SISTEMI EMBEDDED

Programming the DE10-Lite Basic Computer:
playing with parallel ports (or P1O)

Federico Baronti Last version: 20180314



Putting into practice (1a)

* Write a program that turns on a single LED among
LEDR7-LEDRO and makes the position of the on-LED
rotate with a period of around 500 ms. Make the
activation and direction of the rotation controllable by
the pushbutton KEYO, as follows:

* Each pressure of KEYO changes the rotation state cyclically
from OFF to LEFT to RIGHT

* The program must be sensitive to the edges originated by
the release of the pushbutton KEYO



Putting into practice (1b)

* Hints:

* Recognize pushbutton releases through the EVENT register
of the relevant Parallel Port (or PIO)

» Store the LEDR7-LEDRO status on a 8-bit unsigned variable

e Use <<, >> for left and right rotation (be careful to manage
the all-zero situation)

* Use a finite state machine (Moore model) to:

e update the rotation state according to the KEYO events

* generate the new LEDR7-LEDRO status through a switch instruction
that scans the rotation state



Putting into practice (1c)

e Hints: Pushbutton Parallel Port

Address

OxFEF200050

Unused
OxFF200058

OXFF20005C

31 30 4 | 0
Unused KEY
Unused
Unused Mask bits
Unused Edge bits

Data register

Interruptmask register

Edgecapture register

* To clear an Edgecapture register bit write 1 into it

* This behavior is obtained when the bit-clearing for edge
capture register is enabled; otherwise the register is
cleared all at once when writing any value to it



Putting into practice (1d)

* Hints:
* Use the Wait_ms() function to generate the rotation period

/* delay generation */

#define CYCLES_PER_MS 574
/* value hand tuned to achieve around 1 ms resolution
* for the DE10-Lite Basic Computer (code optimization OFF)

*/
void Wait_ms(unsigned int time_ms)
{
inti,j;
for(j=0; j<time_ms; j++)
{
for(i=0; i<CYCLES_PER_MS; i++) {;}
}
}

 What does it happen if the LEDR7-LEDRO status is stored in a signed variable?



Putting into practice (2)

* Faster click game:

» Detect which of KEY1 and KEYO is pressed first after turning
on one of the RED LEDS

* Make the interval time between two consecutive switching
on of the LED random

* Make also the RED LED position random
* Signal which KEY has been pressed first using HEX5

e Display the number of times KEY1 has been pressed first on
HEX3-HEX2 and KEYO on HEX1-HEXO

e Use one SLIDER to start/stop the game and reset the
scoring



Putting into practice (3a)

 Week day

* Show on RED LEDS 6..0 the day of the week of an arbitrary
date after 1582 (Gregorian calendar), which is set using
KEY1..0 and displayed on the 7-seg displays

e Use KEYO to move circularly from day to month to year and
KEY1 to change the selected digit of the date

* To show the selected digit of the date turns on the point on
the corresponding 7-seg display



Putting into practice (3b)
 Week day

* How a C++ program for a PC using standard 1/O streams
looks looks like:

// gionosett.cpp
#include <iostream>
using namespace std;
int main(){
int giorno, mese, anno, sett;
cout << " Scrivi una data nel formato giorno mese anno\n";
cin >> giorno >> mese >> anno;
if (mese <=2) {

sett = (anno+31*(mese-1)+giorno+(anno-1)/4-
3*((anno+99)/100)/4)%7; }

else {

sett = (anno+31*(mese-1)+giorno-(4*mese+23)/10+anno/4-
(3*(anno/100+1)/4))%7; }

/] ...



Putting into practice (3c)

 Week day

 How a C++ program for a PC using standard 1/O streams
looks like:

cout << "Il giorno " << giorno << '/' << mese << '/' << anno << " cade di ";
switch(sett) {
case 0: cout << "sabato\n"; break;
case 1: cout << "domenica\n"; break;
case 2: cout << "lunedi’\n"; break;
case 3: cout << "martedi’\n"; break;
case 4: cout << "mercoledi’\n"; break;
case 5: cout << "giovedi'\n"; break;
case 6: cout << "venerdi'\n"; break;

}



