interrupts)

Internal interrupt controller

* Non-vectored exception controller to handle
all exception types

e Each exception, including hardware interrupts
(IRQ31-0), causes the processor to transfer
execution to the same general exception
address

* An exception handler at this address
determines the cause of the exception and
dispatches an appropriate exception routine

External interrupt controller interface (1)

e External Interrupt Controller (EIC) can be used to
shorten exception response time

* EIC monitors and prioritizes IRQ sighals and determines
which interrupt to present to the Nios Il processor. An
EIC is software-configurable

* When an IRQ is asserted, the EIC provides the following
data to the Nios Il processor:

— The Requested Interrupt Level (RIL); the interrupt is taken
only when the RIL is greater than the IL field (6-bit) in the

status register
— The Requested Register Set (RRS)
— Requested NonMaskable Interrupt (RNMI) mode

External interrupt controller interface (2)

* Requested register set is one of the
implemented shadow register sets

— This way the context switch overhead is
eliminated (useful for high-critical interrupts)

— Less critical interrupts can share the same shadow
register set
* No problem if interrupt pre-emption cannot occur
among these interrupts

— Same priority level or nested interrupts are disabled

* Otherwise the ISR must save its register set on entry
and restore it on exit

External interrupt controller interface (3)

 The Nios Il processor EIC interface connects to a single
EIC, but an EIC can support a daisy-chained
configuration

 Multiple EICs can monitor and prioritize interrupts

 The EIC directly connected to the processor presents
the processor with the highest-priority interrupt from
all EICs in the daisy chain

* An EIC component can support an arbitrary level of
daisy-chaining, potentially allowing the Nios Il
processor to handle an arbitrary number of prioritized
Interrupts

External interrupt controller interface (4)

CPU |<e Avalon-ST

¢

Avalon-MM Interconnect Fabric |

R R S R R

Core VIC Core Vic |—
IRQ IRQ
Avalon-ST
ctk —
(clock)
irg input —|p-| IMterrupt Priority Vector interrupt_controller_out
(exteral iﬁterrupt inpul) Request > Processing E— Generation > (Avalon-ST to processor or
_ _ Block Block Block to interrupt_controller_in
interrupt_controller _in of another VIC)
(optional Avalon-ST ——»>|
VIC daisy chain input) {» J
Control Status Registers
CSr_access
(Avalon-MM slave
from processor)

Nios Il registers (1)

* General-purpose registers (r0-r31)

Register Name Function
r20 Callee-saved register
r21 Callee-saved register
r22 Callee-saved register
r23 Callee-saved register
r24 et Exception temporary
r25 bt Breakpoint temporary (7)
r26 gp Global pointer
r27 sp Stack pointer
r28 fp Frame pointer
r29 ea Exception return address
r30 ba Breakpoint return address (2)
ril ra Return address

Nios Il registers (2)

* Control registers

| Register Name Register Contents

0 status Refer to Table 3—7 on page 3—12
estatus erer to fable 3—-9 on page 3—

2 bstatus Refer to Table 3—10 on page 3—-15
3 ienable Internal interrupt-enable bits (3)
4 ipending Pending internal interrupt bits (3)
5 cpuid Unique processor identifier
6 Reserved Reserved
7 exception Refer to Table 3—12 on page 3—-16
8 pteaddr (7) Refer to Table 3—13 on page 3—-16
9 tlbacc (1) Refer to Table 3—15 on page 3—17
10 tlbmisc (1) Refer to Table 3—17 on page 3—-18
11 Reserved Reserved
12 badaddr Refer to Table 3—19 on page 3-21
13 config (2) Refer to Table 3—21 on page 3-21
14 mpubase (2) Refer to Table 3—23 on page 3-22
15 mpuacc (2) Refer to Table 3—-25 on page 3-23
16-31 Reserved Reserved

Status register (1)

