
SISTEMI EMBEDDED

Tutorial on creating and using a 
custom component in a Qsys system

Federico Baronti Last version: 20180423



Introduction
• Problem:
– Use a custom component within a Qsys system

• Solution:
– Provide the custom component with standardized 

interfaces: clock, reset, memory-mapped, …
– Add the custom component to the Qsys Library
– Instantiate, configure and connect the custom 

component as any other component in the system
– Provide an appropriate device driver to control 

the custom component from the software 
application



Example: PWM peripheral
• Provide my_first_computer (enriched with Watchdog, Interval Timer, JTAG 

UART) with a PWM peripheral to control the brightness of a LED

Nios II
Core/e

JTAG Debug 
Module

KEY0

JTAG Controller

Max 10: 10M50DAF484C7G

On-chip
mem

PIO (10-
bit input)

SW9 ... SW0

PIO (10-bit 
output)

LEDR9...LEDR1

USB-
BlasterHOST-PC

System 
ID

MAX10_CLK1_50

Clock
source

reset_n clk

Interval
Timer

PWM
peripheral

LEDR0

JTAG UART

Avalon System Fabric

JTAG HUB

X



PWM Peripheral (1)

• Memory-mapped with 3 regs: CONTROL (1 
bit), PERIOD (32-bit) and COMPARE (32-bit)

• It is based on a 32-bit up-counter
– The counter is forced to 0 when reaches the 

content of the PERIOD reg

• The PWM output is set when the counter goes 
from the PERIOD value to 0 and cleared when 
reaches the COMPARE value



PWM Peripheral (2)
• CONTROL reg allows you to enable/disable the 

PWM output (when disabled the output is low)
• The PERIOD reg allows you to set the PWM 

period TPWM = Tclk*(PERIOD+1)
– A write to the PERIOD reg clears the counter

• The COMPARE reg allows you to set duty cycle δ

– The COMPARE reg is buffered and is updated when 
the counter goes from PERIOD to 0

δ =
COMPARE +1
PERIOD+1



PWM Peripheral (3)
• Module interface

• The HDL code is provided (unipi_se_pwm.v)

module unipi_se_pwm (
// inputs:
address,
clk,
reset_n,
read,
write,
writedata,
// outputs:
readdata,
pwm_out
);

// parameters
parameter RESET_PERIOD = 0; 
parameter RESET_COMPARE = 0;
parameter RESET_PWM_ENABLE = 0;



PWM Peripheral (4)
Signal name Avalon interface Role

clk IN Clock clock

reset_n IN Reset reset_n

address IN Memory-Mapped slave address

read IN Memory-Mapped slave read

write IN Memory-Mapped slave write

writedata IN Memory-Mapped slave writedata

readdata OUT Memory-Mapped slave readdata

pwm_out OUT Conduit Export



Add custom component to Qsys (1)
• Component Library / Project / New Component
– Component Type

Name your custom
component



Add custom component to Qsys (2)
• Component Library / Project / New Component
– Files

Select the HDL
file(s)
Analyze Synthesis
Files



Add custom component to Qsys (3)
• Component Library / Project / New Component
– Signals

Assign each signal
of the module
to the appropriate
Avalon Interface
and the relevant
signal role



Add custom component to Qsys (4)
• Component Library / Project / New Component
– Interfaces

Configure each
Avalon Interface



Add custom component to Qsys (5)
• Component Library / Project / New Component
– Parameters

Set default
values,…



Putting into practice (1)
• Instantiate, configure and connect the 

SE_unipi_pwm component
• Generate the Qsys system
• Back to Quartus II
– Update the nios_system instance to include the 

pwm output port and connect it to LEDR[0]
• Compile the project and configure the FPGA
– If you have used the default values for the PWM 

Peripheral, the LEDR[0] should be on with average 
brightness



Putting into practice (2)

• Time to start an Eclipse project

• Write a program that allows you to control the 
brightness of LEDR[0] by means of the
SW7-Sw0
– Try to use the provided device drivers:

unipi_se_pwm.c, unipi_se_pwm.h


