SISTEMI EMBEDDED

Programming the DE10-Lite Basic Computer: playing with parallel ports (or PIO)

Federico Baronti

Last version: 20180314

Putting into practice (1a)

- Write a program that turns on a single LED among LEDR7-LEDRO and makes the position of the on-LED rotate with a period of around 500 ms. Make the activation and direction of the rotation controllable by the pushbutton KEYO, as follows:
 - Each pressure of KEYO changes the rotation state cyclically from OFF to LEFT to RIGHT
 - The program must be sensitive to the edges originated by the release of the pushbutton KEYO

Putting into practice (1b)

Hints:

- Recognize pushbutton releases through the EVENT register of the relevant Parallel Port (or PIO)
- Store the LEDR7-LEDR0 status on a 8-bit unsigned variable
- Use <<, >> for left and right rotation (be careful to manage the all-zero situation)
- Use a finite state machine (Moore model) to:
 - update the rotation state according to the KEYO events
 - generate the new LEDR7-LEDR0 status through a switch instruction that scans the rotation state

Putting into practice (1c)

Hints: Pushbutton Parallel Port

Address	31	30		4	3	2	1	0	
0xFF200050	Unused KEY ₁₋₀							Data register	
Unused	Unused								
0xFF200058	Unused						Mask bits		Interruptmask register
0xFF20005C		Unused Edge						bits	Edgecapture register

- To clear an Edgecapture register bit write 1 into it
 - This behavior is obtained when the bit-clearing for edge capture register is enabled; otherwise the register is cleared all at once when writing any value to it

Putting into practice (1d)

- Hints:
 - Use the Wait_ms() function to generate the rotation period

```
/* delay generation */
#define CYCLES_PER_MS 574
/* value hand tuned to achieve around 1 ms resolution
 * for the DE10-Lite Basic Computer (code optimization OFF)
*/
void Wait_ms(unsigned int time_ms)
{
         int i,j;
         for(j=0; j<time_ms; j++)
         {
               for(i=0; i<CYCLES_PER_MS; i++) {;}
         }
}</pre>
```

What does it happen if the LEDR7-LEDR0 status is stored in a signed variable?

Putting into practice (2)

Faster click game:

- Detect which of KEY1 and KEY0 is pressed first after turning on one of the RED LEDS
- Make the interval time between two consecutive switching on of the LED random
- Make also the RED LED position random
- Signal which KEY has been pressed first using HEX5
- Display the number of times KEY1 has been pressed first on HEX3-HEX2 and KEY0 on HEX1-HEX0
- Use one SLIDER to start/stop the game and reset the scoring

Putting into practice (3a)

Week day

- Show on RED LEDS 6..0 the day of the week of an arbitrary date after 1582 (Gregorian calendar), which is set using KEY1..0 and displayed on the 7-seg displays
- Use KEY0 to move circularly from day to month to year and KEY1 to change the selected digit of the date
- To show the selected digit of the date turns on the point on the corresponding 7-seg display

Putting into practice (3b)

Week day

 How a C++ program for a PC using standard I/O streams looks looks like:

```
// gionosett.cpp
#include <iostream>
using namespace std;
int main(){
  int giorno, mese, anno, sett;
  cout << " Scrivi una data nel formato giorno mese anno\n";</pre>
  cin >> giorno >> mese >> anno;
  if (mese <= 2) {
sett = (anno+31*(mese-1)+giorno+(anno-1)/4-3*((anno+99)/100)/4)%7; }
  else {
    sett = (anno+31*(mese-1)+giorno-(4*mese+23)/10+anno/4-
(3*(anno/100+1)/4))%7; }
```

Putting into practice (3c)

Week day

 How a C++ program for a PC using standard I/O streams looks like:

```
cout << "Il giorno " << giorno << '/' << mese << '/' << anno << " cade di ";
    switch(sett) {
        case 0: cout << "sabato\n"; break;
        case 1: cout << "domenica\n"; break;
        case 2: cout << "lunedi`\n"; break;
        case 3: cout << "martedi`\n"; break;
        case 4: cout << "mercoledi`\n"; break;
        case 5: cout << "giovedi`\n"; break;
        case 6: cout << "venerdi`\n"; break;
    }</pre>
```