31 (30|29 |28 |27 |26 |25 (24|23 |22 |21 |20 19 (18|17 |16 |15 |14 (13 |12 |11 |10| 9 (8 |7 | 6 | 5| 4|3 | 2 0
M — m
Reserved Hls PRS CRS IL T | & O
| = 2
Bit Description Access Reset | Available
EIC
RSIE is the register set interrupt-enable bit. When set to 1, this bit allows interface
— Fhe processor to service external mtgrrupts'requestmg the' register set that Read/Write 1 and shadow
is currently in use. When set to 0, this bit disallows servicing of such register
interrupts. sets
only (4)
NMI is the nonmaskable interrupt mode bit. The processor sets NMI to 1 . EIC
NMI . : ' Read 0 interface
when it takes a nonmaskable interrupt.
only (3)
PRS is the previous register set field. The processor copies the CRs field to
the PRS field upon one of the following events:
m Ina processor with no MMU, on any exception
m Ina processor with an MMU, on one of the following:
m Break exception
= Nonbreak exception when status.EH is zero
The processor copies CRS to PRS immediately after copying the status Shadow
PRS register to estatus, bstatus 0r sstatus. Read/Write 0 regliter
The number of significant bits in the crs and pRrs fields depends on the Sets
number of shadow register sets implemented in the Nios Il core. The value only (3)
of CrRS and PRS can range from 0 to n-1, where n is the number of
implemented register sets. The processor core implements the number of
significant bits needed to represent n-1. Unused high-order bits are always
read as 0, and must be written as 0.
| Ensure that system software writes only valid register set numbers to
the PRs field. Processor behavior is undefined with an unimplemented
register set number.

Status register (2)

Bit Description Access Reset | Available
CRS is the current register set field. CRS indicates which register set is
currently in use. Register set 0 is the normal register set, while register sets
1 and higher are shadow register sets. The processor sets CRS to zero on Sha.dow
CRS any noninterrupt exception. Read (1) 0 resg;;er
The number of significant bits in the CRS and PRs fields depends on the only (3)
number of shadow register sets implemented in the Nios Il core. Unused
high-order bits are always read as 0, and must be written as 0.
IL is the interrupt level field. The IL field controls what level of external EIC
IL maskable interrupts can be serviced. The processor services a maskable Read/Write 0 interface
interrupt only if its requested interrupt level is greater than IL. only (3)
IH is the interrupt handler mode bit. The processor sets IH to one when it : . .
IH . Read/Write 0 interface
takes an external interrupt.
only (3)
EH is the exception handler mode bit. The processor sets EH to one when an
exception occurs (including breaks). Software clears EH to zero when ready MMU
EH (2) | to handle exceptions again. EH is used by the MMU to determine whethera | Read/Write 0 only (3)
TLB miss exception is a fast TLB miss or a double TLB miss. In systems y
without an MMU, EH is always zero.
U is the user mode bit. When U = 1, the processor operates in user mode. MMU or
U (2) When U =0, the processor operates in supervisor mode. In systems without | Read/Write 0 MPU
an MMU, U is always zero. only (3)
PIE is the processor interrupt-enable bit. When PIE = 0, internal and
maskable external interrupts and noninterrupt exceptions are ignored.
PIE When PIE = 1, internal and maskable external interrupts can be taken, Read/Write 0 Always

depending on the status of the interrupt controller. Noninterrupt exceptions
are unaffected by PIE.

Other relevant control registers (1)

The estatus register holds a saved copy of the
status register during nonbreak exception
processing

The bstatus register holds a saved copy of the
status register during break exception processing

The ienable register controls the handling of
internal hardware interrupts

The ipending register indicates the value of the
interrupt signals driven into the processor

Other relevant control registers (2)

* When the extra exception information option
is enabled, the Nios Il processor provides
information useful to system software for
exception processing in the exception and
badaddr registers when an exception occurs

Masking and disabling interrupts

ienable Register

External hardware
interrupt request
inputs irq[31..0]

LEITAaVYN3I
Z319vYN3|
L379VYN3I
0319VN3I

ipending Register
) T |T |T
m m |(m |[m
z z |z |2
=) g (@ |©
z z |z |2
@ © @ @
@ S I A
PIE bit
Generate
Hardware

Interrupt

Exception processing flow (1)

* |n response to an exception, the Nios Il
processor does the following actions:
— Save the status register into the estatus register
— Clear PIE bit in the status register
— Save PC (return address) to ea register
— Transfer execution to the:

» general exception handler (w/ Internal Interrupt
Controller)

* specific exception handler (w/ External Interrupt
Controller)

Exception processing flow (2)

 The general exception handler is a routine that
determines the cause of each exception and
then dispatches an exception routine to respond
to the specific exception (software or hardware)

* The general exception handler is found at the

— At run time this address is fixed, and software cannot
modify it
— Programmers do not directly access exception vectors

and can write programs without awareness of this
address thanks to HAL

Determining the exception cause

 |nstruction-related (software) exception

— cause field of the exception register (if present)

stores the info on what instruction has caused the
exception

— If non-present, the handler must retrieve the
instruction that has caused the exception

