
SISTEMI EMBEDDED

Input/Output
Hardware Abstraction Layer (HAL)

newlib C standard library

Federico Baronti Last version: 2018021

Input/Output (I/O)

• Peripheral Interfaces allow the processor to interact with a variety
of I/O devices
– They “standardize” (in hardware) the different I/O devices, so that they

appear to the processor as a well-defined set of registers (control, status
and data regs). The way the programmer must handle these registers
depends on how the underlying I/O device works

• How can this standardization (or hardware abstraction) process be
further developed in the embedded system software?

Processor

Memory

Input Output

Peripherals

Standard I/O
• Consider the following C++ program:

#include <iostream>
using namespace std;

int main()
{

int x, y, max;
cout << "Type two integers: ";
cin >> x >> y;
max = (x>y ? x : y);
cout << "The maximum is: " << max << '\n’;

}

• The interaction with the standard I/O devices is managed by the iostream
class and the relevant operating system functions

• Programmer do not need to know how the standard I/O devices work!
• Can we do something similar when programming the Nios II processor or

any other embedded processor?

Layered software

Hardware Abstraction Layer (1)
• Isolates User Program from hardware implementation
• Uses the services provided by the Device Driver Layer to

create a standard interface (API: Application
Programming Interface) to the User Program

• Integrates with the newlib Standard C Library
– Peripherals can share the same API (eg. printf(), fopen(),

fwrite(), …)

• Automatically generated as part of the Board
Support Package (BSP) from the specific
hardware configuration contained in the SOPC
information file (.sopcinfo)

Hardware Abstraction Layer (2)

• Pros:
– Speed-up software development
– Code reusability
– Tolerance to hardware changes during software

developing
– Facilitate parallel development of the software

• Cons:
– Less optimized code
• Larger memory footprint
• Slower performances

Hardware Abstraction Layer (3)

• HAL additional services:
– System Initialization
• Performs initialization tasks for the processor and the

runtime environment before main()
– E.g. Stack Pointer initialization

– Device Initialization
• Instantiates and initializes each device in the system

before main()

Generic Device Models
• Character-mode devices: Hardware peripherals that send and/or receive

characters serially, such as a UART
• Timer devices: Hardware peripherals that count clock ticks and can

generate periodic interrupt requests
• File subsystems: A mechanism for accessing files stored in physical

device(s)
• Ethernet devices: Devices that provide access to an Ethernet connection

for a networking stack such as the Altera-provided NicheStack® TCP/IP
Stack - Nios II Edition

• Direct memory access (DMA) devices: Peripherals that perform bulk data
transactions from a data source to a destination

• Flash memory devices: Nonvolatile memory devices that use a special
programming protocol to store data

Benefits of a Device Model
• HAL defines a set of functions to initialize and

access each class of device
• The programmer can use a standard API

independent of the device driver implementation
– E.g. To access character-mode devices and file

subsystems, the programmer can use C standard
library functions, such as printf(), fopen(),…

• Device driver must provide a set of driver
functions according to the device class that are
used by the standard API to manipulate the
peripheral of the specific class

Peripherals supported by HAL (1)
• Character mode devices:

– UART core
– JTAG UART core
– LCD 16207 display controller

• Timer devices:
– Timer core

• File subsystems:
– Altera host based file system
– Altera read-only zip file system

• Ethernet devices:
– Triple Speed Ethernet MegaCore® function
– LAN91C111 Ethernet MAC/PHY Controller

• DMA devices:
– DMA controller core
– Scatter-gather DMA controller core

• Flash memory devices:
– Common flash interface compliant flash chips
– Altera’s erasable programmable configurable serial (EPCS) serial configuration device

controller

Peripherals supported by HAL (2)
• All peripherals (both from Altera and third party vendors)

must provide a header file that defines the peripheral’s
low-level interface to hardware

• Some peripherals might not provide device drivers. If
drivers are not available, use only the definitions provided
in the header files to access the hardware. Do not use
unnamed constants, such as hard-coded addresses, to
access a peripheral

• Some peripherals provide dedicated functions that are not
based on the HAL generic device models. For example,
Altera provides a general-purpose parallel I/O (PIO) core for
use with the Nios II processor system. The PIO peripheral
does not fit in any class of generic device models provided
by the HAL, and so it provides a header file and a few
dedicated functions only

Structure of a project with HAL (1)

Structure of a project with HAL (2)
• Two projects:
– User application project
– BSP project

• The executable image (.elf) is the result of
building both projects

• The BSP project incorporates the HAL and the
device drivers relevant to the specific hardware
system defined by the .sopcinfo file

• The BSP can be updated when the underlying
hardware system changes

System description file (1)

• system.h contains all information related to
the hardware system
– The hardware configuration of the peripheral
– The base address
– Interrupt request (IRQ) information (if any)
– A symbolic name for the peripheral