Pseudo C code for dispatiching software exceptions
(w/o excepetion register) and

if (estatus.PIE == 1 and ipending !=0)
else {

decode instruction at [ea]-4
if (instruction is trap) handle trap exception
else if (instruction is load or store) handle misaligned data address exception
else if (instruction is branch, bret, callr, eret, jmp, or ret)
handle misaligned destination address exception
else if (instruction is unimplemented) handle unimplemented instruction exception
else if (instruction is illegal) handle illegal instruction exception
else if (instruction is divide) {
if (denominator == 0) handle division error exception
else if (instruction is signed divide and numerator == 0x80000000
and denominator == Oxffffffff)
handle division error exception

}

else handle unknown exception

}

Interrupt Latency & Response Time

event

| GENERAL EXCEPTION HANDLER EXECUTION

<

SW w/ int dis or higher HW SW SW for specific SW
priority int being executed™ handling overhead handling overhead

LATENCY
event

is acknowledged

RESPONSE TIME

* Save * Restore
context context

* Determine * eret
exception

cause

Hardware interrupts processing flow w/ EIC

* When the EIC interface presents an interrupt to
the Nios Il processor, the processor uses several
criteria to determine whether or not to take the
interrupt:

— Nonmaskable interrupts: the processor takes any NMl
as long as it is not processing a previous NMl|

— Maskable interrupts: the processor takes a maskable
interrupt if maskable interrupts are enabled (PIE = 1)
and if the requested interrupt level is higher than that
of the interrupt currently being processed (if any)

 However, if shadow register sets are implemented, the
processor takes the interrupt only if the interrupt requests a

register set different from the current register set, or if the
register set interrupt enable flag (status.RSIE) is set

Nested exceptions (1)

* Nested exceptions can occur under the
following circumstances:

— An exception handler enables maskable interrupts
— An EIC is present and

e an NMI occurs or

* the processor is configured to keep maskable interrupts
enabled when taking an interrupt

— An exception handler triggers an
instruction-related exception

Nested exceptions (2)

* By default, Nios Il processor disables maskable
interrupts when it takes an interrupt request

* To enable nested interrupts, the ISR itself must
re-enable interrupts after the interrupt is taken

* Alternatively, to take full advantage of nested
interrupts with shadow register sets, system
software can set the config.ANI flag in the config
control register. When config.ANI = 1, the Nios Il
processor keeps maskable interrupts enabled
after it takes an interrupt

Interrupt Service Routine (ISR)

* The HAL provides an application

programming interface (API) for writing,
registering and managing ISRs

— This APl is compatible with both internal and
external hardware interrupt controllers

* For back compatibility Altera also supports a
legacy hardware interrupt API
— This APl supports only the IIC

— A custom driver written prior to Nios Il version 9.1
uses the legacy API

HAL API

* Both interrupt APIs include the following types of
routines:
— Routines to be called by a device driver to register an ISR
— Routines to be called by an ISR to manage its environment

— Routines to be called by BSP or application code to control
ISR behavior

* Both interrupt APIs support the following types of
BSPs:
— HAL BSP without an RTOS
— HAL-based RTOS BSP, such as a MicroC/OS-1l BSP

* When an EIC is present, the controller’s driver provides
functions to be called by the HAL

HAL API selection

* When the SBT creates a BSP, it determines whether the
BSP must implement the legacy interrupt API

— Each driver that supports the enhanced API publishes this
capability to the SBT through its
<driver name>_sw.tcl file

 The BSP implements the enhanced API if all drivers
support it; otherwise it uses the legacy API

— Altera drivers written for the enhanced API, also support
the legacy one

— Devices whose interrupts are not connected to the Nios Il
processor are ignored

Example DE2 Basic Computer

e system.h

#define ALT_DEVICE_FAMILY "CYCLONEII"

#define ALT TRQ BASE NULL

#define ALT LEGACY INTERRUPT API PRESENT

#define ALT LOG PORT "/dev/null"

#define ALT LOG PORT BASE 0x0

#define ALT LOG PORT DEV null

#define ALT LOG PORT TYPE ""

#define ALT NUM EXTERNAL INTERRUPT CONTROLLERS 0
#define ALT NUM INTERNAL INTERRUPT CONTROLLERS 1
#define ALT NUM INTERRUPT CONTROLLERS 1

avalon_parallel_port_driver and up_avalon_rs232_driver
do not support enhanced API

Enhanced HAL Interrupt API

Function Name Implemented By

alt ic isr register|() Interrupt controller driver (7)
alt ic irg enable() Interrupt controller driver (7)
alt ic irqg disable() Interrupt controller driver (7)
alt ic irqg enabled() Interrupt controller driver (7)
alt irq disable all() HAL

alt irq enable all() HAL

alt irg enabled() HAL

Note to Table 8-1:

(1) If the system is based on an EIC, these functions must be implemented by the EIC driver. If the system is based in
the IIC, the functions are implemented by the HAL. For details about each function, refer to the HAL AP/ Reference
chapter of the Nios Il Software Developer’s Handbook.

* Using the enhanced HAL API to implement ISRs requires
performing the following steps:
— Write the ISR that handles hardware interrupts for a specific device

— Ensure that the main program registers the ISR with the HAL by calling
the alt_ic_isr_register() function (this function also enables the
hardware interrupts)

Legacy HAL Interrupt API

alt_irg_register()
alt_irg_disable()
alt_irg_enable()
alt_irg_disable_all()
alt_irg_enable_all()
alt_irg_interruptible()
alt_irg_non_interruptible()
alt_irg_enabled()

Using the legacy HAL API to implement ISRs requires performing the
following steps:
— Write the ISR that handles hardware interrupts for a specific device
— Ensure that the main program registers the ISR with the HAL by calling the
alt_irg_register() function

— alt_irq_register() enables also hardware interrupts by calling
alt_irg_enable_all()

HAL exception handling w/ IIC

Hardware
interrupts
pending?

Yes

Enter

i

Save context

Hardware

interrupts
enabled?

>

A /

Handle
software exception

g N
Handle
N hardware interrupts
& | & S
i)) eee éf)
- 1

Restore context

i

Exit

Software
exception funnel

Harwdare interrupt funnel

After the ISR; execution, sneer
ipending register is ’l
scanned again from 0, so

that higher-priority =9

interrupts are always

processed before lower-
priority interrupts

Call ISR;

i=i+1

IRQ; active?

ISR code must clear the

associated peripheral’s Yes No |
interrupt condition

Exit

Call ISR,

* |Interrupt table definition (Legacy HAL
Interrupt API)
struct {

void (*handler)(void*, alt_u32);
void *context; } alt_irq[32];
* Call ISR,
alt_irg[i].handler(alt_irg[i].context, i);

When writing an ISR...

* Keep it as simple as possible. Defer intensively tasks to the
application code.

* |SRsrunin a restricted environment. A large number of the
HAL API calls are not available from ISRs

— For example, accesses to the HAL file system are not permitted

* As ageneral rule, never include function calls that can block
for any reason (such as waiting for a hardware interrupt)

— Avoid using the C standard library I/O API, because calling these
functions can result in deadlock within the system, that is, the
system can become permanently blocked in the ISR

— Do not call printf() from within an ISR unless you are certain that
stdout is mapped to a non-interrupt-based device driver

— Otherwise, printf() can deadlock the system, waiting for a
hardware interrupt that never occurs because interrupts are
disabled

Putting into practice (1)

Write a program that reads the pushbutton activity

exploting the related hardware interrupt and turns
on/off some LEDs

#tinclude <sys/alt_irg.h> to use Interrupt HAL API
ISR prototype

— static void pushbutton_ISR(void* context, unsigned long id);

Putting into practice (2)

 Make RED leds blink using the Interval Timer and
the sys_clk HAL w/ 2 s period

— Map sys_clk HAL to the Interval_timer peripheral
using the BSP editor

— Define a variable of alt_alarm type (you need to
include "sys/alt_alarm.h " header file)

— Start the alarm using the alt_alarm_start() function
passing as parameter the pointer to the callback
function that makes the leds blink

* Prototype of the callback function:
alt u32 my_alarm_callback(void* context)

* The return value is the time that will pass before the next
alarm event

References

* Altera, “Nios Il Processor Reference
Handbook,” n2cpu_nii5vi.pdf
— 2. Processor Architecture
— 3. Programming Model/Exception Processing
e Altera, “Nios Il Software Developer’s
Handbook,” n2sw_nii5v2.pdf
— 8. Exception Handling
— 14. HAL API Reference