• Generated automatically from .sopcinfo file
and HAL BSP properties

System description file (2)
• Extracted from system.h related to the

DE2 Basic Computer

/*
* Pushbuttons configuration
*
*/
#define ALT_MODULE_CLASS_Pushbuttons altera_up_avalon_parallel_port
#define PUSHBUTTONS_BASE 0x10000050
#define PUSHBUTTONS_IRQ 1
#define PUSHBUTTONS_IRQ_INTERRUPT_CONTROLLER_ID 0
#define PUSHBUTTONS_NAME "/dev/Pushbuttons"
#define PUSHBUTTONS_SPAN 16
#define PUSHBUTTONS_TYPE "altera_up_avalon_parallel_port"

System description file (3)
/*
* Interval_timer configuration
*
*/
#define ALT_MODULE_CLASS_Interval_timer altera_avalon_timer
#define INTERVAL_TIMER_ALWAYS_RUN 0
#define INTERVAL_TIMER_BASE 0x10002000
#define INTERVAL_TIMER_COUNTER_SIZE 32
#define INTERVAL_TIMER_FIXED_PERIOD 0
#define INTERVAL_TIMER_FREQ 50000000u
#define INTERVAL_TIMER_IRQ 0
#define INTERVAL_TIMER_IRQ_INTERRUPT_CONTROLLER_ID 0
#define INTERVAL_TIMER_LOAD_VALUE 6249999ull
#define INTERVAL_TIMER_MULT 0.0010
#define INTERVAL_TIMER_NAME "/dev/Interval_timer"
#define INTERVAL_TIMER_PERIOD 125.0
#define INTERVAL_TIMER_PERIOD_UNITS "ms"
#define INTERVAL_TIMER_RESET_OUTPUT 0
#define INTERVAL_TIMER_SNAPSHOT 1
#define INTERVAL_TIMER_SPAN 32
#define INTERVAL_TIMER_TICKS_PER_SEC 8u
#define INTERVAL_TIMER_TIMEOUT_PULSE_OUTPUT 0
#define INTERVAL_TIMER_TYPE "altera_avalon_timer"

HAL API (1)

• Unix-style functions (file access)
– Facilitate portability of existing programs to Nios II

• HAL API can be further encapsulated by the C
standard library
– E.g. HAL API functions are used by the C standard

library defined in stdio.h to perform underlying
device access

– Programmer can use both the C standard library
or the HAL API functions

HAL API (2)
• Most commonly-used HAL API functions:

int open(const char* pathname, int flags,
mode_t mode)

Opens a file or device and returns a file
descriptor

int close(int fd) Closes the file descriptor fd

int read(int fd, void *ptr, size_t len) Reads a block of data from a file or device

int write(int fd, const void *ptr, size_t len) Writes a block of data to a file or device

off_t lseek(int fd, off_t ptr, int whence) Moves the read/write pointer associated with
the file descriptor fd

int fstat(int fd, struct stat *st) Obtains information about the capabilities of
an open file descriptor

int ioctl(int fd, int req, void* arg) Allows application code to manipulate the I/O
capabilities of a device driver in driver-specific
ways

Example (1)
• Using character-mode devices with standard

I/O C libraries
– A character-mode device (e.g. JTAG-UART) can be

attached to stdin, stdout, stderr streams (BSP
property)
• printf() is available to access stdout!
#include <stdio.h>
int main (){

printf("Hello world!");
return 0; /* while(1) ; */

}

Example (2)
• Writing characters to the UART device “/dev/uart1”

#include <stdio.h>
#include <string.h>
int main(void) {

char* msg = "hello world";
FILE* fp;
fp = fopen ("/dev/uart1", "w");
if (fp!=NULL) {

fprintf(fp, "%s",msg);
fclose (fp);
}

return 0;
}

Null device

• /dev/null
• Included by all HAL-based systems
• It is not connected to any hardware (virtual

device)
• Writing to /dev/null has no effect and all data

are discarded
• Used for safe I/O redirection during system

startup and to sink unwanted data

Device implementation
// alt_dev.h
typedef struct alt_dev_s alt_dev;

struct alt_dev_s {
alt_llist llist; /* for internal use */
const char* name;
int (*open) (alt_fd* fd, const char* name, int flags, int mode);
int (*close) (alt_fd* fd);
int (*read) (alt_fd* fd, char* ptr, int len);
int (*write) (alt_fd* fd, const char* ptr, int len);
int (*lseek) (alt_fd* fd, int ptr, int dir);
int (*fstat) (alt_fd* fd, struct stat* buf);
int (*ioctl) (alt_fd* fd, int req, void* arg);

};

// alt_list.h
typedef struct alt_llist_s alt_llist;

struct alt_llist_s {
alt_llist* next; /* Pointer to the next element in the list. */
alt_llist* previous; /* Pointer to the previous element in the

list. */
};

HAL runtime environment

• alt_sys_init.c
– Allocates the device structures for the peripherals

present in the hardware system
– Initializes all the devices

• The device structures are managed by a list

Parallel Port HAL structure

DATA
Parallel

Port INTERRUPTMASK
DIRECTION

EDGECAPTURE

system.h

Device
Driver

HAL
(Custom Device)

altera_up_avalon_parallel_port_regs.h

altera_up_avalon_parallel_port.h

altera_up_avalon_parallel_port.c

0
4
8

12

Parallel Port Device Driver
• altera_up_avalon_parallel_port_regs.h

The programmer should not use this defines!

#ifndef __ALTERA_UP_AVALON_PARALLEL_PORT_REGS_H__
#define __ALTERA_UP_AVALON_PARALLEL_PORT_REGS_H__

#include <io.h>

// Data Register
#define ALT_UP_PARALLEL_PORT_DATA 0
#define IOADDR_ALT_UP_PARALLEL_PORT_DATA(base) \

__IO_CALC_ADDRESS_NATIVE(base, ALT_UP_PARALLEL_PORT_DATA)
#define IORD_ALT_UP_PARALLEL_PORT_DATA(base) \

IORD(base, ALT_UP_PARALLEL_PORT_DATA)
#define IOWR_ALT_UP_PARALLEL_PORT_DATA(base, data) \

IOWR(base, ALT_UP_PARALLEL_PORT_DATA, data)

/* ... */

#endif /* __ALTERA_UP_AVALON_PARALLEL_PORT_REGS_H__ */

Parallel Port HAL (1)
• altera_up_avalon_parallel_port.h

– Declares/Defines functions/MACROS to manage the device by the user
application: open device, read and write data, …

– Defines ancillary structure and MACROS to be used by the HAL runtime
environment for device initialization

• altera_up_avalon_parallel_port.c

• Defines:
alt_up_parallel_port_dev* alt_up_parallel_port_open_dev(const char* name);

typedef struct alt_up_parallel_port_dev {
alt_dev dev;
unsigned int base;

} alt_up_parallel_port_dev;

Parallel Port HAL (2)

// test parall port HAL
#include "system.h”
#include "altera_up_avalon_parallel_port.h”

int main() {

alt_up_parallel_port_dev *slider_dev, *red_leds_dev;

slider_dev = alt_up_parallel_port_open_dev(SLIDER_SWITCHES_NAME);
red_leds_dev = alt_up_parallel_port_open_dev(RED_LEDS_NAME);

while(1) {
alt_up_parallel_port_write_data(red_leds_dev,

alt_up_parallel_port_read_data(slider_dev));
}

}

newlib C standard Library (1)
• Doc @ https://sourceware.org/newlib/
• Standard functions are divided into groups.

Each group has a corresponding header file
• Standard Utility Functions (stdlib.h)
– Includes functions for: dynamic memory allocations,

string to number conversion and vice versa, pseudo-
random number generation, ….

• Character Type Macros and Functions (ctype.h)
– Includes functions for: classifying characters into several

categories (alphabetic, numeric, control characters,
whitespace, and so on), or to perform simple character
conversions

https://sourceware.org/newlib/

newlib C standard Library (2)

• Strings and Memory (string.h)
– Includes functions for: string-handling and managing

areas of memory
• Input and Output (stdio.h)
– Includes functions for: managing files or other

input/output streams. Among these functions are
subroutines to generate or scan strings according to
some rules specified by means of a format string

Standard I/O with Nios II (1)

• Unformatted input:
int getchar();
– Get the next single character from the stdin

stream
• Unformatted output:

int putchar(int ch);
– Insert a single character into the stdout stream

Standard I/O with Nios II (2)
• Formatted output:

int printf(format string, expression list);
– Converts the result of the expressions according to

the specified format and sends the resulting string to
the stdout stream

– Examples of format specifiers:
• %d signed integer
• %u unsigned integer
• %x hexadecimal unsigned integer
• %f floating point
• %c single character
• %s string

Standard I/O with Nios II (3)
• Formatted input:

int scanf(format string, variable list);
– Interpreters the stdin characters according to the

provided format and assigns the decoded values to
the variables (they must be passed as pointers!)

– Examples of format specifiers:
• %d signed integer
• %u unsigned integer
• %x hexadecimal unsigned integer
• %f floating point
• %c single character
• %s string

Standard I/O with Nios II (4)
• If we recall the initial question “Can we do something similar

also when programming the Nios II processor?”
• Yes, using standard I/O functions over a character-mode

device: printf(), scanf(). (stdin and stout streams must be
attached to that device through the BSP editor)

#include <stdio.h>

int main() {
int x, y, max;

while(1) {
printf("Type two integers: ");
scanf("%d %d", &x, &y);
max = (x>y ? x : y);
printf("The maximum is: %d\n", max);

}
}

Putting into practice

• Write a program that uses the JTAG-UART
peripheral as standard I/O device in order to
make the status of the red LEDs controllable
from the remote PC.

References

• Altera “Nios II Software Developer’s
Handbook,” n2sw_nii5v2.pdf
– Section II. Hardware Abstraction Layer (Chapters

5, 6, 7)
– Section IV. Reference Material (Chapter 14)

